Displaying publications 321 - 328 of 328 in total

Abstract:
Sort:
  1. Nizam NUM, Hanafiah MM, Mahmoudi E, Halim AA, Mohammad AW
    Sci Rep, 2021 Apr 21;11(1):8623.
    PMID: 33883637 DOI: 10.1038/s41598-021-88084-z
    In this study, two biomass-based adsorbents were used as new precursors for optimizing synthesis conditions of a cost-effective powdered activated carbon (PAC). The PAC removed dyes from an aqueous solution using carbonization and activation by KOH, NaOH, and H2SO4. The optimum synthesis, activation temperature, time and impregnation ratio, removal rate, and uptake capacity were determined. The optimum PAC was analyzed and characterized using Fourier-transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), a field emission scanning electron microscope (FESEM), Zeta potential, and Raman spectroscopy. Morphological studies showed single-layered planes with highly porous surfaces, especially PAC activated by NaOH and H2SO4. The results showed that the experimental data were well-fitted with a pseudo-second-order model. Based on Langmuir isotherm, the maximum adsorption capacity for removing methylene blue (MB) was 769.23 mg g-1 and 458.43 mg g-1 for congo red (CR). Based on the isotherm models, more than one mechanism was involved in the adsorption process, monolayer for the anionic dye and multilayer for the cationic dye. Elovich and intraparticle diffusion kinetic models showed that rubber seed shells (RSS) has higher α values with a greater tendency to adsorb dyes compared to rubber seed (RS). A thermodynamic study showed that both dyes' adsorption process was spontaneous and exothermic due to the negative values of the enthalpy (ΔH) and Gibbs free energy (ΔG). The change in removal efficiency of adsorbent for regeneration study was observed in the seventh cycles, with a 3% decline in the CR and 2% decline in MB removal performance. This study showed that the presence of functional groups and active sites on the produced adsorbent (hydroxyl, alkoxy, carboxyl, and π - π) contributed to its considerable affinity for adsorption in dye removal. Therefore, the optimum PAC can serve as efficient and cost-effective adsorbents to remove dyes from industrial wastewater.
    Matched MeSH terms: Charcoal
  2. Farasyahida A. Samad, Wan Salida Wan Mansor, idayatul Aini Zakaria
    MyJurnal
    Clean, safe and readily available water is very crucial in everyday life, especially for health, hygiene, and the productivity of the community. Unfortunately, increase in contaminants in water supplies from human activities and industrialization is very worrying. Conventional wastewater treatment includes the usage of alum that will affect health with prolonged consumption. This research was carried out to focus on the development of wastewater treatment system using adsorbent from Moringa oleifera seeds. Adsorbent was successfully synthesized from the seeds of Moringa oleifera. Characterization of the sample was made using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), while the effectiveness of water treatment was analyzed using Turbidity Meter. Then, all samples were tested against kaolin wastewater. XRD results showed that all the adsorbent samples were amorphous in nature. FTIR results indicated that there were hydroxyl group and carboxylic group in the sample representing numerous oxygen-riddled functional groups on the surface. From SEM results, it was clearly shown that the pore structure and size of Moringa oleifera affected the capability of adsorption where the smaller the size, the more effective the sample. Turbidity test showed that the sample that worked best for wastewater treatment was adsorbent from Moringa oleifera seeds in size of 125µm that was heated for 4 hours with 93.76% turbidity removal. Therefore, this study proved that the adsorbent from Moringa oleifera seeds is very suitable for high turbidity wastewater treatment. Further studies investigating the combination of conventional activated carbon with adsorbent from Moringa oleifera seeds should be conducted before these samples are made available for further use so that we can compare which sample works best for wastewater treatment.
    Matched MeSH terms: Charcoal
  3. Ahmad MH, Zezi AU, Anafi SB, Alhassan Z, Mohammed M, Danraka RN
    Data Brief, 2021 Jun;36:107155.
    PMID: 34041327 DOI: 10.1016/j.dib.2021.107155
    This article describes the dataset for the elucidation of the possible mechanisms of antidiarrhoeal actions of methanol leaves extract of Combretum hypopilinum (Diels) Combretaceae in mice. The plant has been used in traditional medicine to treat diarrhoea in Nigeria and other African countries. We introduce the data for the antidiarrhoeal activity of the methanol leaf extract of Combretum hypopilinum at 1,000 mg/kg investigated using charcoal meal test in mice with loperamide (5 mg/kg) as the standard antidiarrhoeal agent. To elucidate the possible mechanisms of its antidiarrhoeal action, naloxone (2 mg/kg), prazosin (1 mg/kg), yohimbine (2 mg/kg), propranolol (1 mg/kg), pilocarpine (1 mg/kg) and isosorbide dinitrate (150 mg/kg) were separately administered to different groups of mice 30 minutes before administration of the extract. Each mouse was dissected using dissecting set, and the small intestine was immediately removed from pylorus to caecum, placed lengthwise on moist filter paper and measured the distance travelled by charcoal relative to the length of the intestine using a calibrated ruler in centimetre. Besides, the peristaltic index and inhibition of charcoal movement of each animal were calculated and recorded. The methods for the data collection is similar to the one used to investigate the possible pathways involved in the antidiarrhoeal action of Combretum hypopilinum in mice in the research article by Ahmad et al. (2020) "Mechanisms of Antidiarrhoeal Activity of Methanol Leaf Extract of Combretum hypopilinum Diels (Combretaceae): Involvement of Opioidergic and (α1 and β)-Adrenergic Pathways" (https://doi.org/10.1016/j.jep.2020.113750) [1]. Therefore, this datasets could form a basis for in-depth research to elucidate further the pharmacological properties of the plant Combretum hypopilinum and its bioactive compounds to develop standardized herbal product and novel compound for management of diarrhoea. It could also be instrumental for evaluating the plant's pharmacological potentials using other computational-based and artificial intelligence approaches, including predictive modelling and simulation.
    Matched MeSH terms: Charcoal
  4. Ma, Mei Siang, Zalini Yunus, Ahmad Razi Mohammad Yunus, Zukri Ahmad, Haryanti Toosa
    MyJurnal
    Abstract Water quality in the dental unit waterlines (DUWLs) is important to the patients and dental health care personnel as they are at risk of being infected with opportunistic pathogens such as Pseudomonas or Legionella species. In this study, a total of 86 samples were collected from DUWLs of 19 dental units in 11 Malaysian Armed Forces dental centres (MAFDC). 350 ml water sample was collected in sterile thiosulphite bags from the outlets of 3–way syringe, high speed handpiece, scaler, cup filler, independent water reservoir or the tap of the same surgery respectively. Samples were transported to the laboratory within 24 hours and kept in the refrigerator at 40C. 100ml of each sample was filtered through a 0.45 μm polycarbonate membrane filter. The filter was then inoculated onto plate count agar and incubated at 370 C for 24 hours, after which the formed colonies were enumerated. Another separate 100ml of water sample was poured onto buffered charcoal yeast extract agar and cetrimide agar to culture Legionnella and Pseudomonas respectively. Identification of these bacteria were confirmed by polymerase chain reaction and sequencing. Pseudomonas aeruginosa was detected in 9.5% of the samples but Legionnella was not detected in any of the samples. 77% of the samples met American Dental Association (ADA) recommendation of less than 200 cfu/ml. The result of this study showed that it is difficult if not impossible to eliminate biofilm from the DUWLs. Regular monitor of water quality from DUWL is required to maximise the health of the dental patients and dental health care personnel.
    Matched MeSH terms: Charcoal
  5. Chung ELT, Predith M, Nobilly F, Samsudin AA, Jesse FFA, Loh TC
    Trop Anim Health Prod, 2018 Jun 20.
    PMID: 29926360 DOI: 10.1007/s11250-018-1641-4
    Brachiaria decumbens is an extremely productive tropical grass due to its aggressive growth habit and its adaptation to a varied range of soil types and environments. As a result of the vast availability, treated B. decumbens demonstrates as a promising local material that could be utilised as an improved diet for sheep and goats. Despite the fact that the grass significantly increases weight gains in grazing farm animals, there were many reports of general ill-thrift and sporadic outbreaks of photosensitivity in livestock due to the toxic compound of steroidal saponin found in B. decumbens. Ensiling and haymaking were found to be effective in removing toxin and undesirable compounds in the grass. Biological treatments using urea, activated charcoal, polyethylene glycol, and effective microorganisms were found to be useful in anti-nutritional factor deactivation and improving the nutritive values of feedstuffs. Besides, oral administration of phenobarbitone showed some degree of protection in sheep that fed on B. decumbens pasture. In this review, we aim to determine the effect of B. decumbens toxicity and possible treatment methods on the grass to be used as an improved diet for small ruminant.
    Matched MeSH terms: Charcoal
  6. Marsin FM, Wan Ibrahim WA, Nodeh HR, Sanagi MM
    J Chromatogr A, 2020 Feb 08;1612:460638.
    PMID: 31676087 DOI: 10.1016/j.chroma.2019.460638
    Magnetic solid phase extraction (MSPE) employing oil-palm fiber activated carbon (OPAC) modified with magnetite (Fe3O4) and polypyrrole (OPAC-Fe3O4-PPy) was successfully used for the determination of two organochlorine pesticides (OCPs), namely endosulfan and dieldrin in environmental water samples. Analysis was performed using gas chromatography with micro-electron capture detection (GC-μECD). The effects of three preparation variables, namely Fe3O4:OPAC ratio, amount of pyrrole monomer, and amount of FeCl3 oxidant were optimized using Box-Behnken design (BBD) (R2 < 0.99, p-value < 0.001%). The optimum conditions were as follows: Fe3O4:OPAC ratio of 2:1 w/w, 1 g of FeCl3 and 100 μL of pyrrole monomer. The experimental results obtained agreed satisfactorily with the model prediction (> 90% agreement). Optimized OPAC-Fe3O4-PPy composite was characterized using field emission scanning electron microscope, vibrating sample magnetometer and Fourier transform infrared spectroscopy. Four numerical parameters of MSPE procedure was optimized using BBD. The significance of the MSPE parameters were salt addition > sample solution pH > extraction time and desorption time. Under the optimized conditions (extraction time: 90 s, desorption time: 10 min, salt: 0%, and pH: 5.8), the method demonstrated good linearity (25-1000 ng L-1) with coefficients of determination, R2 > 0.991, and low detection limits for both endosulfan (7.3 ng L-1) and dieldrin (8.6 ng L-1). The method showed high analyte recoveries in the range of 98.6-103.5% for environmental water samples. The proposed OPAC-Fe3O4-PPy MSPE method offered good features such as sustainability, simplicity, and rapid extraction.
    Matched MeSH terms: Charcoal
  7. Talebi A, Razali YS, Ismail N, Rafatullah M, Azan Tajarudin H
    Sci Total Environ, 2020 Mar 10;707:134533.
    PMID: 31865088 DOI: 10.1016/j.scitotenv.2019.134533
    An adsorption-desorption process was applied on fermented landfill leachate to adsorb and recover acetic and butyric acid, using activated carbon. In this study, the first, volatile fatty acids adsorption process from fermented leachate was optimized, by investigating various affecting factors such as pH, time, agitation speed, activated carbon dosage, and temperature. The optimum condition for maximum adsorption of 88.94% acetic acid and 98.53% butyric acid, was 19.79 %wt activated carbon dosage, 40.00 rpm of agitation speed, in 9.45 °C and contact time of 179.89 h, while the pH of the substrate was kept fixed at pH:3.0. Results of X-ray fluorescence (XRF) spectrometry, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and zeta potential revealed that carbon is the dominant component in the adsorbent with a significant effect to remove organic impurities, and it was observed that the activated carbon after the adsorption process showed an amorphous structure peak with a large internal surface area and pore volume. The results exposed that the adsorption on the surface of activated carbon was due to the chemisorption, and the chemisorption mechanism was supported by covalent bonding. The kinetic study displayed excellent fit to Pseudo-second order kinetics model. The second phase of this study was to recover the adsorbed VFAs using multistage desorption unit, in which application of deionized water and ethanol (as desorption agents) resulted in 89.1% of acetic acid and 67.8% of the butyric acid recovery.
    Matched MeSH terms: Charcoal
  8. Ahmad T, Danish M, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, et al.
    Environ Sci Pollut Res Int, 2012 Jun;19(5):1464-84.
    PMID: 22207239 DOI: 10.1007/s11356-011-0709-8
    BACKGROUND: In tropical countries, the palm tree is one of the most abundant and important trees. Date palm is a principal fruit grown in many regions of the world. It is abundant, locally available and effective material that could be used as an adsorbent for the removal of different pollutants from aqueous solution.

    REVIEW: This article presents a review on the role of date palm as adsorbents in the removal of unwanted materials such as acid and basic dyes, heavy metals, and phenolic compounds. Many studies on adsorption properties of various low cost adsorbent, such as agricultural waste and activated carbons based on agricultural waste have been reported in recent years.

    CONCLUSION: Studies have shown that date palm-based adsorbents are the most promising adsorbents for removing unwanted materials. No previous review is available where researchers can get an overview of the adsorption capacities of date palm-based adsorbent used for the adsorption of different pollutants. This review provides the recent literature demonstrating the usefulness of date palm biomass-based adsorbents in the adsorption of various pollutants.

    Matched MeSH terms: Charcoal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links