Displaying publications 321 - 340 of 1723 in total

Abstract:
Sort:
  1. Abrahim NN, Abdul-Rahman PS, Aminudin N
    PeerJ, 2018;6:e5694.
    PMID: 30324012 DOI: 10.7717/peerj.5694
    Leaves from three varieties of Ficus deltoidea, colloquially termed small- (FDS), medium- (FDM), and big-type leaf (FDB), were subjected to water extraction. The crude extracts were fractionated using water (WF) and ethyl acetate (EAF). The phenolic and flavonoid content, antioxidant activity, and cytotoxicity of the fractions were investigated. The EAF had the highest phenolic and flavonoid content compared to the other FDS fractions. Conversely, the FDM crude extract had the highest phenolic and flavonoid content compared to the other FDM samples. Antioxidant activity was highest in the FDB crude extract. Ultra-high-performance liquid chromatography showed that two compounds, vitexin and coumaric acid, were present in the FDB crude extract. Additionally, the F. deltoidea leaves caused no signs of toxicity in a normal liver cell line. Our findings show that F. deltoidea varieties have excellent antioxidant activity with no cytotoxic effects on normal liver cells.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  2. Olalere OA, Abdurahman NH, Yunus RBM, Alara OR
    Data Brief, 2018 Aug;19:1627-1630.
    PMID: 30229034 DOI: 10.1016/j.dib.2018.06.034
    This paper contains data from the elemental and phytochemical profiling of black pepper oleoresin extracts using the LC-MS QToF and ICP-MS analysis. In recent years studies have shown the medicinal properties of extracts from these two cultivars of Piper nigrum. The medicinal properties are attributed to the presence of many secondary metabolites and mineral element in them. The phytochemical profiling was conducted using a Liquid Chromatography equipped with an electrospray time-of-flight mass spectrometer detectors. The mass spectrometer was equipped with an electrospray ionization sources operated in positive ion mode. The alkaloid compounds in the optimized black pepper extract were tentatively characterized in accordance with their ions׳ mass fragmentation.
    Matched MeSH terms: Chromatography, Liquid
  3. Abo-Shakeer, L.K.A., Yakasai, M.H., Rahman, M.F., Syed, M.A., Bakar, N.A., Othman, A.R.
    MyJurnal
    Molybdenum is an emerging pollutant. Bioremediation of this heavy metal is possible by the
    mediation of Mo-reducing bacteria. These bacteria contain the Mo-reducing enzymes that can
    conver toxic soluble molybdenum into molybdenum blue; a less soluble and less toxic form of the
    metal. To date only the enzyme has been purified from only one bacterium. The aim of this study is
    to purify the Mo-reducing enzyme from a previously isolated Mo-reducing bacterium Bacillus
    pumilus strain Lbna using ammonium sulphate fractionation followed by ion exchange and then
    gel filtration. Two clear bands were obtained after the gel filtration step with molecular weights
    of 70 and 100 kDa. This indicates that further additional purification methods need to be used
    to get a purified fraction. Hence, additional steps of chromatography such as hydroxyapatite or
    chromatofocusing techniques can be applied in the future.
    Matched MeSH terms: Chromatography, Gel
  4. Yenugu VMR, Ambavaram VBR, Moniruzzaman M, Madhavi G
    J Sep Sci, 2018 Nov;41(21):3966-3973.
    PMID: 30138541 DOI: 10.1002/jssc.201800626
    In the present study, a sensitive and fully validated liquid chromatography with mass spectrometry method was developed for the quantification of three potential genotoxic impurities in rabeprazole drug substance. The separation was achieved on Symmetry C18 column (100 × 4.6 mm, 3.5 μm) using 0.1% formic acid in water as mobile phase A and acetonitrile as mobile phase B in gradient elution mode at 0.5 mL/min flow rate. Triple quadrupole mass detection with electrospray ionization was operated in selected ion recording mode for the quantification of impurities. The calibration curves were demonstrated good linearity over the concentration range of 1.0-4.5 ppm for O-phenylenediamine, 1.8-4.5 ppm for 4-nitrolutidine-N-oxide and 1.0-4.5 ppm for benzyltriethylammonium chloride with respect to 10 mg/mL of rabeprazole. The correlation coefficient obtained in each case was >0.998. The recoveries were found satisfactory over the range between 94.22 and 106.84% for all selected impurities. The method validation was carried out following International Conference on Harmonization guidelines, from which the developed method was able to quantitate the impurities at 1.0 ppm for O-phenylenediamine, 1.8 ppm for 4-nitrolutidine-N-oxide and 1.0 ppm for benzyltriethylammonium chloride. Furthermore, the proposed method was successfully evaluated for the determination of selected impurities from bulk drug and formulation samples of rabeprazole within the acceptable limits.
    Matched MeSH terms: Chromatography, Liquid
  5. Mazlan O, Aizat WM, Baharum SN, Azizan KA, Noor NM
    Data Brief, 2018 Dec;21:548-551.
    PMID: 30370325 DOI: 10.1016/j.dib.2018.10.025
    Garcinia mangostana L. (mangosteen) seed is recalcitrant, prone to low temperature and drying which limit its long-term storage. Therefore, it is imperative to understand the metabolic changes throughout its development, to shed some light into the recalcitrant nature of this seed. We performed metabolomics analysis on mangosteen seed at different stages of development; six, eight, ten, twelve and fourteen weeks after anthesis. Seed samples were subjected to methanol extraction prior analysis using liquid chromatography - mass spectrometry (LC-MS). The MS data acquired were analyzed using ProfileAnalysis (version 2.1). This data article refers to the article entitled "Metabolomics analysis of developing Garcinia mangostana seed reveals modulated levels of sugars, organic acids and phenylpropanoid compounds" (Mazlan et al., 2018) [1].
    Matched MeSH terms: Chromatography, Liquid
  6. Nur Azreena Idris, Loh SK, Choo YM, Boey PL
    The fractions of fatty acid methyl esters (FAME) i.e. crude palm oil methyl esters (CPOME), RBD palm olein methyl esters (RBD Palm Olein ME) and used frying oil methyl esters (UFOME) rich in unsaturated fatty esters were used to prepare alkenyl succinic anhydrides (ASA). The fractions were obtained via fractional distillation that separated the unsaturated fatty esters from the saturated fatty esters. The fractions with the highest content of unsaturated fatty esters were reacted with maleic anhydride (MA) for 8 hours at 240oC with the MA/FAME ratio of 1.5. The reaction was conducted without catalyst and solvent. The crude alkenyl succinic anhydride (ASA) obtained was purified by column chromatography. The purified compound was characterised by FTIR.
    Matched MeSH terms: Chromatography
  7. Peter A.G. Cormack, Faizatul Shimal Mehamod
    Sains Malaysiana, 2013;42:529-535.
    In this paper, the synthesis and characterisation of caffeine-imprinted polymers are described. The polymers were prepared in monolithic form via both reversible addition-fragmentation chain-transfer (RAFT) polymerisation and conventional free radical polymerisation, using methacrylic acid and ethylene glycol dimethacrylate as the functional monomer and crosslinking agent, respectively. The potential benefits in applying RAFT polymerisation techniques towards the synthesis of molecularly imprinted polymers (MIPs) are explored and elucidated. The pore structures of the polymers produced were characterised by nitrogen sorption porosimetry and the molecular recognition properties of representative products were evaluated in high-performance liquid chromatography (HPLC) mode. Molecular imprinting effects were confirmed by analysing the relative retentions of analytes on imprinted and non-imprinted HPLC
    stationary phases. It was found that a caffeine-imprinted polymer synthesised by RAFT polymerisation was superior to a polymer prepared using a conventional synthetic approach; the imprinting factor and column efficiency were found to be higher for the former material.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  8. Mustarichie R, Salsabila T, Iskandar Y
    J Pharm Bioallied Sci, 2019 Dec;11(Suppl 4):S611-S618.
    PMID: 32148372 DOI: 10.4103/jpbs.JPBS_205_19
    Background: The katuk leaf (Sauropus androgynous (L.) Merr.) is one of the plants that are used to overcome baldness by the people of Kampung Mak Kemas, Malaysia. It is suspected that secondary metabolites contained in katuk leaves play a key role in stimulating hair growth.

    Aims and Objectives: The aim of this study was to identify the optimum method to obtain one of the chemical compounds in the water fraction and to identify the hypothesized chemical isolates in the water fraction katuk leave's ethanol extract.

    Materials and Methods: The methods used in this study included the collection and determination of the katuk plant, the processing of the katuk, phytochemical filtrating, extracting with ethanol 96%, and fractionation using the liquid-liquid extraction method with n-hexane, ethyl acetate, and water solvents The water fraction of katuk leaves was analyzed by its components by thin-layer chromatography using the stationary phase of silica gel 60 F254, developer of n-butanol:acetic acid:water (4:1:5), and detection under ultraviolet (UV) light at a wavelength of 366 and 254nm, as well as with vanillin-sulfuric acid reagent. To isolate the compounds from water fraction of katuk leaves, it was then eluted with a vacuum column chromatography by eluent with a level polarity that would get 11 subfractions. Each subfraction was checked by two-dimensional thin-layer chromatography to see subfraction purity characterized by the appearance of a spot on the chromatogram plate. The isolate was analyzed using spot test, ultraviolet-visible spectrophotometer, infrared spectrophotometer, and liquid chromatography-mass spectrometry.

    Results: The isolate was an alkaloid compound with a molecular mass of 406.3131 m/z with the molecular formula C21H39N6O2 as S, S-5, 5'-amino-4,4'-dihexyl-propyldihydropyrazol-3, 3-one.

    Conclusion: One of the chemical compounds contained in the water fraction of the ethanol extract of the katuk leaf was an alkaloid group.

    Matched MeSH terms: Chromatography, Thin Layer
  9. Alara OR, Abdurahman NH
    J Food Sci Technol, 2019 Feb;56(2):580-588.
    PMID: 30906015 DOI: 10.1007/s13197-018-3512-4
    Recently, unconventional methods especially microwave-assisted hydrodistillation extraction (MAHE) is being used as an alternative technique for extracting bioactive compounds from plant materials due to its advantages over conventional methods such as Soxhlet extraction (SE). In this study, bioactive compounds were extracted from Vernonia cinerea leaf using both MAHE and SE methods. In addition, the kinetic study of MAHE and SE methods were carried out using first- and second-order kinetic models. The results obtained showed that MAHE can extract higher yield of bioactive compounds from V. cinerea leaf in a shorter time and reduced used of extracting solvent compared with SE method. Based on the results obtained, second-order kinetic models can actually describe the extraction of bioactive compounds from V. cinerea leaf through MAHE with extraction rate coefficient of 0.1172 L/gmin and extraction capacity of 1.0547 L/g as compared to SE with 0.0157 L/gmin and 1.1626 L/g of extraction rate coefficient and extraction capacity, respectively. The gas chromatography-mass spectrometry analysis of the oil showed the presence of numerous heavy fractions in the oil obtained through MAHE as compared with the SE method. Moreover, the electric consumption and environmental impacts analysis of the oil suggested that MAHE can be a suitable green technique for extracting bioactive compounds from V. cinerea leaf.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  10. Mahamad Maifiah MH, Velkov T, Creek DJ, Li J
    Methods Mol Biol, 2019;1946:321-328.
    PMID: 30798566 DOI: 10.1007/978-1-4939-9118-1_28
    Acinetobacter baumannii is rapidly emerging as a multidrug-resistant pathogen responsible for nosocomial infections including pneumonia, bacteremia, wound infections, urinary tract infections, and meningitis. Metabolomics provides a powerful tool to gain a system-wide snapshot of cellular biochemical networks under defined conditions and has been increasingly applied to bacterial physiology and drug discovery. Here we describe an optimized sample preparation method for untargeted metabolomics studies in A. baumannii. Our method provides a significant recovery of intracellular metabolites to demonstrate substantial differences in global metabolic profiles among A. baumannii strains.
    Matched MeSH terms: Chromatography, Liquid
  11. Abdul Kadir FA, Azizan KA, Othman R
    Data Brief, 2020 Feb;28:104987.
    PMID: 32226799 DOI: 10.1016/j.dib.2019.104987
    Agarwood is the highly valuable fragrant resin of the wounded Aquilaria spp. trees widely used in fragrances, medicines and incenses. Among the Aquilaria spp., A. malaccensis is the primary producer and is mainly found in Indonesia and Malaysia. In normal condition, agarwood is naturally formed in Aquilaria trees as a defense mechanism upon physical damage or microbial infection on the trees, which is a slow process that occurs over several years. The high demand in agarwood has spurred the development of various artificial inoculation methods where agarwood formation is synthetically induced in a shorter period of time. However, the synthetic induction method produces agarwood with aromas different from the naturally formed agarwood. To understand the changes in the agarwoods produced from different induction conditions, metabolite profiling of agarwood essential oil from A. malaccensis has been performed. The essential oils of healthy undamaged tree trunks and, naturally formed and synthetically induced agarwoods were obtained using hydrodistillation (HS) method and analysed using gas chromatography mass spectrometer (GC-MS). These data will provide valuable resources for chemical components of agarwood produced by the species in the genus Aquilaria.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  12. Noor Zuhartini Md Muslim, Musa Ahmad, Lee YH, Bahruddin Saad
    Sains Malaysiana, 2018;47:707-713.
    An optical fiber chemical sensor for the determination of free glutamate in food samples was fabricated based on the
    immobilization of 0.1 M copper(II) nitrate trihydrate onto sol-gel glass powder which was then mixed with methyl cellulose
    to form a pellet. A distinctive colour change from light blue to dark blue was observed in the presence of glutamate in
    less than 1 min. The colour change was measured by reflectance spectrophotometer at 691 nm. A linear relationship
    between the reflectance intensity and glutamate concentration was observed in the range of 12.5 to 500 mM with a limit
    of detection of 10.6 mM. This method is also reproducible with a relative standard deviation of less than 5%, no effect on
    pH of the glutamate solution and a good recovery of above 80%. The sensor was used for the determination of glutamate
    in common food items such as soups and flavor enhancers. The results obtained from the fabricated sensor were found
    to be comparable with HPLC method.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  13. Terence Ricky Chiu, Md Firoz Khan, Mohd Shahrul Mohd Nadzir, Haris Hafizal Abdul Hamid, Mohd Talib Latif, Mohd Shahrul Mohd Nadzir, et al.
    Sains Malaysiana, 2018;47:871-882.
    The individual compounds and sources of polycyclic aromatic hydrocarbon (PAHs) were studied in the surface sediments
    at 32 locations in the tourism area of Langkawi Island. A total of 15 PAHs were determined and quantified by gas
    chromatography coupled with mass spectrometry (GC-MS). The total PAH concentrations of surface sediments from
    Langkawi Island ranged from 228.13 to 990.25 ng/g and they were classified as being in the low to moderate pollution
    range. All sampling stations were dominated by high molecular weight PAHs with 4 rings (31.59%) and 5-6 rings (42.73%).
    The diagnostic ratio results showed that in most cases, the sampling stations have pyrogenic input. Further analysis
    using principal component analysis (PCA) combined with absolute principal component score (APCS) and multiple linear
    regression (MLR) showed that the natural gas emissions contributed to 57% of the total PAH concentration, 22% from the
    incomplete combustion and pyrolysis of fuel, 15% from pyrogenic and petrogenic sources and 6% from an undefined source.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  14. Rashidah Iberahim, Norefrina Shafinaz Md. Nor, Wan Ahmad Yaacob, Nazlina Ibrahim
    Sains Malaysiana, 2018;47:1431-1438.
    The present study was aimed at determining the compounds available in Eleusine indica methanol extract and the effects on
    herpes simplex virus type 1 (HHV1) replication cycle and progeny infectivity. Twelve compounds mostly from the flavonoid
    and phenolic groups were identified by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) analysis. The
    effect on replication phases of HHV1 was determined by time-of-addition, time-removal and virus yield reduction assays
    with expression of selected genes analysed by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). The extract
    inhibited plaque formation the most during the first 2 h and at 24 h of infection. Plaque formation inhibition was also
    noted at all other time points but at lesser percentage. Treatment with E. indica reduced progeny infectivity when treated
    for 10 h and was dose-dependent. E. indica methanol extract inhibited immediate early, early and late phases of HHV1
    replication cycle by modifying the expression of UL
    54, UL
    27 and UL
    30 genes during the infection. Immunostaining of
    infected cells confirmed that E. indica inhibited mainly Glycoproteins B but not Glycoprotein C and D. Thus, the methanol
    extract of E. indica has the ability to alter HHV1 replication cycle at almost all stages and reduce progeny infectivity.
    Matched MeSH terms: Chromatography, Liquid
  15. Ngeow YW, Williams DR, Chapman AV, Heng JYY
    ACS Omega, 2020 May 12;5(18):10266-10275.
    PMID: 32426583 DOI: 10.1021/acsomega.9b03920
    The reinforcing silica filler, which can be more than 40% of an elastomer composite, plays a key role to achieve the desired mechanical properties in elastomer vulcanizates. However, the highly hydrophilic nature of silica surface causes silica particle aggregation. It remained a challenge for many tire manufacturers when using silica-filled elastomer compounds. Here, the silica surface energy changes when the surface is modified with coupling or noncoupling silanes; coupling silanes can covalently bond the silica to the elastomers. The surface energy of silica was determined using inverse gas chromatography (IGC) at finite dilution (FD-IGC) and found to be reduced by up to 50% when the silica surface was silanized. The spatial distribution of silica aggregates within the tire matrix is determined by transmission electron microscopy (TEM) and a direct correlation between aggregate size (silica microdispersion) and work of cohesion from IGC is reported, highlighting surface energy and work of cohesion being excellent indicators of the degree of dispersion of silica aggregates.
    Matched MeSH terms: Chromatography, Gas
  16. Abd Samat NMA, Ahmad S, Awang Y, Bakar RAH, Hakiman M
    Molecules, 2020 Jun 19;25(12).
    PMID: 32575450 DOI: 10.3390/molecules25122833
    Sabah snake grass or Clinacanthus nutans has drawn public interest having significant economic benefits attributable to the presence of phytochemicals and several interesting bioactive constituents that may differ according to harvesting age and harvesting frequency. The current study was aimed to evaluate the effect of harvesting age and harvesting frequency towards herbal yield, antioxidant activities, phytochemicals synthesis, and bioactive compounds of C. nutans. A factorial randomized completely block design with five replications was used to illustrate the relationship between herbal yield, DPPH (2, 2-diphenyl-1-picrylhydrazyl) and ferric reducing antioxidant power (FRAP) assays, total phenolic and flavonoid content affected by harvesting age (week 8, 12, and 16 after transplanting), and harvesting frequency (harvest 1, 2, and 3). The bioactive compounds by HPLC were also determined to describe the interaction effect between both harvesting age and harvesting frequency. The yield, antioxidant activities, and phytochemical contents were gradually increased as the plant grew, with the highest recorded during week 16. However, the synthesis and activities of phytochemicals were reduced in subsequent harvests despite the increment of the herbal yield. All bioactive compounds were found to be influenced insignificantly and significantly by harvesting age and harvesting frequency, respectively, specifically to shaftoside, iso-orientin, and orientin. Among all constituents, shaftoside was the main compound at various harvesting ages and harvesting frequencies. These results indicated that harvesting at week 16 with 1st harvest frequency might enhance the yield while sustaining the high synthesis of polyphenols and antioxidant activities of C. nutans.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  17. Fernandez-Orozco R, Li L, Harflett C, Shewry PR, Ward JL
    J Agric Food Chem, 2010 Sep 08;58(17):9341-52.
    PMID: 20707366 DOI: 10.1021/jf102017s
    Phenolic acid content and composition have been determined in 26 wheat genotypes grown in Hungary over three consecutive years and at three additional locations (France, United Kingdom, and Poland) during the third year. Fractions comprising free, soluble conjugated, and bound phenolic acids were analyzed using HPLC with measurements being made for individual phenolic acids in each fraction. Statistically significant differences in phenolic acid content occurred across the different growing locations with the average total phenolic acid content being highest in the genotypes grown in Hungary. The growth year in Hungary also had a large impact, especially on the free and conjugated phenolic acid contents. Certain genotypes were more resistant to environmental impacts than others. Of the genotypes with high levels of total phenolic acids, Lynx, Riband, Tommi, and Cadenza were most stable with respect to their total contents, whereas Valoris, Herzog, and Malacca, also high in phenolic acid content, were least stable. Of the three fractions analyzed, the free and conjugated phenolic acids were most variable and were also susceptible to the effect of environment, whereas bound phenolic acids, which comprised the greatest proportion of the total phenolic acids, were the most stable.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  18. Tay KSJ, Breadmore MC, Soh ES, See HH
    J Chromatogr A, 2022 Dec 06;1685:463605.
    PMID: 36375217 DOI: 10.1016/j.chroma.2022.463605
    A new dispersive inclusion complex microextraction (DICM) approach coupled with ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) for the determination of n-nitrosamine impurities in different medicinal products is demonstrated for the first time. The proposed DICM procedures consist of a dispersive liquid phase microextraction steps employing cyclodextrin as an inclusion complex agent to extract n-nitrosamines namely N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosodiisopropylamine (NDIPA), N-ethyl-N-nitrosoisopropylamine (NEIPA) and N-nitroso-di-n-butylamine (NDBA) present in the medicinal products. The sample solutions were prepared by mixing 5% (m/v) NaCl solution with 1.5 mM β-cyclodextrin and 20 mM sodium dodecyl sulphate to form a stable inclusion complex and subsequently extracted into dichloromethane as an extraction solvent. The enriched solution was reconstituted into aqueous solution prior to UPLC-MS/MS analysis. The method showed good linearity in the range of 0.036-1 ng/mL with a correlation coefficient of at least 0.995, acceptable reproducibility (RSD 0.5-5.8%, n=5), low limits of detection (0.011-0.018 ng/mL), and satisfactory relative recoveries (96-105%). The results obtained were found to be at least 10-fold more sensitive comparable to those obtained using validated direct sample dissolutions coupled with UPLC-MS/MS approach.
    Matched MeSH terms: Chromatography, Liquid
  19. Hussain Zaki UK, Fryganas C, Trijsburg L, Feskens EJM, Capuano E
    Food Chem, 2023 Mar 15;404(Pt A):134607.
    PMID: 36272303 DOI: 10.1016/j.foodchem.2022.134607
    This research assessed the influence of pickling, fermentation, germination, and tea brewing on lignan content of a variety of food highly consumed in Malaysia. Lignans have been measured by a validated LC-MS/MS method. Secoisolariciresinol (SECO) was the most abundant compound in fermented and germinated samples. Pickling significantly decreased larisiresinol content by approximately 86 %. Fermentation increased lignan content in a mixture of flaxseed and mung beans (799.9 ± 67.4 mg/100 g DW) compared to the unfermented counterpart (501.4 ± 134.6 mg/100 g DW), whereas the fermentation of soybeans and mung beans did not significantly affect the SECO content. Germination increased lignan content, which reached its peak on day 6 of germination for all the tested matrixes. In tea brew, lignans concentration increased with brewing time reaching its highest concentration at 10 min of brewing. The results of this study expand the knowledge on the effect of processing on lignan content in food.
    Matched MeSH terms: Chromatography, Liquid
  20. Liu Y, Kong KW, Wu DT, Liu HY, Li HB, Zhang JR, et al.
    Food Chem, 2022 Apr 16;374:131635.
    PMID: 34823934 DOI: 10.1016/j.foodchem.2021.131635
    The pomegranate peel is a by-product of pomegranate fruit rich in polyphenols. In this study, pomegranate peel polyphenols were explored using LC-MS/MS, and punicalagin was the most abundant compound. The highest yield (505.89 ± 1.73 mg/g DW) of punicalagin was obtained by ultrasonic-assisted extraction (UAE) with the ethanol concentration of 53%, sample-to-liquid ratio of 1:25 w/v, ultrasonic power of 757 W, and extraction time of 25 min. Punicalagin was further purified by the macroporous resin D101 and prep-HPLC, reaching the purity of 92.15%. The purified punicalagin had the IC50 of 82 ± 0.02 µg/mL against α-glucosidase, similar to the punicalagin standard with IC50 of 58 ± 0.014 µg/mL, both exhibiting a mixed inhibitory mechanism. Molecular docking further revealed that a steric hindrance with the intermolecular energy of -7.99 kcal/mol was formed between punicalagin and α-glucosidase. Overall, pomegranate peel is a promising source of punicalagin to develop anti-diabetic functional foods.
    Matched MeSH terms: Chromatography, Liquid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links