OBJECTIVE: To discover genetic variants associated with HbA1c level in nondiabetic Malay individuals.
DESIGN AND PARTICIPANTS: We conducted a genome-wide association study (GWAS) analysis for HbA1c using 2 Malay studies, the Singapore Malay Eye Study (SiMES, N = 1721 on GWAS array) and the Living Biobank study (N = 983 on GWAS array and whole-exome sequenced). We built a Malay-specific reference panel to impute ethnic-specific variants and validate the associations with HbA1c at ethnic-specific variants.
RESULTS: Meta-analysis of the 1000 Genomes imputed array data identified 4 loci at genome-wide significance (P
METHODS: PCOS was induced in rats except for normal control by administering LTZ at 1 mg/kg/day for 21 days. Methanolic extract of F. deltoidea leaf was then orally administered to the PCOS rats at the dose of 250, 500, or 1000 mg/kg/day, respectively for 15 consecutive days. Lipid profile was measured enzymatically in serum. The circulating concentrations of reproductive hormone and antioxidant enzymes were determined by ELISA assays. Ovarian and uterus histomorphometric changes were further observed by hematoxylin and eosin (H&E) staining.
RESULTS: The results showed that treatment with F. deltoidea at the dose of 500 and 1000 mg/kg/day reduced insulin resistance, obesity indices, total cholesterol, triglycerides, low-density lipoprotein cholesterol (LDL), malondialdehyde (MDA), testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) to near-normal levels in PCOS rats. The levels of high-density lipoprotein cholesterol (HDL), estrogen, and superoxide dismutase (SOD) are also similar to those observed in normal control rats. Histomorphometric measurements confirmed that F. deltoidea increased the corpus luteum number and the endometrial thickness.
CONCLUSIONS: F. deltoidea can reverse PCOS symptoms in female rats by improving insulin sensitivity, antioxidant activities, hormonal imbalance, and histological changes. These findings suggest the potential use of F. deltoidea as an adjuvant agent in the treatment program of PCOS.
METHODS: In this study, anti-diabetic effect of ML extract is investigated in vivo to evaluate the biochemical changes, potential serum biomarkers and alterations in metabolic pathways pertaining to the treatment of HFD/STZ induced diabetic rats with ML extract using 1H NMR based metabolomics approach. Type 2 diabetic rats were treated with different doses (200 and 400 mg/kg BW) of Melicope lunu-ankenda leaf extract for 8 weeks, and serum samples were examined for clinical biochemistry. The metabolomics study of serum was also carried out using 1H NMR spectroscopy in combination with multivariate data analysis to explore differentiating serum metabolites and altered metabolic pathways.
RESULTS: The ML leaf extract (400 mg/kg BW) treatment significantly increased insulin level and insulin sensitivity of obese diabetic rats, with concomitant decrease in glucose level and insulin resistance. Significant reduction in total triglyceride, cholesterol and low density lipoprotein was also observed after treatment. Interestingly, there was a significant increase in high density lipoprotein of the treated rats. A decrease in renal injury markers and activities of liver enzymes was also observed. Moreover, metabolomics studies clearly demonstrated that, ML extract significantly ameliorated the disturbance in glucose metabolism, tricarboxylic acid cycle, lipid metabolism, and amino acid metabolism.
CONCLUSION: ML leaf extract exhibits potent antidiabetic properties, hence could be a useful and affordable alternative option for the management of T2DM.
METHODS: A total of 220 T2DM patients from the University of Malaya Medical Centre, Malaysia, who had at least one CV complication and who had been taking at least one antidiabetic drug for at least 3 months, were included. The associations of antidiabetics, cardiovascular diseases, laboratory parameters, concurrent medications, comorbidities, demographics, and clinical characteristics with glycemic control were investigated.
RESULTS: Sulfonylureas in combination (P=0.002) and sulfonylurea monotherapy (P<0.001) were found to be associated with good glycemic control, whereas insulin in combination (P=0.051), and combination biguanides and insulin therapy (P=0.012) were found to be associated with poor glycemic control. Stroke (P=0.044) was the only type of CVD that seemed to be significantly associated with good glycemic control. Other factors such as benign prostatic hyperplasia (P=0.026), elderly patients (P=0.018), low-density lipoprotein cholesterol levels (P=0.021), and fasting plasma glucose (P<0.001) were found to be significantly correlated with good glycemic control.
CONCLUSION: Individualized treatment in T2DM patients with CVDs can be supported through a better understanding of the association between glycemic control and CV profiles in T2DM patients.
METHODS: Blood and pancreas were collected from adult male diabetic rats receiving 28days treatment with VVSAE orally. Fasting blood glucose (FBG), glycated hemoglobin (HbA1c), insulin and lipid profile levels and activity levels of anti-oxidative enzymes (superoxide dismutase-SOD, catalase-CAT and glutathione peroxidase-GPx) in the pancreas were determined by biochemical assays. Histopathological changes in the pancreas were examined under light microscopy and levels of insulin, glucose transporter (GLUT)-2, tumor necrosis factor (TNF)-α, Ikkβ and caspase-3 mRNA and protein were analyzed by real-time PCR (qPCR) and immunohistochemistry respectively. Radical scavenging activity of VVSAE was evaluated by in-vitro anti-oxidant assay while gas chromatography-mass spectrometry (GC-MS) was used to identify the major compounds in the extract.
RESULTS: GC-MS analyses indicated the presence of compounds that might exert anti-oxidative, anti-inflammatory and anti-apoptosis effects. Near normal FBG, HbAIc, lipid profile and serum insulin levels with lesser signs of pancreatic destruction were observed following administration of VVSAE to diabetic rats. Higher insulin, GLUT-2, SOD, CAT and GPx levels but lower TNF-α, Ikkβ and caspase-3 levels were also observed in the pancreas of VVSAE-treated diabetic rats (p<0.05 compared to non-treated diabetic rats). The extract possesses high in-vitro radical scavenging activities.
CONCLUSION: In conclusions, administration of VVSAE to diabetic rats could help to protect the pancreas against oxidative stress, inflammation and apoptosis-induced damage while preserving pancreatic function near normal in diabetes.