FINDINGS: The mitochondria-encoded cytochrome c oxidase subunit I (COI), 12S rRNA, and 16S rRNA genes and the nuclear-encoded 28S rRNA gene support the conspecific status of S. nodosum from Myanmar, Thailand, and Vietnam and S. shirakii from Taiwan; 0 to 0.19 % genetic differences between the two taxa suggest intraspecific polymorphism. The banding patterns of the polytene chromosomes of the insular Taiwanese population of S. shirakii and mainland populations of S. nodosum are congruent. The overlapping ranges of habitat characteristics and hosts of S. nodosum and S. shirakii corroborate the chromosomal, molecular, and morphological data.
CONCLUSIONS: Four independent sources of evidence (chromosomes, DNA, ecology, and morphology) support the conspecificity of S. nodosum and S. shirakii. We, therefore, synonymize S. shirakii with S. nodosum. This study provides a guide for applying the procedure of testing conspecificity to other sets of allopatric vectors.
DESIGN: A retrospective analysis of STEMI patients from 18 hospitals across Malaysia contributing to the Malaysian National Cardiovascular Database-acute coronary syndrome) registry (NCVD-ACS) year 2006-2013.
PARTICIPANTS: 16 517 patients diagnosed of STEMI from 18 hospitals in Malaysia from the year 2006 to 2013.
PRIMARY OUTCOME MEASURES: In-hospital and 30 day post-discharge mortality.
RESULTS: CS complicates 10.6% of all STEMIs in this study. They had unfavourable premorbid conditions and poor outcomes. The in-hospital mortality rate was 34.1% which translates into a 7.14 times mortality risk increment compared with STEMI without CS. Intravenous thrombolysis remained as the main urgent reperfusion modality. Percutaneous coronary interventions (PCI) in CS conferred a 40% risk reduction over non-invasive therapy but were only done in 33.6% of cases. Age over 65, diabetes mellitus, hypertension, chronic lung and kidney disease conferred higher risk of mortality.
CONCLUSION: Mortality rates of CS complicating STEMI in Malaysia are high. In-hospital PCI confers a 40% mortality risk reduction but the rate of PCI among our patients with CS complicating STEMI is still low. Efforts are being made to increase access to invasive therapy for these patients.
OBJECTIVE: This paper aimed to describe the development process of the COVID-19 Symptom Monitoring System (CoSMoS), which consists of a self-monitoring, algorithm-based Telegram bot and a teleconsultation system. We describe all the essential steps from the clinical perspective and our technical approach in designing, developing, and integrating the system into clinical practice during the COVID-19 pandemic as well as lessons learned from this development process.
METHODS: CoSMoS was developed in three phases: (1) requirement formation to identify clinical problems and to draft the clinical algorithm, (2) development testing iteration using the agile software development method, and (3) integration into clinical practice to design an effective clinical workflow using repeated simulations and role-playing.
RESULTS: We completed the development of CoSMoS in 19 days. In Phase 1 (ie, requirement formation), we identified three main functions: a daily automated reminder system for patients to self-check their symptoms, a safe patient risk assessment to guide patients in clinical decision making, and an active telemonitoring system with real-time phone consultations. The system architecture of CoSMoS involved five components: Telegram instant messaging, a clinician dashboard, system administration (ie, back end), a database, and development and operations infrastructure. The integration of CoSMoS into clinical practice involved the consideration of COVID-19 infectivity and patient safety.
CONCLUSIONS: This study demonstrated that developing a COVID-19 symptom monitoring system within a short time during a pandemic is feasible using the agile development method. Time factors and communication between the technical and clinical teams were the main challenges in the development process. The development process and lessons learned from this study can guide the future development of digital monitoring systems during the next pandemic, especially in developing countries.