Displaying publications 341 - 360 of 623 in total

Abstract:
Sort:
  1. Kumar S, Shukla MK, Sharma AK, Jayaprakash GK, Tonk RK, Chellappan DK, et al.
    MedComm (2020), 2023 Apr;4(2):e253.
    PMID: 37025253 DOI: 10.1002/mco2.253
    Cancer is a disease associated with complex pathology and one of the most prevalent and leading reasons for mortality in the world. Current chemotherapy has challenges with cytotoxicity, selectivity, multidrug resistance, and the formation of stemlike cells. Nanomaterials (NMs) have unique properties that make them useful for various diagnostic and therapeutic purposes in cancer research. NMs can be engineered to target cancer cells for early detection and can deliver drugs directly to cancer cells, reducing side effects and improving treatment efficacy. Several of NMs can also be used for photothermal therapy to destroy cancer cells or enhance immune response to cancer by delivering immune-stimulating molecules to immune cells or modulating the tumor microenvironment. NMs are being modified to overcome issues, such as toxicity, lack of selectivity, increase drug capacity, and bioavailability, for a wide spectrum of cancer therapies. To improve targeted drug delivery using nano-carriers, noteworthy research is required. Several metal-based NMs have been studied with the expectation of finding a cure for cancer treatment. In this review, the current development and the potential of plant and metal-based NMs with their effects on size and shape have been discussed along with their more effective usage in cancer diagnosis and treatment.
  2. Bhat AA, Altamimi ASA, Goyal A, Goyal K, Kaur I, Kumar S, et al.
    Int Immunopharmacol, 2025 Jan 10;144:113675.
    PMID: 39608172 DOI: 10.1016/j.intimp.2024.113675
    CAR T cell therapy has revolutionized how we deliver cancer treatment, most notably for hematologic cancers, by compelling T cells to recognize and kill tumor cells. Nevertheless, current obstacles to utilizing this therapy in solid tumors and overcoming cancer resistance include radicalization. This review discusses how CD95 modulation can boost CAR T cell efficacy. Traditionally, CD95 was known to execute apoptosis induction, but it plays a dual role in induced cell death or in supporting cancer cell survival. Recent data have demonstrated that cancer cells escape CD95-mediated apoptosis via the downregulation of CD95, caspase 8 mutation, or the expression of the inhibition protein cFLIP. Additionally, the immunosuppressive tumor microenvironment, containing CD95L expressing immune cells, explains CAR T cell therapy resistance. Furthermore, we characterize the therapeutic potential of CD95 targeted approaches, including CD95L inhibition (APG101) and alterations in CAR T cell manufacturing (tyrosine kinase inhibitors to mitigate fratricide). In this review, we highlight the importance of multi-path way strategies combining CD95 modulation with CAR T cell engineering to overcome resistance, specifically to target tumor cells better and sustain CAR T cell persistence to enhance treatment efficacy in solid tumors.
  3. Balaraman AK, Moglad E, Afzal M, Babu MA, Goyal K, Roopashree R, et al.
    Clin Chim Acta, 2025 Feb 01;567:120105.
    PMID: 39706249 DOI: 10.1016/j.cca.2024.120105
    Pancreatic cancer is a highly fatal malignancy due to poor early detection rate and resistance to conventional therapies. This review examines the potential for liquid biopsy as a transformative technology to identify diagnostic and therapeutic targets in pancreatic cancer. Specifically, we explore emerging biomarkers such as exosomal non-coding RNAs (ncRNAs), circulating tumor DNA (ctDNA), and circulating tumor cells (CTCs). Tumor-derived exosomes contain nucleic acid and protein that reflect the unique molecular landscape of the malignancy and can serve as an alternative diagnostic approach vs traditional biomarkers like CA19-9. Herein we highlight exosomal miRNAs, lncRNAs, and other ncRNAs alongside ctDNA and CTC-based strategies, evaluating their combined ability to improve early detection, disease monitoring and treatment response. Furthermore, the therapeutic implications of ncRNAs such as lncRNA UCA1 and miR-3960 in chemoresistance and progression are also discussed via suppression of EZH2 and PTEN/AKT pathways. Emerging therapeutic strategies that target the immune response, epithelial-mesenchymal transition (EMT) and drug resistance are explored. This review demonstrates a paradigm shift in pancreatic cancer management toward personalized, less invasive and more effective approaches.
  4. Babu MA, Jyothi S R, Kaur I, Kumar S, Sharma N, Kumar MR, et al.
    Regen Ther, 2025 Mar;28:214-226.
    PMID: 39811069 DOI: 10.1016/j.reth.2024.11.017
    The Mesenchymal Stem Cell (MSC) is a multipotent progenitor cell with known differentiation potential towards various cell lineage, making it an appealing candidate for regenerative medicine. One major contributing factor to age-related MSC dysfunction is cellular senescence, which is the hallmark of relatively irreversible growth arrest and changes in functional properties. GATA4, a zinc-finger transcription factor, emerges as a critical regulator in MSC biology. Originally identified as a key regulator of heart development and specification, GATA4 has since been connected to several aspects of cellular processes, including stem cell proliferation and differentiation. Accumulating evidence suggests that the involvement of GATA4-nuclear signalizing in the process of MSC senescence-related traits may contribute to age-induced alterations in MSC behavior. GATA4 emerged as the central player in MSC senescence, interacting with several signaling pathways. Studies have shown that GATA4 expression is reduced with age in MSCs, which is associated with increased expression levels of senescence markers and impaired regenerative potential. At the mechanistic level, GATA4 regulates the expression of genes involved in cell cycle regulation, DNA repair, and oxidative stress response, thereby influencing the senescence phenotype in MSCs. The findings underscore the critical function of GATA4 in MSC homeostasis and suggest a promising new target to restore stem cell function during aging and disease. A better understanding of the molecular mechanisms that underlie GATA4 mediated modulation of MSC senescence would provide an opportunity to develop new therapies to revitalize old MSCs to increase their regenerative function for therapeutic purposes in regenerative medicine.
  5. Bushi G, Balaraman AK, Gaidhane S, Ballal S, Kumar S, Bhat M, et al.
    Brain Behav Immun Health, 2025 Feb;43:100931.
    PMID: 39867846 DOI: 10.1016/j.bbih.2024.100931
    BACKGROUND AND OBJECTIVE: Lyme disease, caused by Borrelia burgdorferi, presents major health challenges worldwide, leading to serious neurological and musculoskeletal issues that impact patients' lives and healthcare systems. This systematic review and meta-analysis aim to determine the prevalence and link between Lyme disease and these complications, aiming to enhance clinical and public health approaches.

    METHODS: We systematically searched PubMed, EMBASE, and Web of Science up until April 01, 2024, to find studies reporting the prevalence and severity of neurological and musculoskeletal complications associated with Lyme disease. Screening and data extraction were conducted using Nested Knowledge software. Two independent reviewers performed the quality assessment using the Newcastle-Ottawa Scale. Meta-analyses were performed using R software v4.3, employing a random-effects model.

    RESULTS: Out of 3576 records, 17 studies were included, involving 3932 participants. These studies revealed significant prevalence of musculoskeletal symptoms (21.1%) and neurological disabilities (18%) among Lyme disease patients. The analysis showed a notable increase in risk for both complications in individuals with Lyme disease, with pooled Risk Ratios (RR) of 1.82 for musculoskeletal symptoms and 1.64 for neurological disabilities, indicating a significantly higher risk compared to control groups. Although heterogeneity across the studies was high, sensitivity analysis confirmed the consistency of our findings. Additionally, there was evidence of publication bias.

    CONCLUSION: The study reveals significant neurological and musculoskeletal complications in Lyme disease patients, emphasizing the importance of early diagnosis, comprehensive treatment, and supportive care. The noted heterogeneity and potential publication bias highlight the need for transparent research and further study on long-term outcomes.

  6. Panneerselvam C, Murugan K, Roni M, Aziz AT, Suresh U, Rajaganesh R, et al.
    Parasitol Res, 2016 Mar;115(3):997-1013.
    PMID: 26612497 DOI: 10.1007/s00436-015-4828-x
    Malaria remains a major public health problem due to the emergence and spread of Plasmodium falciparum strains resistant to chloroquine. There is an urgent need to investigate new and effective sources of antimalarial drugs. This research proposed a novel method of fern-mediated synthesis of silver nanoparticles (AgNP) using a cheap plant extract of Pteridium aquilinum, acting as a reducing and capping agent. AgNP were characterized by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Phytochemical analysis of P. aquilinum leaf extract revealed the presence of phenols, alkaloids, tannins, flavonoids, proteins, carbohydrates, saponins, glycosides, steroids, and triterpenoids. LC/MS analysis identified at least 19 compounds, namely pterosin, hydroquinone, hydroxy-acetophenone, hydroxy-cinnamic acid, 5, 7-dihydroxy-4-methyl coumarin, trans-cinnamic acid, apiole, quercetin 3-glucoside, hydroxy-L-proline, hypaphorine, khellol glucoside, umbelliferose, violaxanthin, ergotamine tartrate, palmatine chloride, deacylgymnemic acid, methyl laurate, and palmitoyl acetate. In DPPH scavenging assays, the IC50 value of the P. aquilinum leaf extract was 10.04 μg/ml, while IC50 of BHT and rutin were 7.93 and 6.35 μg/ml. In mosquitocidal assays, LC50 of P. aquilinum leaf extract against Anopheles stephensi larvae and pupae were 220.44 ppm (larva I), 254.12 ppm (II), 302.32 ppm (III), 395.12 ppm (IV), and 502.20 ppm (pupa). LC50 of P. aquilinum-synthesized AgNP were 7.48 ppm (I), 10.68 ppm (II), 13.77 ppm (III), 18.45 ppm (IV), and 31.51 ppm (pupa). In the field, the application of P. aquilinum extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. Both the P. aquilinum extract and AgNP reduced longevity and fecundity of An. stephensi adults. Smoke toxicity experiments conducted against An. stephensi adults showed that P. aquilinum leaf-, stem-, and root-based coils evoked mortality rates comparable to the permethrin-based positive control (57, 50, 41, and 49 %, respectively). Furthermore, the antiplasmodial activity of P. aquilinum leaf extract and green-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of P. falciparum. IC50 of P. aquilinum were 62.04 μg/ml (CQ-s) and 71.16 μg/ml (CQ-r); P. aquilinum-synthesized AgNP achieved IC50 of 78.12 μg/ml (CQ-s) and 88.34 μg/ml (CQ-r). Overall, our results highlighted that fern-synthesized AgNP could be candidated as a new tool against chloroquine-resistant P. falciparum and different developmental instars of its primary vector An. stephensi. Further research on nanosynthesis routed by the LC/MS-identified constituents is ongoing.
  7. Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, et al.
    Parasitol Int, 2016 Jun;65(3):276-84.
    PMID: 26873539 DOI: 10.1016/j.parint.2016.02.003
    The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW-AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW-AgNP showed plasmon resonance reduction in UV-vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW-AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW-AgNP were toxic to Anopheles stephensi larvae and pupae, LC(50) were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW-AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW-AgNP IC(50) were 49.3 μg/ml (CQ-s) and 55.5 μg/ml (CQ-r), while chloroquine IC(50) were 81.5 μg/ml (CQ-s) and 86.5 μg/ml (CQ-r). EW-AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW-AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW-AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW-AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies.
  8. Murugan K, Sanoopa CP, Madhiyazhagan P, Dinesh D, Subramaniam J, Panneerselvam C, et al.
    Nat Prod Res, 2016 Apr;30(7):826-33.
    PMID: 26284510 DOI: 10.1080/14786419.2015.1074230
    Aedes aegypti is a primary vector of dengue, a mosquito-borne viral disease infecting 50-100 million people every year. Here, we biosynthesised mosquitocidal silver nanoparticles (AgNP) using the aqueous leaf extract of Crotalaria verrucosa. The green synthesis of AgNP was studied by UV-vis spectroscopy, SEM, EDX and FTIR. C. verrucosa-synthesised AgNPs were toxic against A. aegypti larvae and pupae. LC50 of AgNP ranged from 3.496 ppm (I instar larvae) to 17.700 ppm (pupae). Furthermore, we evaluated the predatory efficiency of dragonfly nymphs, Brachydiplax sobrina, against II and III instar larvae of A. aegypti in an aquatic environment contaminated with ultra-low doses of AgNP. Under standard laboratory conditions, predation after 24 h was 87.5% (II) and 54.7% (III). In an AgNP-contaminated environment, predation was 91 and 75.5%, respectively. Overall, C. verrucosa-synthesised AgNP could be employed at ultra-low doses to reduce larval population of dengue vectors enhancing predation rates of dragonfly nymphs.
  9. Murugan K, Samidoss CM, Panneerselvam C, Higuchi A, Roni M, Suresh U, et al.
    Parasitol Res, 2015 Nov;114(11):4087-97.
    PMID: 26227141 DOI: 10.1007/s00436-015-4638-1
    Malaria, the most widespread mosquito-borne disease, affects 350-500 million people each year. Eco-friendly control tools against malaria vectors are urgently needed. This research proposed a novel method of plant-mediated synthesis of silver nanoparticles (AgNP) using a cheap seaweed extract of Ulva lactuca, acting as a reducing and capping agent. AgNP were characterized by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The U. lactuca extract and the green-synthesized AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi. In mosquitocidal assays, LC50 values of U. lactuca extract against A. stephensi larvae and pupae were 18.365 ppm (I instar), 23.948 ppm (II), 29.701 ppm (III), 37.517 ppm (IV), and 43.012 ppm (pupae). LC50 values of AgNP against A. stephensi were 2.111 ppm (I), 3.090 ppm (II), 4.629 ppm (III), 5.261 ppm (IV), and 6.860 ppm (pupae). Smoke toxicity experiments conducted against mosquito adults showed that U. lactuca coils evoked mortality rates comparable to the permethrin-based positive control (66, 51, and 41%, respectively). Furthermore, the antiplasmodial activity of U. lactuca extract and U. lactuca-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. Fifty percent inhibitory concentration (IC50) values of U. lactuca were 57.26 μg/ml (CQ-s) and 66.36 μg/ml (CQ-r); U. lactuca-synthesized AgNP IC50 values were 76.33 μg/ml (CQ-s) and 79.13 μg/ml (CQ-r). Overall, our results highlighted out that U. lactuca-synthesized AgNP may be employed to develop newer and safer agents for malaria control.
  10. Chen LH, Sung TC, Lee HH, Higuchi A, Su HC, Lin KJ, et al.
    Biomater Sci, 2019 Aug 14.
    PMID: 31411209 DOI: 10.1039/c9bm00418a
    Recombinant vitronectin-grafted hydrogels were developed by adjusting surface charge of the hydrogels with grafting of poly-l-lysine for optimal culture of human embryonic stem cells (hESCs) under xeno- and feeder-free culture conditions, with elasticity regulated by crosslinking time (10-30 kPa), in contrast to conventional recombinant vitronectin coating dishes, which have a fixed stiff surface (3 GPa). hESCs proliferated on the hydrogels for over 10 passages and differentiated into the cells derived from three germ layers indicating the maintenance of pluripotency. hESCs on the hydrogels differentiated into cardiomyocytes under xeno-free culture conditions with much higher efficiency (80% of cTnT+ cells) than those on conventional recombinant vitronectin or Matrigel-coating dishes just only after 12 days of induction. It is important to have an optimal design of cell culture biomaterials where biological cues (recombinant vitronectin) and physical cues (optimal elasticity) are combined for high differentiation of hESCs into specific cell lineages, such as cardiomyocytes, under xeno-free and feeder-free culture conditions.
  11. Yadav KK, Kumar S, Pham QB, Gupta N, Rezania S, Kamyab H, et al.
    Ecotoxicol Environ Saf, 2019 Oct 30;182:109362.
    PMID: 31254856 DOI: 10.1016/j.ecoenv.2019.06.045
    In low concentration, fluoride is considered a necessary compound for human health. Exposure to high concentrations of fluoride is the reason for a serious disease called fluorosis. Fluorosis is categorized as Skeletal and Dental fluorosis. Several Asian countries, such as India, face contamination of water resources with fluoride. In this study, a comprehensive overview on fluoride contamination in Asian water resources has been presented. Since water contamination with fluoride in India is higher than other Asian countries, a separate section was dedicated to review published articles on fluoride contamination in this country. The status of health effects in Asian countries was another topic that was reviewed in this study. The effects of fluoride on human organs/systems such as urinary, renal, endocrine, gastrointestinal, cardiovascular, brain, and reproductive systems were another topic that was reviewed in this study. Different methods to remove fluoride from water such as reverse osmosis, electrocoagulation, nanofiltration, adsorption, ion-exchange and precipitation/coagulation were introduced in this study. Although several studies have been carried out on contamination of water resources with fluoride, the situation of water contamination with fluoride and newly developed technology to remove fluoride from water in Asian countries has not been reviewed. Therefore, this review is focused on these issues: 1) The status of fluoride contamination in Asian countries, 2) health effects of fluoride contamination in drinking water in Asia, and 3) the existing current technologies for defluoridation in Asia.
  12. Drewes JL, White JR, Dejea CM, Fathi P, Iyadorai T, Vadivelu J, et al.
    NPJ Biofilms Microbiomes, 2019 01 09;5(1):2.
    PMID: 30652010 DOI: 10.1038/s41522-018-0078-x
    [This corrects the article DOI: 10.1038/s41522-017-0040-3.].
  13. Dahiya R, Dahiya S, Fuloria NK, Kumar S, Mourya R, Chennupati SV, et al.
    Mar Drugs, 2020 Jun 24;18(6).
    PMID: 32599909 DOI: 10.3390/md18060329
    Peptides are distinctive biomacromolecules that demonstrate potential cytotoxicity and diversified bioactivities against a variety of microorganisms including bacteria, mycobacteria, and fungi via their unique mechanisms of action. Among broad-ranging pharmacologically active peptides, natural marine-originated thiazole-based oligopeptides possess peculiar structural features along with a wide spectrum of exceptional and potent bioproperties. Because of their complex nature and size divergence, thiazole-based peptides (TBPs) bestow a pivotal chemical platform in drug discovery processes to generate competent scaffolds for regulating allosteric binding sites and peptide-peptide interactions. The present study dissertates on the natural reservoirs and exclusive structural components of marine-originated TBPs, with a special focus on their most pertinent pharmacological profiles, which may impart vital resources for the development of novel peptide-based therapeutic agents.
  14. Horton S, Camacho Rodriguez R, Anderson BO, Aung S, Awuah B, Delgado Pebé L, et al.
    Cancer, 2020 05 15;126 Suppl 10:2353-2364.
    PMID: 32348567 DOI: 10.1002/cncr.32871
    The adoption of the goal of universal health coverage and the growing burden of cancer in low- and middle-income countries makes it important to consider how to provide cancer care. Specific interventions can strengthen health systems while providing cancer care within a resource-stratified perspective (similar to the World Health Organization-tiered approach). Four specific topics are discussed: essential medicines/essential diagnostics lists; national cancer plans; provision of affordable essential public services (either at no cost to users or through national health insurance); and finally, how a nascent breast cancer program can build on existing programs. A case study of Zambia (a country with a core level of resources for cancer care, using the Breast Health Global Initiative typology) shows how a breast cancer program was built on a cervical cancer program, which in turn had evolved from the HIV/AIDS program. A case study of Brazil (which has enhanced resources for cancer care) describes how access to breast cancer care evolved as universal health coverage expanded. A case study of Uruguay shows how breast cancer outcomes improved as the country shifted from a largely private system to a single-payer national health insurance system in the transition to becoming a country with maximal resources for cancer care. The final case study describes an exciting initiative, the City Cancer Challenge, and how that may lead to improved cancer services.
  15. Murugan K, Anitha J, Dinesh D, Suresh U, Rajaganesh R, Chandramohan B, et al.
    Ecotoxicol Environ Saf, 2016 Oct;132:318-28.
    PMID: 27344400 DOI: 10.1016/j.ecoenv.2016.06.021
    Mosquitoes are arthropods of huge medical and veterinary relevance, since they vector pathogens and parasites of public health importance, including malaria, dengue and Zika virus. Currently, nanotechnology is considered a potential eco-friendly approach in mosquito control research. We proposed a novel method of biofabrication of silver nanoparticles (AgNP) using chitosan (Ch) from crab shells. Ch-AgNP nanocomposite was characterized by UV-vis spectroscopy, FTIR, SEM, EDX and XRD. Ch-AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi obtaining LC50 ranging from 3.18 ppm (I) to 6.54 ppm (pupae). The antibacterial properties of Ch-AgNP were proved against Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi, while no growth inhibition was reported in assays conducted on Proteus vulgaris. Concerning non-target effects, in standard laboratory considtions the predation efficiency of Danio rerio zebrafishes was 68.8% and 61.6% against I and II instar larvae of A. stephensi, respectively. In a Ch-AgNP-contaminated environment, fish predation was boosted to 89.5% and 77.3%, respectively. Quantitative analysis of antioxidant enzymes SOD, CAT and LPO from hepatopancreas of fresh water crabs Paratelphusa hydrodromous exposed for 16 days to a Ch-AgNP-contaminated aquatic environment were conducted. Notably, deleterious effects of Ch-AgNP contaminating aquatic enviroment on the non-target crab P. hydrodromous were observed, particularly when doses higher than 8-10ppm are tested. Overall, this research highlights the potential of Ch-AGNP for the development of newer control tools against young instar populations of malaria mosquitoes, also highlighting some risks concerned the employ of nanoparticles in aquatic environments.
  16. Priya SP, Sakinah S, Ling MP, Chee HY, Higuchi A, Hamat RA, et al.
    Acta Trop, 2017 Jul;171:213-219.
    PMID: 28427958 DOI: 10.1016/j.actatropica.2017.04.010
    Dengue virus (DENV) has emerged as a major economic concern in developing countries, with 2.5 billion people believed to be at risk. Vascular endothelial cells (ECs) lining the circulatory system from heart to end vessels perform crucial functions in the human body, by aiding gas exchange in lungs, gaseous, nutritional and its waste exchange in all tissues, including the blood brain barrier, filtration of fluid in the glomeruli, neutrophil recruitment, hormone trafficking, as well as maintenance of blood vessel tone and hemostasis. These functions can be deregulated during DENV infection. In this study, BALB/c mice infected with DENV serotype 2 were analyzed histologically for changes in major blood vessels in response to DENV infection. In the uninfected mouse model, blood vessels showed normal architecture with intact endothelial monolayer, tunica media, and tunica adventitia. In the infected mouse model, DENV distorted the endothelium lining and disturbed the smooth muscle, elastic laminae and their supporting tissues causing vascular structural disarrangement. This may explain the severe pathological illness in DENV-infected individuals. The overall DENV-induced damages on the endothelial and it's supporting tissues and the dysregulated immune reactions initiated by the host were discussed.
  17. Sakinah S, Priya SP, Kumari S, Amira F, K P, Alsaeedy H, et al.
    Tissue Cell, 2017 Feb;49(1):86-94.
    PMID: 28034555 DOI: 10.1016/j.tice.2016.11.005
    In this research, we characterized the histopathological impact of dengue virus (serotype DENV-2) infection in livers of BALB/c mice. The mice were infected with different doses of DENV-2 via intraperitoneal injection and liver tissues were processed for histological analyses and variation was documented. In the BALB/c mouse model, typical liver tissues showed regular hepatocyte architecture, with normal endothelial cells surrounding sinusoid capillary. Based on histopathological observations, the liver sections of BALB/c mice infected by DENV-2 exhibited a loss of cell integrity, with a widening of the sinusoidal spaces. There were marked increases in the infiltration of mononuclear cells. The areas of hemorrhage and micro- and macrovesicular steatosis were noted. Necrosis and apoptosis were abundantly present. The hallmark of viral infection, i.e., cytopathic effects, included intracellular edema and vacuole formation, cumulatively led to sinusoidal and lobular collapse in the liver. The histopathological studies on autopsy specimens of fatal human DENV cases are important to shed light on tissue damage for preventive and treatment modalities, in order to manage future DENV infections. In this framework, the method present here on BALB/c mouse model may be used to study not only the effects of infections by other DENV serotypes, but also to investigate the effects of novel drugs, such as recently developed nano-formulations, and the relative recovery ability with intact immune functions of host.
  18. Murugan K, Wei J, Alsalhi MS, Nicoletti M, Paulpandi M, Samidoss CM, et al.
    Parasitol Res, 2017 Feb;116(2):495-502.
    PMID: 27815736 DOI: 10.1007/s00436-016-5310-0
    A main challenge in parasitology is the development of reliable tools to prevent or treat mosquito-borne diseases. We investigated the toxicity of magnetic nanoparticles (MNP) produced by Magnetospirillum gryphiswaldense (strain MSR-1) on chloroquine-resistant (CQ-r) and sensitive (CQ-s) Plasmodium falciparum, dengue virus (DEN-2), and two of their main vectors, Anopheles stephensi and Aedes aegypti, respectively. MNP were studied by Fourier-transform infrared spectroscopy and transmission electron microscopy. They were toxic to larvae and pupae of An. stephensi, LC50 ranged from 2.563 ppm (1st instar larva) to 6.430 ppm (pupa), and Ae. aegypti, LC50 ranged from 3.231 ppm (1st instar larva) to 7.545 ppm (pupa). MNP IC50 on P. falciparum were 83.32 μg ml(-1) (CQ-s) and 87.47 μg ml(-1) (CQ-r). However, the in vivo efficacy of MNP on Plasmodium berghei was low if compared to CQ-based treatments. Moderate cytotoxicity was detected on Vero cells post-treatment with MNP doses lower than 4 μg ml(-1). MNP evaluated at 2-8 μg ml(-1) inhibited DEN-2 replication inhibiting the expression of the envelope (E) protein. In conclusion, our findings represent the first report about the use of MNP in medical and veterinary entomology, proposing them as suitable materials to develop reliable tools to combat mosquito-borne diseases.
  19. Lin HR, Heish CW, Liu CH, Muduli S, Li HF, Higuchi A, et al.
    Sci Rep, 2017 01 10;7:40069.
    PMID: 28071738 DOI: 10.1038/srep40069
    Human adipose-derived stem cells (hADSCs) are easily isolated from fat tissue without ethical concerns, but differ in purity, pluripotency, differentiation ability, and stem cell marker expression, depending on the isolation method. We isolated hADSCs from a primary fat tissue solution using: (1) conventional culture, (2) a membrane filtration method, (3) a membrane migration method where the primary cell solution was permeated through membranes, adhered hADSCs were cultured, and hADSCs migrated out from the membranes. Expression of mesenchymal stem cell markers and pluripotency genes, and osteogenic differentiation were compared for hADSCs isolated by different methods using nylon mesh filter membranes with pore sizes ranging from 11 to 80 μm. hADSCs isolated by the membrane migration method had the highest MSC surface marker expression and efficient differentiation into osteoblasts. Osteogenic differentiation ability of hADSCs and MSC surface marker expression were correlated, but osteogenic differentiation ability and pluripotent gene expression were not.
  20. Koh AE, Alsaeedi HA, Rashid MBA, Lam C, Harun MHN, Saleh MFBM, et al.
    J. Photochem. Photobiol. B, Biol., 2019 Jul;196:111514.
    PMID: 31154277 DOI: 10.1016/j.jphotobiol.2019.111514
    Retinal disorders account for a large proportion of ocular disorders that can lead to visual impairment or blindness, and yet our limited knowledge in the pathogenesis and choice of appropriate animal models for new treatment modalities may contribute to ineffective therapies. Although genetic in vivo models are favored, the variable expressivity and penetrance of these heterogeneous disorders can cause difficulties in assessing potential treatments against retinal degeneration. Hence, an attractive alternative is to develop a chemically-induced model that is both cost-friendly and standardizable. Sodium iodate is an oxidative chemical that is used to simulate late stage retinitis pigmentosa and age-related macular degeneration. In this study, retinal degeneration was induced through systemic administration of sodium iodate (NaIO3) at varying doses up to 80 mg/kg in Sprague-Dawley rats. An analysis on the visual response of the rats by electroretinography (ERG) showed a decrease in photoreceptor function with NaIO3 administration at a dose of 40 mg/kg or greater. The results correlated with the TUNEL assay, which revealed signs of DNA damage throughout the retina. Histomorphological analysis also revealed extensive structural lesions throughout the outer retina and parts of the inner retina. Our results provided a detailed view of NaIO3-induced retinal degeneration, and showed that the administration of 40 mg/kg NaIO3 was sufficient to generate disturbances in retinal function. The pathological findings in this model reveal a degenerating retina, and can be further utilized to develop effective therapies for RPE, photoreceptor, and bipolar cell regeneration.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links