Sunflower seed oil residue, a by-product of sunflower seed oil refining, was utilized as a feedstock for preparation of activated carbon (SSHAC) via microwave induced K(2)CO(3) chemical activation. SSHAC was characterized by Fourier transform infrared spectroscopy, nitrogen adsorption-desorption and elemental analysis. Surface acidity/basicity was examined with acid-base titration, while the adsorptive properties of SSHAC were quantified using methylene blue (MB) and acid blue 15 (AB). The monolayer adsorption capacities of MB and AB were 473.44 and 430.37 mg/g, while the Brunauer-Emmett-Teller surface area, Langmuir surface area and total pore volume were 1411.55 m(2)/g, 2137.72 m(2)/g and 0.836 cm(3)/g, respectively. The findings revealed the potential to prepare high surface area activated carbon from sunflower seed oil residue by microwave irradiation.
This article presents a review on the role of oil palm biomass (trunks, fronds, leaves, empty fruit bunches, shells, etc.) as adsorbents in the removal of water pollutants such as acid and basic dyes, heavy metals, phenolic compounds, various gaseous pollutants, and so on. Numerous studies on adsorption properties of various low-cost adsorbents, such as agricultural wastes and its based activated carbons, have been reported in recent years. Studies have shown that oil palm-based adsorbent, among the low-cost adsorbents mentioned, is the most promising adsorbent for removing water pollutants. Further, these bioadsorbents can be chemically modified for better efficiency and can undergo multiple reuses to enhance their applicability at an industrial scale. It is evident from a literature survey of more than 100 recent papers that low-cost adsorbents have demonstrated outstanding removal capabilities for various pollutants. The conclusion is been drawn from the reviewed literature, and suggestions for future research are proposed.
A new sol-gel hybrid coating, polydimethylsiloxane-2-hydroxymethyl-18-crown-6 (PDMS-2OHMe18C6) was prepared in-house for use in solid phase microextraction (SPME). The three compositions produced were assessed for its extraction efficiency towards three selected organophosphorus pesticides (OPPs) based on peak area extracted obtained from gas chromatography with electron capture detection. All three compositions showed superior extraction efficiencies compared to commercial 100 microm PDMS fiber. The composition showing best extraction performance was used to obtain optimized SPME conditions: 75 degrees C extraction temperature, 10 min extraction time, 120 rpm stirring rate, desorption time 5 min, desorption temperature 250 degrees C and 1.5% (w/v) of NaCl salt addition. The method detection limits (S/N=3) of the OPPs with the new sol-gel hybrid material ranged from 4.5 to 4.8 ng g(-1), which is well below the maximum residue limit set by Codex Alimentarius Commission and European Commission. Percentage recovery of OPPs from strawberry, green apple and grape samples with the new hybrid sol-gel SPME material ranged from 65 to 125% with good precision of the method (%RSD) ranging from 0.3 to 7.4%.
In this review article, the use of various low-cost adsorbents for the removal of pesticides from water and wastewater has been reviewed. Pesticides may appear as pollutants in water sources, having undesirable impacts to human health because of their toxicity, carcinogenicity, and mutagenicity or causing aesthetic problems such as taste and odors. These pesticides pollute the water stream and it can be removed very effectively using different low-cost adsorbents. It is evident from a literature survey of about 191 recently published papers that low-cost adsorbents have demonstrated outstanding removal capabilities for pesticides.
In this study, methyl ester (ME) was produced by transesterification of palm oil (CPO) (cooking grade) using activated carbon supported calcium oxide as a solid base catalyst (CaO/AC). Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effect of reaction time, molar ratio of methanol to oil, reaction temperature and catalyst amount on the transesterification process. The optimum condition for CPO transesterification to methyl ester was obtained at 5.5 wt.% catalyst amount, 190°C temperature, 15:1 methanol to oil molar ratio and 1 h 21 min reaction time. At the optimum condition, the ME content was 80.98%, which is well within the predicted value of the model. Catalyst regeneration studies indicate that the catalyst performance is sustained after two cycles.
A simple and effective multiresidue method based on precipitation at low temperature followed by matrix solid-phase dispersion-sonication was developed and validated to determine dimethoate, malathion, carbaryl, simazine, terbuthylazine, atrazine and diuron in palm oil using liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS). Liquid-liquid extraction (LLE) followed by low temperature method were optimized by studying the effect of type and volume of organic solvent (acetonitrile, acetonitrile:n-hexane (3:2 v/v) and acetone) and time of freezing to obtain high recovery yield and low co-extract fat residue in the final extract. The optimal conditions for matrix solid-phase dispersion (MSPD) were obtained using 5 g of palm oil, 2 g of primary secondary amine (PSA) as dispersing sorbent, 1 g of graphitized carbon black (GCB) as clean-up sorbent and 15 mL of acetonitrile as eluting solvent under conditions of 15 min ultrasonication at room temperature. Method validation was performed in order to study sensitivity, linearity, precision, and accuracy. Average recoveries at three concentration levels (25, 50 and 100 μg kg(-1)) were found in the range of 72.6-91.3% with relative standard deviations between 5.3% and 14.2%. Detection and quantification limits ranged from 1.5 to 5 μg kg(-1) and from 2.5 to 9 μg kg(-1), respectively.
This work examines the impregnated carbon-based sorbents for simultaneous removal of SO(2) and NOx from simulated flue gas. The carbon-based sorbents were prepared using palm shell activated carbon (PSAC) impregnated with several metal oxides (Ni, V, Fe and Ce). The removal of SO(2) and NOx from the simulated flue gas was investigated in a fixed-bed reactor. The results showed that PSAC impregnated with CeO(2) (PSAC-Ce) reported the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NOx. PSAC-Ce showed the longest breakthrough time of 165 and 115 min for SO(2) and NOx, respectively. The properties of the pure and impregnated PSAC were analyzed by BET, FTIR and XRF. The physical-chemical features of the PSAC-Ce sorbent indicated a catalytic activity in both the sorption of SO(2) and NOx. The formation of both sulfate (SO(4)(2-)) and nitrate (NO(3-)) species on spent PSAC-Ce further prove the catalytic role played by CeO(2).
Stepping into the new globalizes and paradigm shifted era, a huge revolution has been undergone by the electrochemical industry. From a humble candidate of the superconductor resources, today electrosorption has demonstrated its wide variety of usefulness, almost in every part of the environmental conservation. With the renaissance of activated carbon (AC), there has been a steadily growing interest in this research field. The paper presents a state of art review of electrosorption technology, its background studies, fundamental chemistry and working principles. Moreover, recent development of the activated carbon assisted electrosorption process, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of electrosorption in the field of adsorption science represents a potentially viable and powerful tool, leading to the superior improvement of pollution control and environmental preservation.
Water scarcity and pollution rank equal to climate change as the most urgent environmental issue for the 21st century. To date, the percolation landfill leachate into the groundwater tables and aquifer systems which poses a potential risk and potential hazards towards the public health and ecosystems, remains an aesthetic concern and consideration abroad the nations. Arising from the steep enrichment of globalization and metropolitan growth, numerous mitigating approaches and imperative technologies have currently drastically been addressed and confronted. Confirming the assertion, this paper presents a state of art review of leachate treatment technologies, its fundamental background studies, and environmental implications. Moreover, the key advance of activated carbons adsorption, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons adsorption represents a potentially viable and powerful tool, leading to the superior improvement of environmental conservation.
Separation of carbon dioxide (CO(2)) from gaseous mixture is an important issue for the removal of CO(2) in natural gas processing and power plants. The ordered mesoporous silicas (OMS) with uniform pore structure and high density of silanol groups, have attracted the interest of researchers for separation of carbon dioxide (CO(2)) using adsorption process. These mesoporous silicas after functionalization with amino groups have been studied for the removal of CO(2). The potential of functionalized ordered mesoporous silica membrane for separation of CO(2) is also recognized. The present paper reviews the synthesis of mesoporous silicas and important issues related to the development of mesoporous silicas. Recent studies on the CO(2) separation using ordered mesoporous silicas (OMS) as adsorbent and membrane are highlighted. The future prospectives of mesoporous silica membrane for CO(2) adsorption and separation are also presented and discussed.
Ceiba pentandra (L.) Gaertn (kapok) is a natural sorbent that exhibits excellent hydrophobic-oleophilic characteristics. The effect of packing density, the oil types and solvent treatment on the sorption characteristics of kapok was studied in a batch system. Oil sorption capacity, retention capacity, entrapment stability and kapok reusability were evaluated. Based on SEM and FTIR analyses, kapok fiber was shown to be a lignocellulosic material with hydrophobic waxy coating over the hollow structures. Higher packing density at 0.08 g/ml showed lower sorption capacity, but higher percentage of dynamic oil retention, with only 1% of oil drained out from the test cell. Kapok remained stable after fifteen cycles of reuse with only 30% of sorption capacity reduction. The oil entrapment stability at 0.08 g/ml packing was high with more than 90% of diesel and used engine oil retained after horizontal shaking. After 8h of chloroform and alkali treatment, 2.1% and 26.3% reduction in sorption capacity were observed, respectively, as compared to the raw kapok. The rigid hollow structure was reduced to flattened-like structure after alkali treatment, though no major structural difference was observed after chloroform treatment. Malaysian kapok has shown great potential as an effective natural oil sorbent, owing to high sorption and retention capacity, structural stability and high reusability.
Concern about environmental protection has aroused over the years from a global viewpoint. To date, the ever-increasing importance of biomass as the energy and material resources has lately been accounted by the rising prices for the crude petroleum oil. Rice husk ash, the most appropriate representative of the high ash biomass waste, is currently obtaining sufficient attraction, owning to its wide usefulness and potentiality in environmental conservation. Confirming the assertion, this paper presents a state of the art review of the rice milling industry, its background studies, fundamental properties and industrial applications. Moreover, the key advance on the preparation of novel adsorbents, its major challenges together with the future expectation has been highlighted and discussed. Conclusively, the expanding of rice husk ash in the field of adsorption science represents a viable and powerful tool, leading to the superior improvement of pollution control and environmental preservation.
The bioregeneration efficiencies of powdered activated carbon (PAC) and pyrolyzed rice husk loaded with phenol and p-nitrophenol were quantified by oxygen uptake measurements using the respirometry technique in two approaches: (i) simultaneous adsorption and biodegradation and (ii) sequential adsorption and biodegradation. It was found that the applicability of the simultaneous adsorption and biodegradation approach was constrained by the requirement of adsorption preceding biodegradation in order to determine the initial adsorbent loading accurately. The sequential adsorption and biodegradation approach provides a good estimate of the upper limit of the bioregeneration efficiency for the loaded adsorbent in the simultaneous adsorption and biodegradation processes. The results showed that the mean bioregeneration efficiencies for PAC loaded with phenol and p-nitrophenol, respectively, obtained using the two approaches were in good agreement.
The low concentration and high flow rate of air-borne butyl acetate (BA) could be effectively removed using combined adsorption-catalytic oxidation system. Ag-Y (Si/Al=80) dual-function adsorbent was investigated for the adsorption step of 1000 ppm of butyl acetate at gas hourly space velocity of 13,000 h(-1) at ambient temperature under dry and humid feeds. A central composite design (CCD) coupled with response surface methodology (RSM) was employed to obtain the optimum process conditions and the interactions between process variables were demonstrated and elucidated. Humidity and increasing organic concentration shortened the adsorption service time. The effect of moisture was more pronounced at low BA concentration. The interactions between the BA concentration and humidity were statistically significant at 95% confidence level. The optimum conditions were found to be at 4500 ppm of BA with 37 min saturation time to give 58 mg BA/g as adsorption capacity. The simulated data fitted the experimental data satisfactorily. The simulated data also correctly demonstrated the overall behaviors of the adsorption process.
The feasibility of using papaya seeds (PS), abundantly available waste in Malaysia, for the cationic dye (methylene blue) adsorption has been investigated. Batch adsorption studies were conducted to study the effects of contact time, initial concentration (50-360 mg/L), pH (3-10) and adsorbent dose (0.05-1.00 g) on the removal of methylene blue (MB) at temperature of 30 degrees C. The equilibrium data were analyzed by the Langmuir, the Freundlich and the Temkin isotherms. The data fitted well with the Langmuir model with a maximum adsorption capacity of 555.557 mg/g. The pseudo-second-order kinetics was the best for the adsorption of MB by PS with good correlation. The results demonstrated that the PS is very effective to remove methylene blue from aqueous solutions.
Activated carbon derived from rattan sawdust (ACR) was evaluated for its ability to remove phenol from an aqueous solution in a batch process. Equilibrium studies were conducted in the range of 25-200mg/L initial phenol concentrations, 3-10 solution pH and at temperature of 30 degrees C. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. Equilibrium data fitted well to the Langmuir model with a maximum adsorption capacity of 149.25mg/g. The dimensionless separation factor RL revealed the favorable nature of the isotherm of the phenol-activated carbon system. The pseudo-second-order kinetic model best described the adsorption process. The results proved that the prepared activated carbon was an effective adsorbent for removal of phenol from aqueous solution.
The sorption of basic dye from aqueous solutions by banana stalk waste (BSW), an abundant agricultural waste in Malaysia, was studied in a batch system with respect to pH and initial dye concentration. Sorption isotherm of methylene blue (MB) onto the BSW was determined at 30 degrees C with the initial concentrations of MB in the range of 50-500 mg/L. At pH 2.0, the sorption of dye was not favorable, while the sorption at other pHs (4.0-12.0) was remarkable. Equilibrium data were fitted to the Langmuir, Freundlich and Temkin isotherm models. The equilibrium data were best represented by the Langmuir isotherm model, with maximum monolayer adsorption capacity of 243.90 mg/g. The sorption kinetic data were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion models. It was found that the pseudo-second-order kinetic model was the best applicable model to describe the sorption kinetics. The results showed that BSW sorbent was a promising for the removal of MB from aqueous solutions.
The downward movement of carbofuran in two Malaysian soil types was studied using soil columns. The columns were filled with disturbed and undisturbed soils of either the Bagan Datoh soil (clay) or the Labu soil (sandy clay). The average total percentage of carbofuran in the leachate of the undisturbed Labu soil after 14 days of watering (80.8%) was approximately similar to that of the total amount from the disturbed soil (81.4%). However, carbofuran leaching was observed in the disturbed soil after the fourth day of watering whereas for the undisturbed soil, leaching occurred after the first watering. A similar trend was observed in the Bagan Datoh soil where the residue of carbofuran was detected after the first day of watering in the undisturbed soil column but only at the eighth day of watering in the disturbed soil column. The total percentage carbofuran in the leachate of disturbed and undisturbed soil columns from Bagan Datoh after 14 days of watering was 3.6% and 41.7%, respectively. The study showed that less leaching occurred in soil columns with high organic content such as the Bagan Datoh soil and especially so in disturbed soils where the organic matter was homogeneously mixed in all layers.
In this paper, the ability of coconut bunch waste (CBW), an agricultural waste available in large quantity in Malaysia, to remove basic dye (methylene blue) from aqueous solution by adsorption was studied. Batch mode experiments were conducted at 30 degrees C to study the effects of pH and initial concentration of methylene blue (MB). Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The adsorption isotherm data were fitted well to Langmuir isotherm and the monolayer adsorption capacity was found to be 70.92 mg/g at 30 degrees C. The kinetic data obtained at different concentrations have been analyzed using a pseudo-first-order, pseudo-second-order equation and intraparticle diffusion equation. The experimental data fitted very well the pseudo-second-order kinetic model.
In this work, pumpkin seed hull (PSH), an agricultural solid waste, is proposed as a novel material for the removal of methylene blue (MB) from aqueous solutions. The effects of the initial concentration, agitation time and solution pH were studied in batch experiments at 30 degrees C. The equilibrium process was described well by the multilayer adsorption isotherm. The adsorption kinetics can be predicted by the pseudo-first-order and the modified pseudo-first-order models. The mechanism of adsorption was also studied. It was found that for a short time period the rate of adsorption is controlled by film diffusion. However, at longer adsorption times, pore-diffusion controls the rate of adsorption. Pore diffusion takes place in two distinct regimes, corresponding to diffusion in macro- and mesopores. The results demonstrate that the PSH is very effective in the removal of MB from aqueous solutions.