METHODS: We analysed expression of NFIA and NFIB in mRNA expression data of high-grade astrocytoma and with immunofluorescence co-staining. Furthermore, we induced NFI expression in patient-derived subcutaneous glioblastoma xenografts via in vivo electroporation.
RESULTS: The expression of NFIA and NFIB is reduced in glioblastoma as compared to lower grade astrocytomas. At a cellular level, their expression is associated with differentiated and mature astrocyte-like tumour cells. In vivo analyses consistently demonstrate that expression of either NFIA or NFIB is sufficient to promote tumour cell differentiation in glioblastoma xenografts.
CONCLUSION: Our findings indicate that both NFIA and NFIB may have an endogenous pro-differentiative function in astrocytomas, similar to their role in normal astrocyte differentiation. Overall, our study establishes a basis for further investigation of targeting NFI-mediated differentiation as a potential differentiation therapy.
MATERIALS AND METHODS: Silver nanoparticles (dAgNps) were synthesized by reacting phytochemicals of D. microcarpum leaves with silver nitrate for 12 hours. Cell viability assay was carried out to investigate the cytotoxic effect of dAgNps on HeLa and PANC-1 cells.
RESULTS: Scanning electron microscopy (SEM) and transmission electron microscopy(TEM) results revealed the average sizes of dAgNps are 81 nm and 84 nm respectively. The x-ray diffraction (XRD) pattern of dAgNps was similar to that of face centered cubic(fcc) structure of silver as reported by joint committee on powder diffraction standards (JCPDS) and fourier-transform infrared spectroscopy (FTIR) analysis showed that some phytochemicals of D. microcarpum such as polyphenols and flavonoids were likely involved in the reduction of Ag+ to form nanoparticles. Finally, cell viability assay revealed dAgNps inhibited PANC-1 and HeLa cell proliferations with IC50 values of 84 and 31.5 µg/ml respectively.
CONCLUSION: In conclusion, the synthesized nanoparticles from D. microcarpum leaves (dAgNps) have inhibitory effect on pancreatic and cervical cancer cells.
METHODS: Here, we show a robust episomal and xeno-free reprogramming strategy for human iPS generation from dental pulp stem cells (DPSCs) which renders good efficiency (0.19%) over a short time frame (13-18 days).
RESULTS: The robustness of DPSCs as starting cells for iPS induction is found due to their exceptional inherent stemness properties, developmental origin from neural crest cells, specification for tissue commitment, and differentiation capability. To investigate the epigenetic basis for the high reprogramming efficiency of DPSCs, we performed genome-wide DNA methylation analysis and found that the epigenetic signature of DPSCs associated with pluripotent, developmental, and ecto-mesenchymal genes is relatively close to that of iPS and embryonic stem (ES) cells. Among these genes, it is found that overexpression of PAX9 and knockdown of HERV-FRD improved the efficiencies of iPS generation.
CONCLUSION: In conclusion, our study provides underlying epigenetic mechanisms that establish a robust platform for efficient generation of iPS cells from DPSCs, facilitating industrial and clinical use of iPS technology for therapeutic needs.
METHODS: Isolation of compounds from G. segetum leaves was conducted using vacuum liquid chromatography (VLC) and column chromatography (CC). Two new compounds, namely 4,5,4'-trihydroxychalcone and 8,8'-(ethene-1,2-diyl)-dinaphtalene-1,4,5-triol, together with stigmasterol and β-sitosterol were isolated from G. segetum methanol extract and their structures were determined spectroscopically. The presence of gallic acid and rutin in the extract was determined quantitatively by a validated HPLC method. G. segetum methanol extract and its constituents were investigated for their effects on chemotaxis, phagocytosis, β2 integrin (CD18) expression, and reactive oxygen species (ROS) of polymorphonuclear leukocytes (PMNs), lymphocytes proliferation, cytokine release and nitric oxide (NO) production of phagocytes.
RESULTS: All the samples significantly inhibited all the innate immune responses tested except CD 18 expression on surface of leukocytes. Among the samples, 8,8'-(ethene-1,2-diyl)-dinaphtalene-1,4,5-triol exhibited the strongest inhibitory on chemotaxis, phagocytosis, ROS and NO production. The compound exhibited exceptionally strong inhibitions on ROS and chemotaxis activities with IC50 values lower than the positive controls, aspirin and ibuprofen, respectively. 4,5,4'-Trihydroxychalcone revealed the strongest immunosuppressive activity on proliferation of lymphocytes (IC50 value of 1.52 μM) and on release of IL-1β (IC50 value of 6.69 μM). Meanwhile rutin was the most potent sample against release of TNF-α from monocytes (IC50, 16.96 μM).
CONCLUSION: The extract showed strong immunosuppressive effects on various components of the immune system and these activities were possibly contributed mainly by 4,5,4'-trihydroxychalcone, 8,8'-(ethene-1,2-diyl)-dinaphtalene-1,4,5-triol and rutin.