In the present study, magnetic oil palm empty fruits bunch cellulose nanofiber (M-OPEFB-CNF) composite was isolated by sol-gel method using cellulose nanofiber (CNF) obtained from oil palm empty fruits bunch (OPEFB) and Fe3O4 as magnetite. Several analytical methods were utilized to characterize the mechanical, chemical, thermal, and morphological properties of the isolated CNF and M-OPEFB-CNF. Subsequently, the isolated M-OPEFB-CNF composite was utilized for the adsorption of Cr(VI) and Cu(II) from aqueous solution with varying parameters, such as pH, adsorbent doses, treatment time, and temperature. Results showed that the M-OPEFB-CNF as an effective bio-sorbent for the removal of Cu(II) and Cr(VI) from aqueous solution. The adsorption isotherm modeling revealed that the Freundlich equation better describes the adsorption of Cu(II) and Cr(VI) on M-OPEFB-CNF composite. The kinetics studies revealed the pseudo-second-order kinetics model was a better-described kinetics model for the removal of Cu(II) and Cr(VI) using M-OPEFB-CNF composite as bio-sorbent. The findings of the present study showed that the M-OPEFB-CNF composite has the potential to be utilized as a bio-sorbent for heavy metals removal.
The present study investigated the concentration of metals in commonly grown vegetables (Luffa acutangula L., Zea mays L., Solanum melongena L.) irrigated with waste water in District Bannu, Khyber Pakhtunkhwa, Pakistan. The pH (5.80) and electrical conductivity (13 dS/m) of waste water indicated the acidic nature that is not suitable for irrigation purposes. Soil and vegetables samples were analyzed for metals concentration through flame atomic absorption spectrometry (Varian FAAS-240). The findings showed that waste water irrigated soil was highly contaminated with Cd (4.62 mg/kg) which was above permissible limits set by European Union Standard (EU 2006, 2002). The concentrations of heavy metals such as Cr and Cd in vegetables were higher than the permissible limits set by World Health Organization/Food and Agriculture Organization U.S.A guidelines 2001. The health hazard quotient (HQ) of waste water irrigated vegetables was observed higher for Ni (0.699-0.1029 mg/kg), (0.0456-0.1040 mg/kg), (0.731-0.0994 mg/kg) in Luffa acutangula, Solanum melongena and Zea mays, respectively. The study concluded that the consumption of commonly grown vegetables in waste water zone of the study area may pose potential health threats in local population.
The presence of abundant oil palm residues in Malaysia prompted the need to utilize this waste to avoid environmental
pollution. This waste was abundant at the oil palm mill and accounted for almost 50% of production. The study was
conducted to determine the morphological effect of Palm Oil Mill Effluent (POME) sludge on the maize growth performance
and gas exchange. Physicochemical, growth morphology and gas exchange was measured after treated with POME sludge
from different treatment pond systems: Mixing, anaerobic, facultative, algae and dumping. The results indicated the
pH, C, and CEC of mixing the < anaerobic < facultative < algae < dumping ponds. There was a significant presence of
macronutrient (N, Mg, Ca, Fe, S) in the treated POME sludge, contrary to the presence of heavy metal (Cd, Cu, Ni and
Pb) elements which were not significantly different in all the treatments and lower than WHO/FAO standard. Root Shoot
Ratio (RSR) and Specific Leaf Area (SLA) indicated significant difference in biomass accumulation and yield compared to
the control. The gas exchange variable was a significant difference on stomata conductivity (Gs) and transpiration rate
(E). However, the POME sludge from the facultative, algae and dumping ponds showed positive correlations between net
photosynthesis, stomata conductivity and transpiration rate. Indeed, the increased transpiration rate (E) was correlated
with stomata conductance (Gs) after treatment with anaerobic, facultative, algae and dumping ponds. In conclusion, the
POME sludge amendment was able to increase the maize biomass and yield.
The ability of gellan gum-immobilised cells of the heavy metal-tolerant bacterium Alcaligenes sp. AQ05-001 to utilise both heavy metal-free and heavy metal-polluted feathers (HMPFs) as substrates to produce keratinase enzyme was studied. Optimisation of the media pH, incubation temperature and immobilisation parameters (bead size, bead number, gellan gum concentration) was determined for the best possible production of keratinase using the one-factor-at-a-time technique. The results showed that the immobilised cells could tolerate a broader range of heavy metal concentrations and produced higher keratinase activity at a gellan gum concentration of 0.8% (w/v), a bead size of 3 mm, bead number of 250, pH of 8 and temperature of 30 °C. The entrapped bacterium was used repeatedly for ten cycles to produce keratinase using feathers polluted with 25 ppm of Co, Cu and Ag as substrates without the need for desorption. However, its inability to tolerate/utilise feathers polluted with Hg, Pb, and Zn above 5 ppm, and Ag and Cd above 10 ppm resulted in a considerable decrease in keratinase production. Furthermore, the immobilised cells could retain approximately 95% of their keratinase production capacity when 5 ppm of Co, Cu, and Ag, and 10 ppm of As and Cd were used to pollute feathers. When the feathers containing a mixture of Ag, Co, and Cu at 25 ppm each and Hg, Ni, Pb, and Zn at 5 ppm each were used as substrates, the immobilised cells maintained their operational stability and biological activity (keratinase production) at the end of 3rd and 4th cycles, respectively. The study indicates that HMPF can be effectively utilised as a substrate by the immobilised-cell system of Alcaligenes sp. AQ05-001 for the semi-continuous production of keratinase enzyme.
Paraburkholderia fungorum is an opportunistic bacteria infrequently associated with human infections. Here, we report the draft genome sequence of P. fungorum strain BF370, recovered from the synovial tissue of a patient in Malaysia. The P. fungorum genome contains a 8,950,957 bp chromosome with a G+C content of 61.8%. Colicin and heavy metal resistant genes were also present in the genome. Conserved sequence indels unique to P. fungorum were observed in the genome. The draft genome was deposited at the European Nucleotide Archive under the sample accession number ERS1776561 and study accession number PRJEB17921.
A large amount of wastewater is typically discharged into water bodies and has extremely harmful effects to aquatic environments. The removal of heavy metals from water bodies is necessary for the safe consumption of water and human activities. The demand for seafood has considerably increased, and millions of tons of crustacean waste are discarded every year. These waste products are rich in a natural biopolymer known as chitin. The deacetylated form of chitin, chitosan, has attracted attention as an adsorbent. It is a biocompatible and biodegradable polymer that can be modified and converted to various derivatives. This review paper focuses on relevant literature on strategies for chemically modifying the biopolymer and its use in the removal of heavy metals from water and wastewater. The different aspects of chitosan-based derivatives and their preparation and application are elucidated. A list of chitosan-based composites, along with their adsorptivity and experimental conditions, are compiled.
Trace metals are required in many cellular processes in bacteria but also induce toxic effects to cells when present in excess. As such, various forms of adaptive responses towards extracellular trace metal ions are essential for the survival and fitness of bacteria in their environment. A soil Pseudomonas putida, strain S13.1.2 has been isolated from French vineyard soil samples, and shown to confer resistance to copper ions. Further investigation revealed a high capacity to tolerate elevated concentrations of various heavy metals including nickel, cobalt, cadmium, zinc and arsenic. The complete genome analysis was conducted using single-molecule real-time (SMRT) sequencing and the genome consisted in a single chromosome at the size of 6.6 Mb. Presence of operons and gene clusters such as cop, cus, czc, nik, and asc systems were detected and accounted for the observed resistance phenotypes. The unique features in terms of specificity and arrangements of some genetic determinants were also highlighted in the study. Our findings has provided insights into the adaptation of this strain to accumulation and persistence of copper and other heavy metals in vineyard soil environment.
Development and urbanization processes around Terengganu River estuary are expected to release a significant amount of heavy metals into the existing surface sediment. However, information on how and why these metals are attached into specific fraction of sediments is still lacking. Therefore, this study aimed to explain the heavy metal concentration distribution in each available fraction in Terengganu River estuary. In this study, nine surface sediments originated from various human activities area in Terengganu River estuary were collected during four different sampling sessions in 2017. Heavy metal content from the collected sediments were extracted using 3-steps BCR sequential extraction method followed by detection using Inductively Coupled Plasma Mass-Spectrometer (ICP-MS) and we discovered that the total concentration of arsenic (As), cobalt (Co), copper (Cu), and zinc (Zn) ranged from 2.18 to 17.48 mg/kg dry wt., 2.53 to 20.53 mg/kg dry wt., 1.01 to 13.13 mg/kg dry wt., and 6.10 to 65.71 mg/kg dry wt., respectively. Dominance of metals in each fraction can be arranged as follows: As: residual > reducible > exchangeable > oxidizable; Co: residual > exchangeable > reducible > oxidizable; Cu: residual > oxidizable > reducible > exchangeable; Zn: residual > exchangeable > reducible > oxidizable. Availability of metals in the sediment at Terengganu River estuary is limited since that majority of metals resides in non-mobilisable fraction of the sediment. In essence, the sequential extraction provides information regarding the metals’ fractionation, availability and mobility, which could be used in assessing the environmental contamination in the area.
A widely distributed urban bird, the house crow (Corvus splendens), was used to assess bioavailable heavy metals in urban and rural environments across Pakistan. Bioaccumulation of arsenic (As), zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), iron (Fe), manganese (Mn), chromium (Cr), and copper (Cu) was investigated in wing feathers of 96 crows collected from eight locations and categorized into four groups pertaining to their geographical and environmental similarities. Results revealed that the concentrations of Pb, Ni, Mn, Cu, and Cr were positively correlated and varied significantly among the four groups. Zn, Fe, Cr, and Cu regarded as industrial outputs, were observed in birds both in industrialized cities and in adjoining rural agricultural areas irrigated through the Indus Basin Irrigation System. Birds in both urban regions accrued Pb more than the metal toxicity thresholds for birds. The house crow was ranked in the middle on the metal accumulation levels in feathers between highly accumulating raptor and piscivore and less contaminated insectivore and granivore species in the studied areas,. This study suggests that the house crow is an efficient bioindicator and supports the feasibility of using feathers to discriminate the local pollution differences among terrestrial environments having different levels and kinds of anthropogenic activities.
Honey is a popular natural food product with a very complex composition mainly consisting of both organic and inorganic constituents. The composition of honey is strongly influenced by both natural and anthropogenic factors, which vary based on its botanical and geographical origins. Although minerals and heavy metals are minor constituents of honey, they play vital role in determining its quality. There are several different analytical methods used to determine the chemical elements in honey. These methods are typically based on spectroscopy or spectrometry techniques (including atomic absorption spectrometry, atomic emission spectrometry, inductively coupled plasma mass spectrometry, and inductively coupled plasma optical emission spectrometry). This review compiles available scientific information on minerals and heavy metals in honey reported from all over the world. To date, 54 chemical elements in various types of honey have been identified and can be divided into 3 groups: major or macroelements (Na, K, Ca, Mg, P, S, Cl), minor or trace elements (Al, Cu, Pb, Zn, Mn, Cd, Tl, Co, Ni, Rb, Ba, Be, Bi, U, V, Fe, Pt, Pd, Te, Hf, Mo, Sn, Sb, La, I, Sm, Tb, Dy, Sd, Th, Pr, Nd, Tm, Yb, Lu, Gd, Ho, Er, Ce, Cr, As, B, Br, Cd, Hg, Se, Sr), and heavy metals (trace elements that have a specific gravity at least 5 times higher than that of water and inorganic sources). Chemical elements in honey samples throughout the world vary in terms of concentrations and are also influenced by environmental pollution.
Meghna River Estuary, the largest estuarine system (GBM, Ganges-Brahmaputra-Meghna) in Bangladesh, is a major spawning ground of national fish, Hilsha shad. In this study, we collected 24 surface sediment and 24 water samples from the entire lower estuary (4 sites, 3 sampling points from each site, 2 replicas from each sampling point) to detect trace/heavy metals. Sediment samples were collected from the top surface soil (0-5 cm) using Ekman grab sampler and water samples from 5 cm below the surface layer using plastic water bottles. After collection, sediment and water samples were preserved as necessary using HNO3 (for water). Immediately after reaching the laboratory, sediment samples were dried in an oven at 70°C until the constant weight gained. The metals were then analyzed using energy-dispersive X-ray fluorescence method (EDXRF) and calculated the metal concentrations. In total, 12 metals were detected and the average value (mg/Kg) of all metals for sediment samples followed the descending order of Fe > Ca > K >Ti >Sr >Zr >Rb> Cu > Zn >Pb >As > Ni, and for water the order (µg/mL) of Fe >Ti > Ca > Co >Mn > Ni > Zn >Sr > Cu > As > Se . Besides, several physicochemical parameters i.e. water pH, soil pH, temperature, salinity, dissolved oxygen, hardness, and alkalinity of the 12 sampling points were also measured in-situ using handheld instruments.
Industrial, and municipal wastes are part of the main sources of environmental hazards as well as groundwater and surface water pollutions. If not well composed, treated, and safely disposed, it could permeate through the subsurface lithologies by reaching down to the underground water aquifers, particularly in zones of unprotected aquifer units. Pollutants, most especially the landfills leachates that encompassed organic contaminants, ammonia, nitrates, total nitrogen, suspended solids, heavy metals and soluble inorganic salts, i.e., soluble nitrogen, sulphur compound, sulphate and chlorides, could posed undesirable environmental impacts due to inappropriate disposals that may give rise to gaseous fumes and leachate formations. An electrical resistivity geophysical technique utilizing the RES2D no-invasive, cost-effective and rapid method of data collection was integrated with the 3D Oasis Montaj software to approximate the volume of the generated rectangular prism model of the contaminants delineated from mixtures of the industrial, and municipal wastes plumes to be 312,000 m 3.
Food safety issues associated with aquatic food products become more important with the increasing consumption and followed by its ongoing challenges. The objective of this paper is to review the food safety hazards and health risks related to aquatic food products for the Southeast Asian region. These hazards can be categorized as microplastics (MPs) hazard, biological hazards (pathogenic bacteria, biogenic amines, viruses, parasites), and chemical hazards (antimicrobial, formaldehyde, heavy metal). In different Southeast Asian countries, the potential health risks of aquatic food products brought by food hazards to consumers were at different intensity and classes. Among all these hazards, pathogenic bacteria, antimicrobials, and heavy metal were a particular concern in the Southeast Asian region. With environmental changes, evolving consumption patterns, and the globalization of trade, new food safety challenges are created, which put forward higher requirements on food technologies, food safety regulations, and international cooperation.
Coal combustion by-products (CCPs) (i.e. fly (FA) and bottom (BA) ashes) generated by power plants contain heavy metals. This research presents leaching properties of coal ashes (FA and BA) collected from Jimah coal-fired power station, Port Dickson, Negeri Sembilan using USEPA standard methods namely toxicity characteristic leaching procedure (TCLP), and synthetic precipitation leaching procedure (SPLP). Heavy metals like lead (Pb), zinc (Zn), copper (Cu) and arsenic (As) were quantified using atomic absorption spectrometer (AAS). The leached of heavy metals fluxes were Cu < Zn < Pb < As. As leached the most whilst indicating of possible contamination from As. Overall, the ranges of leached concentration were adhered to permissible limits of hazardous waste criteria for metal (Pb and As) and industrial effluent (Zn and Cu). The presented data has potential reuse as reference for the coal ash concrete mixed design application in construction industries.
In the current protocol, the arene diazonium saccharin derivatives were initially produced from various substituted aromatic amines; subsequently, these intermediates were treated with a greener organic iodide for the preparation of the aryl iodide. We tried to choose low-cost, commercially available, biodegradable, recoverable, ecofriendly, and safe reagents and solvents. The arene diazonium saccharin intermediates could be stored in the liquid phase into a refrigerator for a long time with no significant loss activity. The outstanding merits of the current protocol (a) included the partial recovering of saccharin and tetraethylammonium salt, (b) reduce the use of solvents and the reaction steps due to eliminating separation and purification of intermediates, (c) good yield of the sterically hindered substrates, and (d) avoid the generation of heavy metal or corrosive waste.
This study aimed to determine the heavy metals (lead, cadmium, and chromium) concentration in lipsticks of different price categories sold in the Malaysian market and evaluate the potential health risks due to daily ingestion of heavy metals in lipsticks. A total of 374 questionnaires were distributed to the female staff in a public university in Malaysia in order to obtain information such as brand and price of the lipsticks, body weight, and frequency and duration of wearing lipstick. This information was important for the calculation of hazard quotient (HQ) in health risk assessment. The samples were extracted using a microwave digester and analyzed using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The concentrations of lead, cadmium, and chromium in lipsticks ranged from 0.77 to 15.44 mg kg(-1), 0.06-0.33 mg kg(-1), and 0.48-2.50 mg kg(-1), respectively. There was a significant difference of lead content in the lipsticks of different price categories. There was no significant non-carcinogenic health risk due to the exposure of these heavy metals through lipstick consumption for the prolonged exposure of 35 years (HQ < 1).
Mangrove located near urban area is exposed to various industrial discharge including heavy metals. Mangrove soil is capable of accumulating and storing these heavy metals. Heavy metals are toxic and non-biodegradable, so their accumulations affect water quality, while bioaccumulation and bio-assimilation of heavy metals in mangrove organisms negatively impact the food chain. Bacteria-derived biosurfactants are compounds capable of removing heavy metals from soil and sediment. Furthermore, environmentally friendly properties, such as biodegradability and low toxicity, exhibited by biosurfactants make them a suitable replacement for chemical surfactants for remediation efforts. This study was conducted to investigate the lead- (Pb) and zinc- (Zn) removing capability of rhamnolipid (RL), a type of biosurfactant produced by marine bacterium, Pseudomonas aeruginosa UMTKB-5. Rhamnolipid solutions of three different concentrations (25 mg/L, 50 mg/L and 75 mg/L) were added to mangrove soil and incubated for 7 days. The removal of Pb from soils was up to 18.3% using 25 mg/L RL solution, while 50 mg/L RL solution removed 48.3%, and 75 mg/L RL solution removed 75.9% Pb over time. Meanwhile, zinc removal of 25 mg/L RL solution was up to 24.9%, while 50 mg/L removed 16.5%, and 75 mg/L RL removed 30.5% of Zn. The results showed that RL from P. aeruginosa UMTKB-5 could be a potential biomaterial to be used to remediate heavy metals in sediment.
Land use plays a significant role in determining the spatial patterns of water quality in the Johor River Basin (JRB), Malaysia. In the recent years, there have been several occurrences of pollution in these rivers, which has generated concerns over the long-term sustainability of the water resources in the JRB. Specifically, this water resource is a shared commodity between two states, namely, Johor state of Malaysia and Singapore, a neighbouring country adjacent to Malaysia. Prior to this study, few research on the influence of land use configuration on water quality have been conducted in Johor. In addition, it is also unclear how water quality varies under different seasonality in the presence of point sources. In this study, we investigated the influence of land use and point sources from wastewater treatment plants (WWTPs) on the water quality in the JRB. Two statistical techniques - Multivariate Linear Regression (MLR) and Redundancy Analysis (RA) were undertaken to analyse the relationships between river water quality and land use configuration, as well as point sources from WWTPs under different seasonality. Water samples were collected from 49 sites within the JRB from March to December in 2019. Results showed that influence from WWTPs on water quality was greater during the dry season and less significant during the wet season. In particular, point source was highly positively correlated with ammoniacal‑nitrogen (NH3-N). On the other hand, land use influence was greater than point source influence during the wet season. Residential and urban land use were important predictors for nutrients and organic matter (chemical oxygen demand); and forest land use were important sinks for heavy metals but a significant source of manganese.
At present, heavy metal pollution is a major environmental concern and the adsorption technique is a potent method for removal of these heavy metals from wastewater. Activated carbon is one of the best adsorbents for metal ionsremoval but it is sometimes restricted due to high cost and problems with regeneration hamper large scale application. Low cost adsorbent is alternatively being introduced to replace activated carbon since it is available in large quantity, renewable and inexpensive. Hence, Pennisetum purpureum(elephant grass) was investigated for its potential in cadmium ions removal. The adsorbent was characterized by Fourier Transforms Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) analyses.The effects of pH (1 to 5), initial metal ion concentration (5 to 25 mg/L), contact time (10 to 60 minutes) and adsorbent dosage (0.2 to 1.0 g) on cadmium ions removal were conducted by batch adsorption experiments. In this study, the FT-IR results demonstrated that the functional groups for untreated and nitric acid-treated P. purpureum mainly consisted of carbonyl, carboxyl, hydroxyl and amine groups which are able to bind with positively charged cadmium ions. SEM micrographs have proven that nitric acid modification would remove the surface impurities of P. purpureum, which increased the surface roughness, produced deep, open pores and better pore size distribution. From the BET and BJH analyses, the treated P. purpureum was mesoporous, had larger surface area and pore volume compared to untreated P. purpureum. The best pH, adsorbent dosage and contact time were pH 4, 0.6 g and 30 minutes, respectively. The highest removal percentage of cadmium ions for both untreated and treated P. purpureum were 92% and 98% correspondingly. The results shown strengthened the fact that both biosorbents have great potential in cadmium ions removal.
Wastewater is water that has already been contaminated by domestic, industrial and commercial activity that needs to be treated before it could be discharged into some other water bodies to avoid even more groundwater contamination supplies. It consists of various contaminants like heavy metals, organic pollutants, inorganic pollutants and Emerging contaminants. Research has been doing on all types of contaminates more than a decade, but this emerging contaminants is the contaminants which arises mostly from pharmaceuticals, personal care products, hormones and fertilizer industries. The majority of emerging contaminants did not have standardized guidelines, but may have adverse effects on human and marine organisms, even at smaller concentrations. Typically, extremely low doses of emerging contaminants are found in the marine environment and cause a potential risk to the aquatic animals living there. When contaminants emerge in the marine world, they are potentially toxic and pose many risks to the health of both man and livestock. The aim of this article is to review the Emerging contaminate sources, detection methods and treatment methods. The purpose of this study is to consider the adsorption as a beneficial treatment of emerging contaminants also advanced and cost effective emerging contaminates treatment methods.