Displaying publications 341 - 360 of 394 in total

Abstract:
Sort:
  1. Goodwin R, Haque S, Hassan SB, Dhanoa A
    Public Underst Sci, 2011 Jul;20(4):477-90.
    PMID: 21936262
    Novel influenza viruses are seen, internationally, as posing considerable health challenges, but public responses to such viruses are often rooted in cultural representations of disease and risk. However, little research has been conducted in locations associated with the origin of a pandemic. We examined representations and risk perceptions associated with swine flu amongst 120 Malaysian pig farmers. Thirty-seven per cent of respondents felt at particular risk of infection, two-thirds were somewhat or very concerned about being infected. Those respondents who were the most anxious believed particular societal "out-groups" (homosexuals, the homeless and prostitutes) to be at higher infection risk. Although few (4%) reported direct discrimination, 46% claimed friends had avoided them since the swine flu outbreak. Findings are discussed in the context of evolutionary, social representations and terror management theories of response to pandemic threat.
    Matched MeSH terms: Swine
  2. Diederich S, Maisner A
    Ann N Y Acad Sci, 2007 Apr;1102:39-50.
    PMID: 17470910
    Nipah virus (NiV) is a highly pathogenic paramyxovirus, which emerged in 1998 from fruit bats in Malaysia and caused an outbreak of severe respiratory disease in pigs and fatal encephalitis in humans with high mortality rates. In contrast to most paramyxoviruses, NiV can infect a large variety of mammalian species. Due to this broad host range, its zoonotic potential, its high pathogenicity for humans, and the lack of effective vaccines or therapeutics, NiV was classified as a biosafety level 4 pathogen. This article provides an overview of the molecular characteristics of NiV focusing on the structure, functions, and unique biological properties of the two NiV surface glycoproteins, the receptor-binding G protein, and the fusion protein F. Since viral glycoproteins are major determinants for cell tropism and virus spread, a detailed knowledge of these proteins can help to understand the molecular basis of viral pathogenicity.
    Matched MeSH terms: Swine
  3. Kaku Y
    Uirusu, 2004 Dec;54(2):237-42.
    PMID: 15745162
    Nipah virus (NiV), emerged in Peninsular Malaysia, caused an outbreak of severe febrile encephalitis in humans and respiratory diseases in pigs between 1998 and 1999. By May of 1999, the death of 105 humans and the culling of about 1.1 million pigs were reported. Fruitbats of Pteropid species were identified as the natural reservoir hosts. The epidemiological studies suggested that NiV was introduced into pig farms by fruitbats, and was than transmitted to humans (mainly pig farmers) and other animals such as dogs, cats and horses. In 2004, NiV reappeared in Bangladesh with greater lethality. In contrast to the Malaysia case, epidemiologic characteristics of this outbreak suggested the possibility of fruitbats-to-person, or person-to-person transmission. In this article, the epidemiological comparison between two outbreaks in Malaysia and Bangladesh, and the new-trends of virological studies of NiV will be discussed.
    Matched MeSH terms: Swine
  4. Lo Presti A, Cella E, Giovanetti M, Lai A, Angeletti S, Zehender G, et al.
    J Med Virol, 2016 Mar;88(3):380-8.
    PMID: 26252523 DOI: 10.1002/jmv.24345
    Nipah virus, member of the Paramyxoviridae family, is classified as a Biosafety Level-4 agent and category C priority pathogen. Nipah virus disease is endemic in south Asia and outbreaks have been reported in Malaysia, Singapore, India, and Bangladesh. Bats of the genus Pteropus appear to be the natural reservoir of this virus. The aim of this study was to investigate the genetic diversity of Nipah virus, to estimate the date of origin and the spread of the infection. The mean value of Nipah virus N gene evolutionary rate, was 6.5 × 10(-4) substitution/site/year (95% HPD: 2.3 × 10(-4)-1.18 × 10(-3)). The time-scaled phylogenetic analysis showed that the root of the tree originated in 1947 (95% HPD: 1888-1988) as the virus entered in south eastern Asiatic regions. The segregation of sequences in two main clades (I and II) indicating that Nipah virus had two different introductions: one in 1995 (95% HPD: 1985-2002) which correspond to clade I, and the other in 1985 (95% HPD: 1971-1996) which correspond to clade II. The phylogeographic reconstruction indicated that the epidemic followed two different routes spreading to the other locations. The trade of infected pigs may have played a role in the spread of the virus. Bats of the Pteropus genus, that are able to travel to long distances, may have contributed to the spread of the infection. Negatively selected sites, statistically supported, could reflect the stability of the viral N protein.
    Matched MeSH terms: Swine
  5. Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, et al.
    Lancet, 1999 Oct 9;354(9186):1257-9.
    PMID: 10520635
    Between February and April, 1999, an outbreak of viral encephalitis occurred among pig-farmers in Malaysia. We report findings for the first three patients who died.
    Matched MeSH terms: Swine
  6. Harcourt BH, Tamin A, Halpin K, Ksiazek TG, Rollin PE, Bellini WJ, et al.
    Virology, 2001 Aug 15;287(1):192-201.
    PMID: 11504554
    In 1998, Nipah virus (NV) emerged in peninsular Malaysia, causing fatal encephalitis in humans and a respiratory disease in swine. NV is most closely related to Hendra virus (HV), a paramyxovirus that was identified in Australia in 1994, and it has been proposed that HV and NV represent a new genus within the family Paramyxoviridae. This report describes the analysis of the sequences of the polymerase gene (L) and genomic termini of NV as well as a comparison of the full-length, genomic sequences of HV and NV. The L gene of NV is predicted to be 2244 amino acids in size and contains the six domains found within the L proteins of all nonsegmented, negative-stranded (NNS) RNA viruses. However, the GDNQ motif found in most NNS RNA viruses was replaced by GDNE in both NV and HV. The 3' and 5' termini of the NV genome are nearly identical to the genomic termini of HV and share sequence homology with the genomic termini of other members of the subfamily Paramyxovirinae. At 18,246 nucleotides, the genome of NV is 12 nucleotides longer than the genome of HV and they have the largest genomes within the family Paramyxoviridae. The comparison of the structures of the genomes of HV and NV is now complete and this information will help to establish the taxonomic position of these novel viruses within the family Paramyxoviridae.
    Matched MeSH terms: Swine
  7. Tsuchie H, Oda K, Vythilingam I, Thayan R, Vijayamalar B, Sinniah M, et al.
    Am J Trop Med Hyg, 1997 Feb;56(2):153-8.
    PMID: 9080873
    Two hundred forty nucleotides from the pre-membrane gene region of 12 Japanese encephalitis virus (JEV) strains isolated from three different regions of Malaysia from 1993 to 1994 were sequenced and compared with each other and with the JEV strains from different geographic areas in Asia. These 12 Malaysian isolates were classified into two genotypes. The four JEV strains isolated from Sarawak in 1994 and the four JEV strains isolated from Sepang, Selangor in 1993 were classified into one genotype that included earlier isolated strains from Malaysia (JE-827 from Sarawak in 1968 and WTP/70/22 from Kuala Lumpur in 1970). The four JEV strains from Ipoh, Perak in 1994 were classified into another genotype that included JEV strains isolated from northern Thailand and Cambodia. In an earlier report, 10 JEV strains from Sabak Bernam, Selangor in 1992 were classified into the largest genotype that included strains isolated in temperate regions such as Japan, China, and Taiwan. The data indicate that at least three genotypes of JEV have been circulating in Malaysia.
    Matched MeSH terms: Swine
  8. Tan NH, Saifuddin MN, Yong WY
    Biochem. Int., 1991 Jan;23(1):175-81.
    PMID: 1863271
    The edema inducing activity of phospholipase A2 (PLA2) enzymes from snake venoms and porcine pancreas was investigated using mouse paw as experimental model. All ten PLA2 enzymes exhibited potent edema inducing activity. PLA2, however, is generally not the major edema inducing component of snake venom. Chemical modification studies indicated that enzymatic activity of PLA2 was required for its edema inducing activity. All PLA2 enzymes examined displayed a rapid onset edema which was suppressed by pretreatment of the mice with antihistamine. Dexamethasone pretreatment also inhibited edemas elicited by some PLA2 enzymes.
    Matched MeSH terms: Swine
  9. Dige NC, Mahajan PG, Raza H, Hassan M, Vanjare BD, Hong H, et al.
    Bioorg Chem, 2020 07;100:103906.
    PMID: 32422387 DOI: 10.1016/j.bioorg.2020.103906
    A new series of 4H-chromene-3-carboxylate derivatives were synthesized using multicomponent reaction of salicylaldehyde, ethyl acetoacetate and dimedone in ethanol with K3PO4 as a catalyst at 80 °C. The structures of all newly synthesized compounds were confirmed by spectral techniques viz. IR, 1H NMR, 13C NMR, and LCMS analysis. The newly synthesized compounds 4a to 4j were screened against elastase enzyme. Interestingly, all these compounds found to be potent elastase inhibitors with much lower IC50 value. The compound 4b was found to be most potent elastase inhibitor (IC50 = 0.41 ± 0.01 µM) amongst the synthesized series against standard Oleanolic Acid (IC50 value = 13.45 ± 0.0 µM). The Kinetics mechanism for compound 4b was analyzed by Lineweaver-Burk plots which revealed that compound inhibited elastase competitively by forming an enzyme-inhibitor complex. Along with this, all the synthesized compounds (4a - 4j) exhibits excellent DPPH free radical scavenging ability. The inhibition constant Ki for compound 4b was found to be 0.6 µM. The computational study was comprehensible with the experimental results with good docking energy values (Kcal/mol). Therefore, these molecules can be considered as promising medicinal scaffolds for the treatment of skin-related maladies.
    Matched MeSH terms: Swine
  10. Chin GS, Todo H, Kadhum WR, Hamid MA, Sugibayashi K
    Chem Pharm Bull (Tokyo), 2016;64(12):1666-1673.
    PMID: 27904075
    The current investigation evaluated the potential of proniosome as a carrier to enhance skin permeation and skin retention of a highly lipophilic compound, α-mangostin. α-Mangostin proniosomes were prepared using the coacervation phase seperation method. Upon hydration, α-mangostin loaded niosomes were characterized for size, polydispersity index (PDI), entrapment efficiency (EE) and ζ-potential. The in vitro permeation experiments with dermis-split Yucatan Micropig (YMP) skin revealed that proniosomes composed of Spans, soya lecithin and cholesterol were able to enhance the skin permeation of α-mangostin with a factor range from 1.8- to 8.0-fold as compared to the control suspension. Furthermore, incorporation of soya lecithin in the proniosomal formulation significantly enhanced the viable epidermis/dermis (VED) concentration of α-mangostin. All the proniosomal formulations (except for S20L) had significantly (p<0.05) enhanced deposition of α-mangostin in the VED layer with a factor range from 2.5- to 2.9-fold as compared to the control suspension. Since addition of Spans and soya lecithin in water improved the solubility of α-mangostin, this would be related to the enhancement of skin permeation and skin concentration of α-mangostin. The choice of non-ionic surfactant in proniosomes is an important factor governing the skin permeation and skin retention of α-mangostin. These results suggested that proniosomes can be utilized as a carrier for highly lipophilic compound like α-mangostin for topical application.
    Matched MeSH terms: Swine
  11. Zhao MY, Li D
    Food Environ Virol, 2021 03;13(1):74-83.
    PMID: 33449335 DOI: 10.1007/s12560-020-09452-y
    Hepatitis E virus (HEV) has been frequently detected from pork liver and liver products, which can usually cause self-limiting diseases in healthy adults, yet may result in fatality in immunosuppressed groups. Nevertheless, there is so far no standardized method for HEV detection available from pork liver and/or liver products. The present study aimed to optimize the virus extraction method of HEV from raw pork liver, which is often consumed in Asia undercooked to avoid a grainy texture. By comparing different sample preparation protocols and by applying the selected protocol to 60 samples collected from Singapore retail markets, we demonstrated that homogenization of 0.25 g raw pork liver with FastPrep™ Lysing Matrix Y containing yttria-stabilized zircondium oxide beads in 2 ml tubes and with harsh mechanical force at 6 ms-1, 40 s/cycle, for 5 cycles with 300 s pause time after each cycle is promising in both releasing the potentially intracellular viruses and resulting in satisfactory virus recovery rates (> 1%). A high prevalence (52%) of HEV genome was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) from the 60 samples collected from Singapore retail markets imported from Indonesia, Australia and Malaysia. However, RNase treatment decreased the HEV prevalence to 33.3%, and all of the 20 positive samples were with high RT-qPCR Ct values above 35, suggesting that the positive RT-qPCR signals maybe largely due to the inactive viruses and/or exposed HEV RNA traces in raw pork liver products. Therefore, conscious care should be taken when interpreting molecular detection results of viruses from food samples to be correlated with public health risks.
    Matched MeSH terms: Swine
  12. Uddin SMK, Hossain MAM, Chowdhury ZZ, Johan MRB
    PMID: 34077338 DOI: 10.1080/19440049.2021.1925748
    Food fraud is a global problem raising increased concerns during the past decades and food authenticity is now a burning issue. Beef, buffalo, chicken, duck, goat, sheep, and pork are heavily consumed meats bearing nutritional, economic and cultural/religious importance and are often found to be adulterated in raw and processed states. To authenticate these species, we developed and validated a highly specific multiplex (heptaplex) PCR assay targeting short length amplicons (73-263 bp) using seven pairs of species-specific primer sets targeting mitochondrial cytochrome b (cytb) and NADH dehydrogenase subunit 5 (ND5) genes. Specificity checking (in silico and in vitro) against 25 non-target species revealed no cross-species amplification. The developed multiplex assay was validated with various adulterated and heat-treated (boiled, microwaved and autoclaved) meatball products and were found to show high sensitivity and stability under all processing conditions. The assay was sensitive enough to detect 0.01-0.005 ng of DNA from raw meat and 0.5% (w/w) adulterated meat in mixed matrices. A market survey revealed mislabelling of 95% beef and 15% chicken products while pork products were found pure. Given some advantageous features including short sizes of amplicons, exceptional stability and superior sensitivity, the developed assay could be conveniently used for discriminatory detection of target species with a variety of raw meat as well as processed meat products undergoing extreme processing treatments.
    Matched MeSH terms: Swine
  13. Sakai N, Sakai M, Mohamad Haron DE, Yoneda M, Ali Mohd M
    Chemosphere, 2016 Dec;165:183-190.
    PMID: 27654221 DOI: 10.1016/j.chemosphere.2016.09.022
    Fourteen beta-agonists were quantitatively analyzed in cattle, chicken and swine liver specimens purchased at 14 wet markets in Selangor State, Malaysia, by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The health risks of ractopamine and clenbuterol residues in the Malaysian population were assessed based on quantitative data and meat consumption statistics in Malaysia. Wastewater samples collected at swine farms (n = 2) and cattle/cow farms (n = 2) in the Kuala Langat district were analyzed for the presence for the 14 compounds. Wastewater in chicken farms was not collected because there was negligible discharge during the breeding period. The environmental impacts caused by beta-agonists discharged from livestock farms were spatially assessed in the Langat River basin using a geographic information system (GIS). As a result, 10 compounds were detected in the liver specimens. Ractopamine, which is a permitted compound for swine in Malaysia, was frequently detected in swine livers; also, 9 other compounds that are prohibited compounds could be illegally abused among livestock farms. The health risks of ractopamine and clenbuterol were assessed to be minimal as their hazard quotients were no more than 7.82 × 10(-4) and 2.71 × 10(-3), respectively. Five beta-agonists were detected in the wastewater samples, and ractopamine in the swine farm resulted in the highest contamination (30.1 μg/L). The environmental impacts of the beta-agonists in the Langat River basin were generally concluded to be minimal, but the ractopamine contamination released from swine farms was localized in coastal areas near the estuary of the Langat River basin because most swine farms were located in that region.
    Matched MeSH terms: Swine
  14. Goh CF, Craig DQ, Hadgraft J, Lane ME
    Eur J Pharm Biopharm, 2017 Feb;111:16-25.
    PMID: 27845181 DOI: 10.1016/j.ejpb.2016.10.025
    Drug permeation through the intercellular lipids, which pack around and between corneocytes, may be enhanced by increasing the thermodynamic activity of the active in a formulation. However, this may also result in unwanted drug crystallisation on and in the skin. In this work, we explore the combination of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the skin. Ex vivo permeation studies of saturated solutions of diclofenac sodium (DF Na) in two vehicles, propylene glycol (PG) and dimethyl sulphoxide (DMSO), were carried out in porcine ear skin. Tape stripping and ATR-FTIR spectroscopy were conducted simultaneously to collect spectral data as a function of skin depth. Multivariate data analysis was applied to visualise and categorise the spectral data in the region of interest (1700-1500cm(-1)) containing the carboxylate (COO(-)) asymmetric stretching vibrations of DF Na. Spectral data showed the redshifts of the COO(-) asymmetric stretching vibrations for DF Na in the solution compared with solid drug. Similar shifts were evident following application of saturated solutions of DF Na to porcine skin samples. Multivariate data analysis categorised the spectral data based on the spectral differences and drug crystallisation was found to be confined to the upper layers of the skin. This proof-of-concept study highlights the utility of ATR-FTIR spectroscopy in combination with multivariate data analysis as a simple and rapid approach in the investigation of drug deposition in the skin. The approach described here will be extended to the study of other actives for topical application to the skin.
    Matched MeSH terms: Swine
  15. Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, et al.
    mBio, 2017 06 27;8(3).
    PMID: 28655818 DOI: 10.1128/mBio.00543-17
    The mobile colistin resistance gene mcr-1 has attracted global attention, as it heralds the breach of polymyxins, one of the last-resort antibiotics for the treatment of severe clinical infections caused by multidrug-resistant Gram-negative bacteria. To date, six slightly different variants of mcr-1, and a second mobile colistin resistance gene, mcr-2, have been reported or annotated in the GenBank database. Here, we characterized a third mobile colistin resistance gene, mcr-3 The gene coexisted with 18 additional resistance determinants in the 261-kb IncHI2-type plasmid pWJ1 from porcine Escherichia colimcr-3 showed 45.0% and 47.0% nucleotide sequence identity to mcr-1 and mcr-2, respectively, while the deduced amino acid sequence of MCR-3 showed 99.8 to 100% and 75.6 to 94.8% identity to phosphoethanolamine transferases found in other Enterobacteriaceae species and in 10 Aeromonas species, respectively. pWJ1 was mobilized to an E. coli recipient by conjugation and contained a plasmid backbone similar to those of other mcr-1-carrying plasmids, such as pHNSHP45-2 from the original mcr-1-harboring E. coli strain. Moreover, a truncated transposon element, TnAs2, which was characterized only in Aeromonas salmonicida, was located upstream of mcr-3 in pWJ1. This ΔTnAs2-mcr-3 element was also identified in a shotgun genome sequence of a porcine E. coli isolate from Malaysia, a human Klebsiella pneumoniae isolate from Thailand, and a human Salmonella enterica serovar Typhimurium isolate from the United States. These results suggest the likelihood of a wide dissemination of the novel mobile colistin resistance gene mcr-3 among Enterobacteriaceae and aeromonads; the latter may act as a potential reservoir for mcr-3IMPORTANCE The emergence of the plasmid-mediated colistin resistance gene mcr-1 has attracted substantial attention worldwide. Here, we examined a colistin-resistant Escherichia coli isolate that was negative for both mcr-1 and mcr-2 and discovered a novel mobile colistin resistance gene, mcr-3 The amino acid sequence of MCR-3 aligned closely with phosphoethanolamine transferases from Enterobacteriaceae and Aeromonas species originating from both clinical infections and environmental samples collected in 12 countries on four continents. Due to the ubiquitous profile of aeromonads in the environment and the potential transfer of mcr-3 between Enterobacteriaceae and Aeromonas species, the wide spread of mcr-3 may be largely underestimated. As colistin has been and still is widely used in veterinary medicine and used at increasing frequencies in human medicine, the continuous monitoring of mobile colistin resistance determinants in colistin-resistant Gram-negative bacteria is imperative for understanding and tackling the dissemination of mcr genes in both the agricultural and health care sectors.
    Matched MeSH terms: Swine
  16. Madheswaran T, Baskaran R, Yoo BK, Kesharwani P
    J Pharm Sci, 2017 11;106(11):3385-3394.
    PMID: 28652158 DOI: 10.1016/j.xphs.2017.06.016
    In this study, we developed positively charged liquid crystalline nanoparticles (LCN) coated with chitosan (CHI) to enhance the skin permeation and distribution of 5α-reductase inhibitors for the treatment of androgenetic alopecia. LCN and surface-modified LCN (CHI-LCN) were prepared by ultrasonication method, and their physicochemical properties were characterized. In vitro and in vivo skin permeation and retention were studied using porcine abdominal skin and mice skin using the Franz diffusion cell. Skin distribution and cellular uptake of LCN and CHI-LCN were also investigated. The particle size and surface charge were 244.9 ± 2.1 nm and -19.2 ± 1.1 mV, respectively, for LCNs and 300.0 ± 7.6 nm and 24.7 ± 2.4 mV, respectively, for CHI-LCN. The permeation of 5α-reductase inhibitors was significantly greater with CHI-LCN compared with LCN, whereas there was no significant difference observed in the skin distribution. In fluorescence studies, fluorescence intensity was higher for CHI-LCNs throughout the skin, whereas more intense fluorescence was seen only in the epidermis layer for LCN. CHI-LCN showed greater cellular uptake than LCN, resulting in internalization of 98.5 ± 1.9% of nanoparticles into human keratinocyte cells. In conclusion, surface modification of LCN with CHI is a promising strategy for increasing skin permeation of 5α-reductase inhibitors for topical delivery.
    Matched MeSH terms: Swine
  17. Taha M, Imran S, Ismail NH, Selvaraj M, Rahim F, Chigurupati S, et al.
    Bioorg Chem, 2017 10;74:1-9.
    PMID: 28719801 DOI: 10.1016/j.bioorg.2017.07.001
    A new library of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives (1-23) were synthesized and characterized by EI-MS and 1H NMR, and screened for their α-amylase inhibitory activity. Out of twenty-three derivatives, two molecules 19 (IC50=0.38±0.82µM) and 23 (IC50=1.66±0.14µM), showed excellent activity whereas the remaining compounds, except 10 and 17, showed good to moderate inhibition in the range of IC50=1.77-2.98µM when compared with the standard acarbose (IC50=1.66±0.1µM). A plausible structure-activity relationship has also been presented. In addition, in silico studies was carried out in order to rationalize the binding interaction of compounds with the active site of enzyme.
    Matched MeSH terms: Swine
  18. Ali E, Sultana S, Hamid SBA, Hossain M, Yehya WA, Kader A, et al.
    Crit Rev Food Sci Nutr, 2018 Jun 13;58(9):1495-1511.
    PMID: 28033035 DOI: 10.1080/10408398.2016.1264361
    Gelatin is a highly purified animal protein of pig, cow, and fish origins and is extensively used in food, pharmaceuticals, and personal care products. However, the acceptability of gelatin products greatly depends on the animal sources of the gelatin. Porcine and bovine gelatins have attractive features but limited acceptance because of religious prohibitions and potential zoonotic threats, whereas fish gelatin is welcomed in all religions and cultures. Thus, source authentication is a must for gelatin products but it is greatly challenging due to the breakdown of both protein and DNA biomarkers in processed gelatins. Therefore, several methods have been proposed for gelatin identification, but a comprehensive and systematic document that includes all of the techniques does not exist. This up-to-date review addresses this research gap and presents, in an accessible format, the major gelatin source authentication techniques, which are primarily nucleic acid and protein based. Instead of presenting these methods in paragraph form which needs much attention in reading, the major methods are schematically depicted, and their comparative features are tabulated. Future technologies are forecasted, and challenges are outlined. Overall, this review paper has the merit to serve as a reference guide for the production and application of gelatin in academia and industry and will act as a platform for the development of improved methods for gelatin authentication.
    Matched MeSH terms: Swine
  19. Yahiro T, Takaki M, Chandrasena TGAN, Rajindrajith S, Iha H, Ahmed K
    Infect Genet Evol, 2018 11;65:170-186.
    PMID: 30055329 DOI: 10.1016/j.meegid.2018.07.014
    A human-porcine reassortant rotavirus, strain R1207, was identified from 74 group A rotaviruses detected in 197 (37.6%) stool samples collected from patients who attended a tertiary care hospital in Ragama, Sri Lanka. This is the first report of a human-porcine reassortant rotavirus in Sri Lanka. The patient was a 12-month-old boy who had been hospitalized with fever and acute diarrhea with a duration of 6 days. The family had pigs at home before the birth of this boy. However, the neighbors still practice pig farming. The genotype constellation of R1207 was G4-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1. This is based on the assignment of all the eleven gene segments a full genome-based genotyping system. R1207 showed a 4-2-3-2 genomic electrophoretic migration pattern, which is characteristic of group A rotaviruses. Our analyses revealed that five (NSP2, NSP4, VP1, VP2, and VP7) of the 11 genes were closely related to the respective genes of porcine strains. Although the remaining six genes (NSP1, NSP3, NSP5, VP3, VP4, and VP6) were related to human strains, with the exception of the gene sequence of NSP1, all of these human strains were human-porcine reassortants. With a genogroup 1 genetic backbone, this strain was possibly formed via multiple genetic reassortments. We do not know whether this strain is circulating in pigs, as no data are available on porcine rotaviruses in Sri Lanka. Surveillance should be strengthened to determine the epidemiology of this genotype of rotavirus in Sri Lanka and to assess whether the infection was limited or sustained by ongoing human-to-human transmission.
    Matched MeSH terms: Swine
  20. Rayanakorn A, Goh BH, Lee LH, Khan TM, Saokaew S
    Sci Rep, 2018 09 06;8(1):13358.
    PMID: 30190575 DOI: 10.1038/s41598-018-31598-w
    Streptococcus suis (S. suis) is a gram-positive bacterial pathogen in pigs which can cause serious infections in human including meningitis, and septicaemia resulting in serious complications. There were discrepancies between different data and little is known concerning associated risk factors of S. suis. A systematic review and meta-analysis was conducted to investigate on S. suis infection risk factors in human. We searched eight relevant databases using the MeSH terms "Streptococcus suis" OR "Streptococcus suis AND infection" limited in human with no time nor language restriction. Out of 4,999 articles identified, 32 and 3 studies were included for systematic review and meta-analysis respectively with a total of 1,454 Streptococcus suis cases reported. S. suis patients were generally adult males and the elderly. The mean age ranged between 37 to 63 years. Meningitis was the most common clinical manifestation, and deafness was the most common sequelae found among survivors followed by vestibular dysfunction. Infective endocarditis was also noted as among the most common clinical presentations associated with high mortality rate in a few studies. Meta-analyses categorized by type of control groups (community control, and non-S. suis sepsis) were done among 850 participants in 3 studies. The combined odd ratios for studies using community control groups and non-S. Suis sepsis as controls respectively were 4.63 (95% CI 2.94-7.29) and 78.00 (95% CI 10.38-585.87) for raw pork consumption, 4.01 (95% CI 2.61-6.15) and 3.03 (95% CI 1.61-5.68) for exposure to pigs or pork, 11.47, (95% CI 5.68-23.14) and 3.07 (95% CI 1.81-5.18) for pig-related occupation and 3.56 (95% CI 2.18-5.80) and 5.84 (95% CI 2.76-12.36) for male sex. The results were found to be significantly associated with S. suis infection and there was non-significant heterogeneity. History of skin injury and underlying diseases were noted only a small percentage in most studies. Setting up an effective screening protocol and public health interventions would be effective to enhance understanding about the disease.
    Matched MeSH terms: Swine
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links