Displaying publications 361 - 380 of 623 in total

Abstract:
Sort:
  1. Sakinah S, Priya SP, Mok PL, Munisvaradass R, Teh SW, Sun Z, et al.
    Front Cell Dev Biol, 2021;9:637270.
    PMID: 34291043 DOI: 10.3389/fcell.2021.637270
    Extensive clinical efforts have been made to control the severity of dengue diseases; however, the dengue morbidity and mortality have not declined. Dengue virus (DENV) can infect and cause systemic damage in many organs, resulting in organ failure. Here, we present a novel report showing a tailored stem-cell-based therapy that can aid in viral clearance and rescue liver cells from further damage during dengue infection. We administered a combination of hematopoietic stem cells and endothelial progenitor cells in a DENV-infected BALB/c mouse model and found that delivery of this cell cocktail had improved their liver functions, confirmed by hematology, histopathology, and next-generation sequencing. These stem and progenitor cells can differentiate into target cells and repair the damaged tissues. In addition, the regime can regulate endothelial proliferation and permeability, modulate inflammatory reactions, enhance extracellular matrix production and angiogenesis, and secrete an array of growth factors to create an enhanced milieu for cell reparation. No previous study has been published on the treatment of dengue infection using stem cells combination. In conclusion, dengue-induced liver damage was rescued by administration of stem cell therapy, with less apoptosis and improved repair and regeneration in the dengue mouse model.
  2. Sakinah S, Priya SP, Mok PL, Munisvaradass R, Teh SW, Sun Z, et al.
    Front Cell Dev Biol, 2021;9:800659.
    PMID: 35178398 DOI: 10.3389/fcell.2021.800659
    [This corrects the article DOI: 10.3389/fcell.2021.637270.].
  3. Krishnan P, Rajan M, Kumari S, Sakinah S, Priya SP, Amira F, et al.
    Sci Rep, 2017 09 08;7(1):10962.
    PMID: 28887536 DOI: 10.1038/s41598-017-09140-1
    Camptothecin (CPT) is an anti-cancer drug that effectively treats various cancers, including colon cancer. However, poor solubility and other drawbacks have restricted its chemotherapeutic potential. To overcome these restrictions, CPT was encapsulated in CEF (cyclodextrin-EDTA-FE3O4), a composite nanoparticle of magnetic iron oxide (Fe3O4), and β-cyclodextrin was cross-linked with ethylenediaminetetraacetic acid (EDTA). This formulation improved CPT's solubility and bioavailability for cancer cells. The use of magnetically responsive anti-cancer formulation is highly advantageous in cancer chemotherapy. The chemical characterisation of CPT-CEF was studied here. The ability of this nano-compound to induce apoptosis in HT29 colon cancer cells and A549 lung cancer cells was evaluated. The dose-dependent cytotoxicity of CPT-CEF was shown using MTT. Propidium iodide and Annexin V staining, mitochondrial membrane depolarisation (JC-1 dye), and caspase-3 activity were assayed to detect apoptosis in CPT-CEF-treated cancer cells. Cell cycle analysis also showed G1 phase arrest, which indicated possible synergistic effects of the nano-carrier. These study results show that CPT-CEF causes a dose-dependent cell viability reduction in HT29 and A549 cells and induces apoptosis in colon cancer cells via caspase-3 activation. These data strongly suggest that CPT could be used as a major nanocarrier for CPT to effectively treat colon cancer.
  4. Drewes JL, White JR, Dejea CM, Fathi P, Iyadorai T, Vadivelu J, et al.
    PMID: 29214046 DOI: 10.1038/s41522-017-0040-3
    Colorectal cancer (CRC) remains the third most common cancer worldwide, with a growing incidence among young adults. Multiple studies have presented associations between the gut microbiome and CRC, suggesting a link with cancer risk. Although CRC microbiome studies continue to profile larger patient cohorts with increasingly economical and rapid DNA sequencing platforms, few common associations with CRC have been identified, in part due to limitations in taxonomic resolution and differences in analysis methodologies. Complementing these taxonomic studies is the newly recognized phenomenon that bacterial organization into biofilm structures in the mucus layer of the gut is a consistent feature of right-sided (proximal), but not left-sided (distal) colorectal cancer. In the present study, we performed 16S rRNA gene amplicon sequencing and biofilm quantification in a new cohort of patients from Malaysia, followed by a meta-analysis of eleven additional publicly available data sets on stool and tissue-based CRC microbiota using Resphera Insight, a high-resolution analytical tool for species-level characterization. Results from the Malaysian cohort and the expanded meta-analysis confirm that CRC tissues are enriched for invasive biofilms (particularly on right-sided tumors), a symbiont with capacity for tumorigenesis (Bacteroides fragilis), and oral pathogens including Fusobacterium nucleatum, Parvimonas micra, and Peptostreptococcus stomatis. Considered in aggregate, species from the Human Oral Microbiome Database are highly enriched in CRC. Although no detected microbial feature was universally present, their substantial overlap and combined prevalence supports a role for the gut microbiota in a significant percentage (>80%) of CRC cases.
  5. Kumaran SK, Bakar MFA, Mohd-Padil H, Mat-Sharani S, Sakinah S, Poorani K, et al.
    Acta Trop, 2017 Dec;176:433-439.
    PMID: 28941729 DOI: 10.1016/j.actatropica.2017.09.011
    Leptospirosis is a widespread zoonotic disease caused by pathogenic Leptospira species (Leptospiraceae). LipL32 is an abundant lipoprotein from the outer membrane proteins (OMPs) group, highly conserved among pathogenic and intermediate Leptospira species. Several studies used LipL32 as a specific gene to identify the presence of leptospires. This research was aimed to study the characteristics of LipL32 protein gene code, to fill the knowledge gap concerning the most appropriate gene that can be used as antigen to detect the Leptospira. Here, we investigated the features of LipL32 in fourteen Leptospira pathogenic strains based on comparative analyses of their primary, secondary structures and 3D modeling using a bioinformatics approach. Furthermore, the physicochemical properties of LipL32 in different strains were studied, shedding light on the identity of signal peptides, as well as on the secondary and tertiary structure of the LipL32 protein, supported by 3D modelling assays. The results showed that the LipL32 gene was present in all the fourteen pathogenic Leptospira strains used in this study, with limited diversity in terms of sequence conservation, hydrophobic group, hydrophilic group and number of turns (random coil). Overall, these results add basic knowledge to the characteristics of LipL32 protein, contributing to the identification of potential antigen candidates in future research, in order to ensure prompt and reliable detection of pathogenic Leptospira species.
  6. Yew CW, Hoque MZ, Pugh-Kitingan J, Minsong A, Voo CLY, Ransangan J, et al.
    Ann. Hum. Genet., 2018 07;82(4):216-226.
    PMID: 29521412 DOI: 10.1111/ahg.12246
    The region of northern Borneo is home to the current state of Sabah, Malaysia. It is located closest to the southern Philippine islands and may have served as a viaduct for ancient human migration onto or off of Borneo Island. In this study, five indigenous ethnic groups from Sabah were subjected to genome-wide SNP genotyping. These individuals represent the "North Borneo"-speaking group of the great Austronesian family. They have traditionally resided in the inland region of Sabah. The dataset was merged with public datasets, and the genetic relatedness of these groups to neighboring populations from the islands of Southeast Asia, mainland Southeast Asia and southern China was inferred. Genetic structure analysis revealed that these groups formed a genetic cluster that was independent of the clusters of neighboring populations. Additionally, these groups exhibited near-absolute proportions of a genetic component that is also common among Austronesians from Taiwan and the Philippines. They showed no genetic admixture with Austro-Melanesian populations. Furthermore, phylogenetic analysis showed that they are closely related to non-Austro-Melansian Filipinos as well as to Taiwan natives but are distantly related to populations from mainland Southeast Asia. Relatively lower heterozygosity and higher pairwise genetic differentiation index (FST ) values than those of nearby populations indicate that these groups might have experienced genetic drift in the past, resulting in their differentiation from other Austronesians. Subsequent formal testing suggested that these populations have received no gene flow from neighboring populations. Taken together, these results imply that the indigenous ethnic groups of northern Borneo shared a common ancestor with Taiwan natives and non-Austro-Melanesian Filipinos and then isolated themselves on the inland of Sabah. This isolation presumably led to no admixture with other populations, and these individuals therefore underwent strong genetic differentiation. This report contributes to addressing the paucity of genetic data on representatives from this strategic region of ancient human migration event(s).
  7. Majumder MAA, Singh K, Johnson WMS, Rajasundaram A, Gupta S, Gaur U, et al.
    J Multidiscip Healthc, 2023;16:161-174.
    PMID: 36700174 DOI: 10.2147/JMDH.S390364
    BACKGROUND: Efficacy and safety are fundamental for the development of successful COVID-19 vaccines. Vaccine-associated side effects influence vaccine hesitancy. This study investigated the prevalence, severity, and onset of side effects following the first dose of COVID-19 vaccines among physicians and dentists working in various healthcare settings across India.

    METHODS: A cross-sectional survey collected self-report data from April to June 2021 on side effects following the first dose of the vaccine. An online validated questionnaire using the Google Docs® platform was circulated via email and social media platforms.

    RESULTS: More than 40% of participants experienced at least one side effect after the first dose of vaccination; the most common were mild and resolved within three days after vaccination. More than 91% of respondents received the Covishield (AstraZeneca) vaccine; the most prevalent adverse effects were soreness of the injected arm (78.9%), tiredness (71.1%), and fever (54.9%). Logistic regression showed that women were almost 60% less likely to report side effects.

    CONCLUSION: Findings supported the safety of the first dose of the COVID-19 vaccine based on relatively few self-limiting side effects, mainly soreness of the injected arm and tiredness. Further research is needed to determine the long-term safety of COVID-19 vaccines, especially after booster doses.

  8. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Kumar PM, et al.
    Environ Sci Pollut Res Int, 2015 Dec;22(24):20067-83.
    PMID: 26300364 DOI: 10.1007/s11356-015-5253-5
    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. However, the use of synthetic insecticides to control Culicidae may lead to high operational costs and adverse non-target effects. Plant-borne compounds have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles. Their impact against biological control agents of mosquito larval populations has been poorly studied. We synthesized silver nanoparticles (AgNP) using the aqueous leaf extract of Mimusops elengi as a reducing and stabilizing agent. The formation of AgNP was studied using different biophysical methods, including UV-vis spectrophotometry, TEM, XRD, EDX and FTIR. Low doses of AgNP showed larvicidal and pupicidal toxicity against the malaria vector Anopheles stephensi and the arbovirus vector Aedes albopictus. AgNP LC50 against A. stephensi ranged from 12.53 (I instar larvae) to 23.55 ppm (pupae); LC50 against A. albopictus ranged from 11.72 ppm (I) to 21.46 ppm (pupae). In the field, the application of M. elengi extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. In adulticidal experiments, AgNP showed LC50 of 13.7 ppm for A. stephensi and 14.7 ppm for A. albopictus. The predation efficiency of Gambusia affinis against A. stephensi and A. albopictus III instar larvae was 86.2 and 81.7 %, respectively. In AgNP-contaminated environments, predation was 93.7 and 88.6 %, respectively. This research demonstrates that M. elengi-synthesized AgNP may be employed at ultra-low doses to reduce larval populations of malaria and arbovirus vectors, without detrimental effects on predation rates of mosquito natural enemies, such as larvivorous fishes.
  9. Garg K, Dhar S, Sharma VK, Azman EA, Meena RP, Hashim M, et al.
    Front Plant Sci, 2024;15:1398083.
    PMID: 38962246 DOI: 10.3389/fpls.2024.1398083
    Utilizing agricultural and industrial wastes, potent reservoirs of nutrients, for nourishing the soil and crops through composting embodies a sustainable approach to waste management and organic agriculture. To investigate this, a 2-year field experiment was conducted at ICAR-IARI, New Delhi, focusing on a pigeon pea-vegetable mustard-okra cropping system. Seven nutrient sources were tested, including a control (T1), 100% recommended dose of nitrogen (RDN) through farmyard manure (T2), 100% RDN through improved rice residue compost (T3), 100% RDN through a paddy husk ash (PHA)-based formulation (T4), 75% RDN through PHA-based formulation (T5), 100% RDN through a potato peel compost (PPC)-based formulation (T6), and 75% RDN through PPC-based formulation (T7). Employing a randomized block design with three replications, the results revealed that treatment T4 exhibited the significantly highest seed (1.89 ± 0.09 and 1.97 ± 0.12 t ha-1) and stover (7.83 ± 0.41 and 8.03 ± 0.58 t ha-1) yield of pigeon pea, leaf yield (81.57 ± 4.69 and 82.97 ± 4.17 t ha-1) of vegetable mustard, and fruit (13.54 ± 0.82 and 13.78 ± 0.81 t ha-1) and stover (21.64 ± 1.31 and 22.03 ± 1.30 t ha-1) yield of okra during both study years compared to the control (T1). Treatment T4 was on par with T2 and T6 for seed and stover yield in pigeon pea, as well as okra, and leaf yield in vegetable mustard over both years. Moreover, T4 demonstrated notable increase of 124.1% and 158.2% in NH4-N and NO3-N levels in the soil, respectively, over the control. The enhanced status of available nitrogen (N) and phosphorus (P) in the soil, coupled with increased soil organic carbon (0.41%), total bacteria population (21.1%), fungi (37.2%), actinomycetes (44.6%), and microbial biomass carbon (28.5%), further emphasized the positive impact of T4 compared to the control. Treatments T2 and T6 exhibited comparable outcomes to T4 concerning changes in available N, P, soil organic carbon, total bacteria population, fungi, actinomycetes, and microbial biomass carbon. In conclusion, treatments T4 and T6 emerge as viable sources of organic fertilizer, particularly in regions confronting farmyard manure shortages. These formulations offer substantial advantages, including enhanced yield, soil quality improvement, and efficient fertilizer utilization, thus contributing significantly to sustainable agricultural practices.
  10. Majumder MAA, Bharatha A, Kumar S, Chatterjee M, Gupta S, Harewood H, et al.
    PeerJ, 2024;12:e17083.
    PMID: 38590705 DOI: 10.7717/peerj.17083
    Studies focusing on the safety and common side effects of vaccines play a crucial role in enhancing public acceptance of vaccination. Research is scarce regarding the usage of COVID-19 vaccines and the side effects experienced by health professions students in India and other countries. This study aimed to document self-reported side effects associated with COVID-19 vaccination among medical and dental students of six medical and dental colleges and teaching hospitals in four states (Tamil Nadu, Madhya Pradesh, Gujarat, and West Bengal) of India. A cross-sectional survey using purposive sampling of medical and dental students was conducted from 26 April to 26 May 2021. Data was collected using a Google Forms questionnaire capturing information regarding receiving COVID-19 vaccines, side effects and symptoms, onset and duration of symptoms, use of treatment to alleviate symptoms, awareness of haematologic risks associated with vaccination, and side effects from previous (non-COVID-19) vaccinations. The majority (94.5%) of participants received both doses of the Covishield/AstraZeneca COVID-19 vaccine. Among participants (n = 492), 45.3% (n = 223) reported one or more side effects. The most frequently reported side effects were soreness of the injected arm (80.3%), tiredness (78.5%), fever (71.3%), headache (64.1%), and hypersomnia (58.7%). The two most common severe symptoms were fever (14.8%) and headache (13%). Most side effects appeared on the day of vaccination: soreness of the injection site (57%), fever (43.1%), and tiredness (42.6%). Most reported symptoms persisted for one to three days-soreness of the injection site (53%), fever (47.1%), and headache (42.6%). Logistic regression showed that women were almost 85% less likely to report side effects. The study's findings corroborate the safety of the Covishield/AstraZeneca vaccine's first dose, evidenced by the relatively minor and transient nature of the side effects. However, the study underscores the necessity for ongoing research to assess the long-term impacts of COVID-19 vaccines, especially in the context of booster doses, thereby contributing to the global understanding of vaccine safety and efficacy.
  11. Khan SS, Kour D, Kaur T, Sharma A, Kumar S, Kumari S, et al.
    Curr Microbiol, 2024 Jul 01;81(8):251.
    PMID: 38954017 DOI: 10.1007/s00284-024-03772-z
    A new area of biotechnology is nanotechnology. Nanotechnology is an emerging field that aims to develope various substances with nano-dimensions that have utilization in the various sectors of pharmaceuticals, bio prospecting, human activities and biomedical applications. An essential stage in the development of nanotechnology is the creation of nanoparticles. To increase their biological uses, eco-friendly material synthesis processes are becoming increasingly important. Recent years have shown a lot of interest in nanostructured materials due to their beneficial and unique characteristics compared to their polycrystalline counterparts. The fascinating performance of nanomaterials in electronics, optics, and photonics has generated a lot of interest. An eco-friendly approach of creating nanoparticles has emerged in order to get around the drawbacks of conventional techniques. Today, a wide range of nanoparticles have been created by employing various microbes, and their potential in numerous cutting-edge technological fields have been investigated. These particles have well-defined chemical compositions, sizes, and morphologies. The green production of nanoparticles mostly uses plants and microbes. Hence, the use of microbial nanotechnology in agriculture and plant science is the main emphasis of this review. The present review highlights the methods of biological synthesis of nanoparticles available with a major focus on microbially synthesized nanoparticles, parameters and biochemistry involved. Further, it takes into account the genetic engineering and synthetic biology involved in microbial nanobiosynthesis to the construction of microbial nanofactories.
  12. Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, et al.
    Am J Pathol, 2002 Dec;161(6):2153-67.
    PMID: 12466131
    In 1998, an outbreak of acute encephalitis with high mortality rates among pig handlers in Malaysia led to the discovery of a novel paramyxovirus named Nipah virus. A multidisciplinary investigation that included epidemiology, microbiology, molecular biology, and pathology was pivotal in the discovery of this new human infection. Clinical and autopsy findings were derived from a series of 32 fatal human cases of Nipah virus infection. Diagnosis was established in all cases by a combination of immunohistochemistry (IHC) and serology. Routine histological stains, IHC, and electron microscopy were used to examine autopsy tissues. The main histopathological findings included a systemic vasculitis with extensive thrombosis and parenchymal necrosis, particularly in the central nervous system. Endothelial cell damage, necrosis, and syncytial giant cell formation were seen in affected vessels. Characteristic viral inclusions were seen by light and electron microscopy. IHC analysis showed widespread presence of Nipah virus antigens in endothelial and smooth muscle cells of blood vessels. Abundant viral antigens were also seen in various parenchymal cells, particularly in neurons. Infection of endothelial cells and neurons as well as vasculitis and thrombosis seem to be critical to the pathogenesis of this new human disease.
  13. Jena MK, Khan FB, Ali SA, Abdullah A, Sharma AK, Yadav V, et al.
    Artif Cells Nanomed Biotechnol, 2023 Dec;51(1):491-508.
    PMID: 37694522 DOI: 10.1080/21691401.2023.2252872
    The mammary gland is a dynamic organ with various physiological processes like cellular proliferation, differentiation, and apoptosis during the pregnancy-lactation-involution cycle. It is essential to understand the molecular changes during the lactogenic differentiation of mammary epithelial cells (MECs, the milk-synthesizing cells). The MECs are organized as luminal milk-secreting cells and basal myoepithelial cells (responsible for milk ejection by contraction) that form the alveoli. The branching morphogenesis and lactogenic differentiation of the MECs prepare the gland for lactation. This process is governed by many molecular mediators including hormones, growth factors, cytokines, miRNAs, regulatory proteins, etc. Interestingly, various signalling pathways guide lactation and understanding these molecular transitions from pregnancy to lactation will help researchers design further research. Manipulation of genes responsible for milk synthesis and secretion will promote augmentation of milk yield in dairy animals. Identifying protein signatures of lactation will help develop strategies for persistent lactation and shortening the dry period in farm animals. The present review article discusses in details the physiological and molecular changes occurring during lactogenic differentiation of MECs and the associated hormones, regulatory proteins, miRNAs, and signalling pathways. An in-depth knowledge of the molecular events will aid in developing engineered cellular models for studies related to mammary gland diseases of humans and animals.
  14. Gandla K, Islam F, Zehravi M, Karunakaran A, Sharma I, Haque MA, et al.
    Heliyon, 2023 Sep;9(9):e19454.
    PMID: 37662819 DOI: 10.1016/j.heliyon.2023.e19454
    P-glycoprotein (P-gp) is known as the "multidrug resistance protein" because it contributes to tumor resistance to several different classes of anticancer drugs. The effectiveness of such polymers in treating cancer and delivering drugs has been shown in a wide range of in vitro and in vivo experiments. The primary objective of the present study was to investigate the inhibitory effects of several naturally occurring polymers on P-gp efflux, as it is known that P-gp inhibition can impede the elimination of medications. The objective of our study is to identify polymers that possess the potential to inhibit P-gp, a protein involved in drug resistance, with the aim of enhancing the effectiveness of anticancer drug formulations. The ADMET profile of all the selected polymers (Agarose, Alginate, Carrageenan, Cyclodextrin, Dextran, Hyaluronic acid, and Polysialic acid) has been studied, and binding affinities were investigated through a computational approach using the recently released crystal structure of P-gp with PDB ID: 7O9W. The advanced computational study was also done with the help of molecular dynamics simulation. The aim of the present study is to overcome MDR resulting from the activity of P-gp by using such polymers that can inhibit P-gp when used in formulations. The docking scores of native ligand, Agarose, Alginate, Carrageenan, Chitosan, Cyclodextrin, Dextran, Hyaluronic acid, and Polysialic acid were found to be -10.7, -8.5, -6.6, -8.7, -8.6, -24.5, -6.7, -8.3, and -7.9, respectively. It was observed that, Cyclodextrin possess multiple properties in drug delivery science and here also demonstrated excellent binding affinity. We propose that drug efflux-related MDR may be prevented by the use of Agarose, Carregeenan, Chitosan, Cyclodextrin, Hyaluronic acid, and/or Polysialic acid in the administration of anticancer drugs.
  15. Kumar V, Jena D, Zahiruddin QS, Roopashree R, Kaur M, Srivastava M, et al.
    Int J Urol, 2024 Dec 13.
    PMID: 39670291 DOI: 10.1111/iju.15641
    OBJECTIVES: The objectives of this study were to analyze trends in prostate cancer incidence, incidence, mortality, and disability-adjusted life years (DALYs) from 1990 to 2021 via data from the Global Burden of Disease (GBD) study in South Asia. Additionally, the study projects future prostate cancer incidence rates up to 2031 to inform public health interventions in South Asia.

    METHODS: Data covering South Asian countries such as Bangladesh, Bhutan, India, Nepal, and Pakistan were obtained from the GBD 2021 portal. Age-standardized rates (ASRs) for prostate cancer metrics, including incidence (ASIR), prevalence (ASPR), mortality (ASMR), and DALYs (ASDR), were analyzed via joinpoint and ARIMA modeling techniques. Geographic variations in ASRs were mapped via QGIS software.

    RESULTS: The prostate cancer ASIR, ASPR, and ASDR significantly increased from 1990 to 2021, particularly among individuals aged 60-65 years. The highest incidence and mortality rates were observed in Pakistan. The total percentage change in incidence in India was the highest at 61%. Projections indicate a continued rise in prostate cancer incidence, with South Asia's ASIR expected to reach 9.34 per 100 000 by 2031.

    CONCLUSIONS: The growing burden of prostate cancer in South Asia highlights the need for enhanced screening programs, public awareness, and healthcare infrastructure improvements. Without intervention, the increasing incidence and mortality rates could strain healthcare resources, emphasizing the urgency of region-specific public health strategies.

  16. Satapathy P, Gaidhane S, Bishoyi AK, Ganesan S, Jayabalan K, Mishra S, et al.
    Int Urol Nephrol, 2025 Jan 09.
    PMID: 39786704 DOI: 10.1007/s11255-025-04370-z
    BACKGROUND: Sex hormone-binding globulin (SHBG) plays a critical role in regulating androgen bioavailability and has been hypothesized to influence prostate cancer risk, though existing evidence is inconsistent. This systematic review and meta-analysis aimed to evaluate the association between SHBG levels and prostate cancer risk.

    METHODS: A comprehensive search was conducted across PubMed, Embase, and Web of Science for studies published up to December 1, 2024. Observational studies assessing SHBG levels and prostate cancer risk were included. Effect sizes were pooled using random-effects meta-analysis. Heterogeneity was evaluated using the I2 statistic, and quality assessment was performed using the Newcastle-Ottawa Scale. Statistical analysis was performed using R software version 4.4.

    RESULTS: Sixteen studies, including 720,298 participants and 90,799 prostate cancer cases, were analyzed. The pooled odds ratio (OR) for prostate cancer risk per unit increase in SHBG was 0.907 (95% CI 0.799-1.030), indicating no statistically significant association. Substantial heterogeneity was observed among the included studies (I2 = 79%; P 

  17. Bhaskar V, Kumar S, Sujathan Nair A, Gokul S, Rajappan Krishnendu P, Benny S, et al.
    J Biomol Struct Dyn, 2025 Feb;43(3):1329-1351.
    PMID: 38064315 DOI: 10.1080/07391102.2023.2291549
    Tuberculosis is one of the most ancient infectious diseases known to mankind predating upper Paleolithic era. In the current scenario, treatment of drug resistance tuberculosis is the major challenge as the treatment options are limited, less efficient and more toxic. In our study we have developed an atom based 3D QSAR model, statistically validated sound with R2 > 0.90 and Q2 > 0.72 using reported direct inhibitors of InhA (2018-2022), validated by enzyme inhibition assay. The model was used to screen a library of 3958 molecules taken from Binding DB and candidates molecules with promising predicted activity value (pIC50) > 5) were selected for further analyzed screening by using molecular docking, ADME profiling and molecular dynamic simulations. The lead molecule, ZINC11536150 exhibited good docking score (glideXP = -11.634 kcal/mol) compared to standard triclosan (glideXP =  -7.129 kcal/mol kcal/mol) and through molecular dynamics study it was observed that the 2nv6-complex of ZINC11536150 with Mycobacterium tuberculosis InhA (PDB entry: 2NV6) complex remained stable throughout the entire simulation time of 100 ns.Communicated by Ramaswamy H. Sarma.
  18. Malvi A, Khatib MN, Balaraman AK, Roopashree R, Kaur M, Srivastava M, et al.
    BMC Pulm Med, 2025 Jan 29;25(1):48.
    PMID: 39881272 DOI: 10.1186/s12890-025-03516-0
    BACKGROUND: Cannabis is the third most widely used psychoactive substance globally, and its consumption has been increasing, particularly with the growing trend of legalization for medicinal and recreational use. Recent studies have raised concerns about the potential impact of cannabis on respiratory health, specifically the risk of asthma, a significant public health concern. This systematic review aimed to consolidate research on the association between cannabis use and the risk of asthma.

    METHODS: A comprehensive search was conducted across PubMed, Embase, and Web of Science, covering studies published up to September 30, 2024. We included peer-reviewed observational studies evaluating the link between cannabis consumption and the risk of asthma diagnosis. Data synthesis employed a random-effects meta-analysis to account for heterogeneity. R statistical software (version 4.4) was used for statistical analyses.

    RESULTS: The search yielded 8 relevant studies after screening 1,887 records. The pooled odds ratio (OR) for the association between cannabis consumption and the risk of asthma diagnosis was 1.31, 95% confidence interval (CI): 1.19-1.44, indicating greater odds of having asthma compared to non-users. Moderate heterogeneity was observed (I² = 46%), and sensitivity analysis confirmed the robustness of the findings.

    CONCLUSION: This systematic review and meta-analysis identifies a significant association between cannabis use and greater odds of having asthma. These findings emphasize the importance of raising awareness about the potential respiratory risks associated with cannabis use. Future research should prioritize identifying moderating factors, such as the frequency and mode of cannabis consumption, to enhance understanding of this association and provide a stronger evidence base for potential public health interventions.

    CLINICAL TRIAL NUMBER: Not applicable.

  19. Mak JWY, Tang W, Yip TCF, Ran ZH, Wei SC, Ahuja V, et al.
    Aliment Pharmacol Ther, 2019 12;50(11-12):1195-1203.
    PMID: 31638274 DOI: 10.1111/apt.15547
    BACKGROUND: Little is known of the outcome of patients with perianal Crohn's disease after stopping anti-tumour necrosis factor (TNF) therapy.

    AIM: To evaluate the rate of relapse in perianal Crohn's disease (CD) after stopping anti-TNF therapy.

    METHODS: Consecutive perianal CD patients treated with anti-TNF therapy with subsequent discontinuation were retrieved from prospective inflammatory bowel disease database of institutes in Hong Kong, Shanghai, Taiwan, Malaysia, Thailand and Singapore from 1997 to June 2019. Cumulative probability of perianal CD relapse was estimated using Kaplan-Meier method.

    RESULTS: After a median follow-up of 89 months (interquartile range [IQR]: 65-173 months), 44 of the 78 perianal CD patients (56.4%) relapsed after stopping anti-TNF, defined as increased fistula drainage or recurrence of previously healed fistula, after stopping anti-TNF therapy. Cumulative probabilities of perianal CD relapse were 50.8%, 72.6% and 78.0% at 12, 36 and 60 months, respectively. Younger age at diagnosis of CD [adjusted hazard ratio (HR): 1.04; 95% CI 1.01-1.09; P = .04] was associated with a higher chance of perianal CD relapse. Among those with perianal CD relapse (n = 44), retreatment with anti-TNF induced remission in 24 of 29 patients (82.8%). Twelve (27.3%) patients required defunctioning surgery and one (2.3%) required proctectomy. Maintenance with thiopurine was not associated with a reduced likelihood of relapse [HR = 1.10; 95% CI: 0.58-2.12; P = .77]. Among the 17 patients who achieved radiological remission of perianal CD, five (35.3%) developed relapse after stopping anti-TNF therapy after a median of 6 months.

    CONCLUSIONS: More than half of the perianal CD patients developed relapse after stopping anti-TNF therapy. Most regained response after resuming anti-TNF. However, more than one-fourth of the perianal CD patients with relapse required defunctioning surgery. Radiological assessment before stopping anti-TNF is crucial in perianal CD.

  20. Godman B, Haque M, Kumar S, Islam S, Charan J, Akter F, et al.
    Curr Med Res Opin, 2021 09;37(9):1529-1545.
    PMID: 34166174 DOI: 10.1080/03007995.2021.1946024
    INTRODUCTION: Prevalence rates for diabetes mellitus continue to rise, which, coupled with increasing costs of complications, has appreciably increased expenditure in recent years. Poor glycaemic control including hypoglycaemia enhances complication rates and associated morbidity, mortality and costs. Consequently, this needs to be addressed. Whilst the majority of patients with diabetes have type-2 diabetes, a considerable number of patients with diabetes require insulin to help control their diabetes. Long-acting insulin analogues were developed to reduce hypoglycaemia associated with insulin and help improve adherence, which can be a concern. However, their considerably higher costs have impacted on their funding and use, especially in countries with affordability issues. Biosimilars can help reduce the costs of long-acting insulin analogues thereby increasing available choices. However, the availability and use of long-acting insulin analogues can be affected by limited price reductions versus originators and limited demand-side initiatives to encourage their use. Consequently, we wanted to assess current utilisation rates for long-acting insulin analogues, especially biosimilars, and the rationale for patterns seen, across multiple Asian countries ranging from Japan (high-income) to Pakistan (lower-income) to inform future strategies.

    METHODOLOGY: Multiple approaches including assessing utilization and prices of insulins including biosimilars among six Asian countries and comparing the findings especially with other middle-income countries.

    RESULTS: Typically, there was increasing use of long-acting insulin analogues among the selected Asian countries. This was especially the case enhanced by biosimilars in Bangladesh, India, and Malaysia reflecting their perceived benefits. However, there was limited use in Pakistan due to issues of affordability similar to a number of African countries. The high use of biosimilars in Bangladesh, India and Malaysia was helped by issues of affordability and local production. The limited use of biosimilars in Japan and Korea reflects limited price reductions and demand-side initiatives similar to a number of European countries.

    CONCLUSIONS: Increasing use of long-acting insulin analogues across countries is welcomed, adding to the range of insulins available, which increasingly includes biosimilars. A number of activities are needed to enhance the use of long-acting insulin analogue biosimilars in Japan, Korea and Pakistan.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links