SETTING: Haematology Lab, Department of Biomedical Science, University of Malaya.
PARTICIPANTS: Eight couples characterised as β-thalassaemia carriers where both partners posed the same β-globin gene mutations at CD41/42, IVS1-5 and IVS2-654, were recruited in this study.
OUTCOME MEASURES: Genotyping was performed by allele specific-PCR and the locations of SNPs were identified after sequencing alignment.
RESULTS: Genotype analysis revealed that at least one paternal SNP was present for each of the couples. Amplification on free-circulating DNA revealed that the paternal mutant allele of SNP was present in three fcDNA. Thus, the fetuses may be β-thalassaemia carriers or β-thalassaemia major. Paternal wild-type alleles of SNP were present in the remaining five fcDNA samples, thus indicating that the fetal genotypes would not be homozygous mutants.
CONCLUSIONS: This preliminary research demonstrates that paternal allele of SNP can be used as a non-invasive prenatal diagnosis approach for at-risk couples to determine the β-thalassaemia status of the fetus.
METHODS AND RESULTS: The library of 16S rDNA V3-V4 hypervariable regions of gut microbiota was amplified and sequenced using Illumina MiSeq. The sequencing data were analyzed using Quantitative Insights into Microbial Ecology (QIIME) pipeline and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). The most abundant bacterial phyla in both wild and captive T. tambroides were Firmicutes, Proteobacteria, Fusobacteria and Bacteroidetes. Cetobacterium spp., Peptostreptococcaceae family, Bacteroides spp., Phosphate solubilizing bacteria PSB-M-3, and Vibrio spp. were five most abundant OTU in wild T. tambroides as compared to Cetobacterium spp., Citrobacter spp., Aeromonadaceae family, Peptostreptococcaceae family and Turicibacter spp. in captive T. tambroides.
CONCLUSION: In this study, the specimens of the wild T. tambroides contain more diverse gut microbiota than of the captive ones. The results suggested that Cetobacterium spp. is one of the core microbiota in guts of T. tambroides. Besides, high abundant Bacteroides spp., Citrobacter spp., Turicibacter spp., and Bacillus spp. may provide important functions in T. tambroides guts.
SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study provide significant information of T. tambroides gut microbiota for further understanding of their physiological functions including growth and disease resistance.