Displaying publications 361 - 380 of 829 in total

Abstract:
Sort:
  1. Abdull Razis AF, Ismail EN, Hambali Z, Abdullah MN, Ali AM, Mohd Lila MA
    Appl Biochem Biotechnol, 2008 Mar;144(3):249-61.
    PMID: 18556814
    Recombinant human epidermal growth factor (EGF) was successfully expressed as a fusion protein in Escherichia coli system. This system was used OmpA signal sequence to produce soluble protein into the periplasm of E. coli. Human EGF (hEGF) synthesized in bacterial cell was found to be similar in size with the original protein and molecular weight approximately at 6.8 kDa. Cell proliferation assay was conducted to characterize the biological activity of hEGF on human dermal fibroblasts. The synthesized hEGF was found to be functional as compared with authentic hEGF in stimulating cell proliferation and promoting growth of cell. In comparison of biological activity between synthesized and commercial hEGF on cell proliferation, the results showed there was no significant different. This finding indicates the synthesized hEGF in E. coli system is fully bioactive in vitro.
    Matched MeSH terms: Escherichia coli/cytology; Escherichia coli/genetics*
  2. Maizura M, Fazilah A, Norziah MH, Karim AA
    J Food Sci, 2007 Aug;72(6):C324-30.
    PMID: 17995673
    Edible films were prepared from a mixture of partially hydrolyzed sago starch and alginate (SA). Lemongrass oil (0.1% to 0.4%, v/w) and glycerol (0% and 20%, w/w) were incorporated in the films to act as natural antimicrobial agent and plasticizer, respectively. The films were characterized for antimicrobial activity, water vapor permeability (WVP), tensile strength (TS), percent elongation at break (%E), and water solubility (WS). Fourier transform infrared (FTIR) spectroscopy was conducted to determine functional group interactions between the matrix and lemongrass oil. The zone of inhibition was increased significantly (P < 0.05) by addition of lemongrass oil at all levels in the presence and the absence of glycerol. This indicates that the film containing lemongrass oil was effective against Escherichia coli O157:H7 at all levels. In the absence of glycerol, the tensile strength of film decreased as the oil content increased, but there was no significant (P > 0.05) difference in percent elongation. The percent elongation at break and WVP values for film with 20% glycerol was found to be increased significantly (P < 0.05) with an increase in lemongrass oil content. Addition of lemongrass oil did not have any interaction with the functional groups of films as measured by FTIR.
    Matched MeSH terms: Escherichia coli O157/drug effects*; Escherichia coli O157/growth & development
  3. Ghanbari R, Ebrahimpour A, Abdul-Hamid A, Ismail A, Saari N
    Int J Mol Sci, 2012;13(12):16796-811.
    PMID: 23222684 DOI: 10.3390/ijms131216796
    Actinopyga lecanora, a type of sea cucumber commonly known as stone fish with relatively high protein content, was explored as raw material for bioactive peptides production. Six proteolytic enzymes, namely alcalase, papain, pepsin, trypsin, bromelain and flavourzyme were used to hydrolyze A. lecanora at different times and their respective degrees of hydrolysis (DH) were calculated. Subsequently, antibacterial activity of the A. lecanora hydrolysates, against some common pathogenic Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus) and Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas sp.) were evaluated. Papain hydrolysis showed the highest DH value (89.44%), followed by alcalase hydrolysis (83.35%). Bromelain hydrolysate after one and seven hours of hydrolysis exhibited the highest antibacterial activities against Pseudomonas sp., P. aeruginosa and E. coli at 51.85%, 30.07% and 30.45%, respectively compared to the other hydrolysates. Protein hydrolysate generated by papain after 8 h hydrolysis showed maximum antibacterial activity against S. aureus at 20.19%. The potent hydrolysates were further fractionated using RP-HPLC and antibacterial activity of the collected fractions from each hydrolysate were evaluated, wherein among them only three fractions from the bromelain hydrolysates exhibited inhibitory activities against Pseudomonas sp., P. aeruginosa and E. coli at 24%, 25.5% and 27.1%, respectively and one fraction of papain hydrolysate showed antibacterial activity of 33.1% against S. aureus. The evaluation of the relationship between DH and antibacterial activities of papain and bromelain hydrolysates revealed a meaningful correlation of four and six order functions.
    Matched MeSH terms: Escherichia coli/drug effects; Escherichia coli/physiology
  4. Yoon KY, Tan WS, Tey BT, Lee KW, Ho KL
    Electrophoresis, 2013 Jan;34(2):244-53.
    PMID: 23161478 DOI: 10.1002/elps.201200257
    Hepatitis B core antigen (HBcAg) expressed in Escherichia coli is able to self-assemble into large and small capsids comprising 240 (triangulation number T = 4) and 180 (triangulation number T = 3) subunits, respectively. Conventionally, sucrose density gradient ultracentrifugation and SEC have been used to separate these capsids. However, good separation of the large and small particles with these methods is never achieved. In the present study, we employed a simple, fast, and cost-effective method to separate the T = 3 and T = 4 HBcAg capsids by using native agarose gel electrophoresis followed by an electroelution method (NAGE-EE). This is a direct, fast, and economic method for isolating the large and small HBcAg particles homogenously based on the hydrodynamic radius of the spherical particles. Dynamic light scattering analysis demonstrated that the T = 3 and T = 4 HBcAg capsids prepared using the NAGE-EE method are monodisperse with polydispersity values of ∼15% and ∼13%, respectively. ELISA proved that the antigenicity of the capsids was not affected in the purification process. Overall, NAGE-EE produced T = 3 and T = 4 capsids with a purity above 90%, and the recovery was 34% and 50%, respectively (total recovery of HBcAg is ∼84%), and the operation time is 15 and 4 times lesser than that of the sucrose density gradient ultracentrifugation and SEC, respectively.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism
  5. Teo CY, Shave S, Chor AL, Salleh AB, Rahman MB, Walkinshaw MD, et al.
    BMC Bioinformatics, 2012;13 Suppl 17:S4.
    PMID: 23282142 DOI: 10.1186/1471-2105-13-S17-S4
    BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease with unknown etiology. Anticitrullinated protein autoantibody has been documented as a highly specific autoantibody associated with RA. Protein arginine deiminase type 4 (PAD4) is the enzyme responsible for catalyzing the conversion of peptidylarginine into peptidylcitrulline. PAD4 is a new therapeutic target for RA treatment. In order to search for inhibitors of PAD4, structure-based virtual screening was performed using LIDAEUS (Ligand discovery at Edinburgh university). Potential inhibitors were screened experimentally by inhibition assays.

    RESULTS: Twenty two of the top-ranked water-soluble compounds were selected for inhibitory screening against PAD4. Three compounds showed significant inhibition of PAD4 and their IC50 values were investigated. The structures of the three compounds show no resemblance with previously discovered PAD4 inhibitors, nor with existing drugs for RA treatment.

    CONCLUSION: Three compounds were discovered as potential inhibitors of PAD4 by virtual screening. The compounds are commercially available and can be used as scaffolds to design more potent inhibitors against PAD4.

    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism
  6. Ramli N, Abd-Aziz S, Alitheen NB, Hassan MA, Maeda T
    Mol Biotechnol, 2013 Jul;54(3):961-8.
    PMID: 23338983 DOI: 10.1007/s12033-013-9647-7
    Regulation of RNA transcription in controlling the expression of genes at promoter and terminator regions is crucial as the interaction of RNA polymerase occurred at both sites. Gene encoding cyclodextrin glycosyltransferase (CGTase) from Bacillus sp. NR5 UPM isolated in the previous study was used for further construction of pTZCGT-SS, pTZCGT-BS and pTZCGT-BT expression systems for enhancement of CGTase production. The putative promoter regions, -35 and -10 sequences were found in the upstream of the mature gene start codon. Whereas, long inverted repeats sequences which can form a stable stem and loop structure was found downstream of the open reading frame (ORF) of Bacillus sp. NR5 UPM CGTase. The construction of E. coli strain harbouring pTZCGT-BS showed increment of 3.2-fold in CGTase activity compared to the wild type producer. However, insertion of terminator downstream of CGTase gene in E. coli strain harbouring pTZCGT-BT only resulted in 4.42 % increment of CGTase production compared to E. coli strain containing pTZCGT-BS, perhaps due to low intrinsic termination efficiency. Thus, it is suggested that the insertion of the putative promoter regions upstream of the coding sequence for the construction of CGTase expression system will further enhance in the recombinant enzyme production.
    Matched MeSH terms: Escherichia coli/enzymology; Escherichia coli/genetics*
  7. Velusamy P, Su CH, Venkat Kumar G, Adhikary S, Pandian K, Gopinath SC, et al.
    PLoS One, 2016;11(6):e0157612.
    PMID: 27304672 DOI: 10.1371/journal.pone.0157612
    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.
    Matched MeSH terms: Escherichia coli/drug effects; Escherichia coli/physiology
  8. Sivasothy Y, Krishnan T, Chan KG, Abdul Wahab SM, Othman MA, Litaudon M, et al.
    Molecules, 2016 Mar 21;21(3):391.
    PMID: 27102164 DOI: 10.3390/molecules21030391
    Malabaricones A-C (1-3) and giganteone A (4) were isolated from the bark of Myristica cinnamomea King. Their structures were elucidated and characterized by means of NMR and MS spectral analyses. These isolates were evaluated for their anti-quorum sensing activity using quorum sensing biosensors, namely Escherichia coli [pSB401] and Escherichia coli [pSB1075], whereby the potential of giganteone A (4) as a suitable anti-quorum sensing agent was demonstrated.
    Matched MeSH terms: Escherichia coli/drug effects; Escherichia coli/pathogenicity
  9. Ghanem OB, Mutalib MI, El-Harbawi M, Gonfa G, Kait CF, Alitheen NB, et al.
    J Hazard Mater, 2015 Oct 30;297:198-206.
    PMID: 25965417 DOI: 10.1016/j.jhazmat.2015.04.082
    Tuning the characteristics of solvents to fit industrial requirements has currently become a major interest in both academic and industrial communities, notably in the field of room temperature ionic liquids (RTILs), which are considered one of the most promising green alternatives to molecular organic solvents. In this work, several sets of imidazolium-based ionic liquids were synthesized, and their toxicities were assessed towards four human pathogens bacteria to investigate how tunability can affect this characteristic. Additionally, the toxicity of particular RTILs bearing an amino acid anion was introduced in this work. EC50 values (50% effective concentration) were established, and significant variations were observed; although all studied ILs displayed an imidazolium moiety, the toxicity values were found to vary between 0.05 mM for the most toxic to 85.57 mM for the least toxic. Linear quantitative structure activity relationship models were then developed using the charge density distribution (σ-profiles) as molecular descriptors, which can yield accuracies as high as 95%.
    Matched MeSH terms: Escherichia coli/drug effects; Escherichia coli/growth & development
  10. Radu S, Ling OW, Rusul G, Karim MI, Nishibuchi M
    J Microbiol Methods, 2001 Aug;46(2):131-9.
    PMID: 11412923
    Twenty-five and three strains of Escherichia coli O157:H7 were identified from 25 tenderloin beef and three chicken meat burger samples, respectively. The bacteria were recovered using the immunomagnetic separation procedure followed by selective plating on sorbitol MacConkey agar and were identified as E. coli serotype O157:H7 with three primer pairs that amplified fragments of the SLT-I, SLT-II and H7 genes in PCR assays. Susceptibility testing to 14 antibiotics showed that all were resistant to two or more antibiotics tested. Although all 28 strains contained plasmid, there was very little variation in the plasmid sizes observed. The most common plasmid of 60 MDa was detected in all strains. We used DNA fingerprinting by randomly amplified polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE) to compare the 28 E. coli O157:H7 strains. At a similarity level of 90%, the results of PFGE after restriction with XbaI separated the E. coli O157:H7 strains into 28 single isolates, whereas RAPD using a single 10-mer oligonucleotides separated the E. coli O157:H7 strains into two clusters and 22 single isolates. These typing methods should aid in the epidemiological clarification of the E. coli O157:H7 in the study area.
    Matched MeSH terms: Escherichia coli O157/classification*; Escherichia coli O157/isolation & purification*
  11. Pan Y, Abd-Rashid BA, Ismail Z, Ismail R, Mak JW, Ong CE
    Protein J, 2011 Dec;30(8):581-91.
    PMID: 22001938 DOI: 10.1007/s10930-011-9365-6
    This study aimed to express two major drug-metabolizing human hepatic cytochromes P450 (CYPs), CYP2D6 and CYP3A4, together with NADPH-cytochrome P450 oxidoreductase (OxR) in Escherichia coli and to evaluate their catalytic activities. Full length cDNA clones of both isoforms in which the N-terminus was modified to incorporate bovine CYP17α sequence were inserted into a pCWori(+) vector. The modified CYP cDNAs were subsequently expressed individually, each together with OxR by means of separate, compatible plasmids with different antibiotic selection markers. The expressed proteins were evaluated by immunoblotting and reduced CO difference spectral scanning. Enzyme activities were examined using high performance liquid chromatography (HPLC) assays with probe substrates dextromethorphan and testosterone for CYP2D6 and CYP3A4, respectively. Results from immunoblotting demonstrated the presence of both CYP proteins in bacterial membranes and reduced CO difference spectra of the cell preparations exhibited the characteristic absorbance peak at 450 nm. Co-expressed OxR also demonstrated an activity level comparable to literature values. Kinetic parameters, K(m) and V(max) values determined from the HPLC assays also agreed well with literature values. As a conclusion, the procedures described in this study provide a relatively convenient and reliable means of producing catalytically active CYP isoforms suitable for drug metabolism and interaction studies.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism
  12. Ali MS, Ganasen M, Rahman RN, Chor AL, Salleh AB, Basri M
    Protein J, 2013 Apr;32(4):317-25.
    PMID: 23645400 DOI: 10.1007/s10930-013-9488-z
    A new strain of psychrophilic bacteria (designated strain AMS8) from Antarctic soil was screened for extracellular lipolytic activity and further analyzed using molecular approach. Analysis of 16S rDNA showed that strain AMS8 was similar to Pseudomonas sp. A lipase gene named lipAMS8 was successfully isolated from strain AMS8, cloned, sequenced and overexpressed in Escherichia coli. Sequence analysis revealed that lipAMS8 consist of 1,431 bp nucleotides that encoded a polypeptide consisting of 476 amino acids. It lacked an N-terminal signal peptide and contained a glycine- and aspartate-rich nonapeptide sequence at the C-terminus, which are known to be the characteristics of repeats-in-toxin bacterial lipases. Furthermore, the substrate binding site of lipAMS8 was identified as S(207), D(255) and H(313), based on homology modeling and multiple sequence alignment. Crude lipase exhibited maximum activity at 20 °C and retained almost 50 % of its activity at 10 °C. The molecular weight of lipAMS8 was estimated to be 50 kDa via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal expression level was attained using the recombinant plasmid pET32b/BL21(DE3) expressed at 15 °C for 8 h, induced by 0.1 mM isopropyl β-D thiogalactoside (IPTG) at E. coli growth optimal density of 0.5.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism
  13. Noman E, Al-Gheethi A, Talip BA, Mohamed R, Kassim AH
    PLoS One, 2019;14(9):e0221522.
    PMID: 31513594 DOI: 10.1371/journal.pone.0221522
    The inactivation of antibiotic resistant Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) seeded in greywater by bimetallic bio-nanoparticles was optimized by using response surface methodology (RSM). The bimetallic nanoparticles (Cu/Zn NPs) were synthesized in secondary metabolite of a novel fungal strain identified as Aspergillus iizukae EAN605 grown in pumpkin medium. Cu/Zn NPs were very effective for inhibiting growth of E. coli and S. aureus. The maximum inactivation was optimized with 0.028 mg mL-1 of Cu/Zn NPs, at pH 6 and after 60 min, at which the reduction of E. coli and S. aureus was 5.6 vs. 5.3 and 5.2 vs. 5.4 log reduction for actual and predicted values, respectively. The inactivation mechanism was described based on the analysis of untreated and treated bacterial cells by Field emission scanning electron microscopy (FESEM), Energy Dispersive X-Ray Spectroscopy (EDS), Atomic Force Microscopy (AFM) revealed a damage in the cell wall structure due to the effect of Cu/Zn NPs. Moreover, the Raman Spectroscopy showed that the Cu/Zn NPs led to degradation of carbohydrates and amino structures on the bacteria cell wall. The Fourier transform infrared spectroscopy (FTIR) analysis confirmed that the destruction take place in the C-C bond of the functional groups available in the bacterial cell wall. The techno economic analysis revealed that the biosynthesis Cu/Zn NPs is economically feasible. These findings demonstrated that Cu/Zn NPs can effectively inhibit pathogenic bacteria in the greywater.
    Matched MeSH terms: Escherichia coli/drug effects; Escherichia coli/isolation & purification
  14. Tiong V, Lam CW, Phoon WH, AbuBakar S, Chang LY
    Jpn J Infect Dis, 2017 Jan 24;70(1):26-31.
    PMID: 27169942 DOI: 10.7883/yoken.JJID.2015.501
    The genes for Nipah virus (NiV) proteins were amplified from viral RNA, cloned into the plasmid pTriEx-3 Hygro, expressed, and purified using immobilized metal affinity chromatography. The recombinant N, F, and G NiV proteins (rNiV-N, rNiV-F, and rNiV-G), were successfully expressed in Escherichia coli and purified with a yield of 4, 16, and 4 mg/L, respectively. All 3 recombinant viral proteins reacted with all 19 samples of NiV-positive human sera. The rNiV-N and rNiV-G proteins were the most immunogenic. The recombinant viral proteins did not react with any of the 12 NiV-negative sera. However, serum from a patient with a late-onset relapsing NiV infection complication was found to be primarily reactive to rNiV-G only. Additionally, there is a distinctive variation in the profile of antigen-reactive bands between the sample from a case of relapsing NiV encephalitis and that of acute NiV infection. The overall findings of this study suggest that the recombinant viral proteins have the potential to be developed further for use in the detection of NiV infection, and continuous biosurveillance of NiV infection in resource-limited settings.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism
  15. Malchione MD, Torres LM, Hartley DM, Koch M, Goodman JL
    Int J Antimicrob Agents, 2019 Oct;54(4):381-399.
    PMID: 31369812 DOI: 10.1016/j.ijantimicag.2019.07.019
    Carbapenem-resistant Enterobacteriaceae infections have spread globally, leaving polymyxins, including colistin, as 'last-resort treatments'. Emerging colistin resistance raises the spectre of untreatable infections. Despite this threat, data remain limited for much of the world, including Southeast Asia where only 3 of 11 nations submitted data on carbapenem and colistin resistance for recent World Health Organization (WHO) reports. To improve our understanding of the challenge, we utilised broad strategies to search for and analyse data on carbapenem and colistin resistance among Escherichia coli and Klebsiella in Southeast Asia. We found 258 studies containing 526 unique reports and document carbapenem-resistant E. coli and Klebsiella in 8 and 9 of 11 nations, respectively. We estimated carbapenem resistance proportions through meta-analysis of extracted data for nations with ≥100 representative isolates. Estimated resistance among Klebsiella was high (>5%) in four nations (Indonesia, Philippines, Thailand and Vietnam), moderate (1-5%) in two nations (Malaysia and Singapore) and low (<1%) in two nations (Cambodia and Brunei). For E. coli, resistance was generally lower but was high in two of seven nations with ≥100 isolates (Indonesia and Myanmar). The most common carbapenemases were NDM metallo-β-lactamases and OXA β-lactamases. Despite sparse data, polymyxin resistance was documented in 8 of 11 nations, with mcr-1 being the predominant genotype. Widespread presence of carbapenem and polymyxin resistance, including their overlap in eight nations, represents a continuing risk and increases the threat of infections resistant to both classes. These findings, and remaining data gaps, highlight the urgent need for sufficiently-resourced robust antimicrobial resistance surveillance.
    Matched MeSH terms: Escherichia coli Infections/microbiology; Escherichia coli Infections/epidemiology*
  16. Akinsola RO, Lee CW, Sim EUH, Narayanan K
    Anal Biochem, 2021 03 01;616:114088.
    PMID: 33358938 DOI: 10.1016/j.ab.2020.114088
    Endosomal escape is considered a crucial barrier that needs to be overcome by integrin-mediated E. coli for gene delivery into mammalian cells. Bafilomycin, a potent inhibitor of the H+ proton pump commonly employed to lower endosomal pH, was evaluated as part of the E. coli protocol during delivery. We found an increase in green fluorescent protein expression up 6.9, 3.2, 5.0, 2.8, and 4.5 fold in HeLa, HEK-293, A549, HT1080, and MCF-7 respectively, compared to untreated cells. Our result showed for the first time that Inhibition of lysosomal V-ATPase enhances E. coli efficiency.
    Matched MeSH terms: Escherichia coli/enzymology*; Escherichia coli/genetics
  17. Chee Wei T, Nurul Wahida AG, Shaharum S
    Trop Biomed, 2014 Dec;31(4):792-801.
    PMID: 25776606 MyJurnal
    Malaysia first reported H5N1 poultry case in 2004 and subsequently outbreak in poultry population in 2007. Here, a recombinant gene encoding of peptide epitopes, consisting fragments of HA1, HA2 and a polybasic cleavage site of H5N1 strain Malaysia, was amplified and cloned into pET-47b(+) bacterial expression vector. DNA sequencing and alignment analysis confirmed that the gene had no alteration and in-frame to the vector. Then, His-tagged truncated HA protein was expressed in Escherichia coli BL21 (DE3) under 1 mM IPTG induction. The protein expression was optimized under a time-course induction study and further purified using Ni-NTA agarose under reducing condition. Migration size of protein was detected at 15 kDa by Western blot using anti-His tag monoclonal antibody and demonstrated no discrepancy compared to its calculated molecular weight.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism
  18. Suleiman JB, Mohamed M, Abu Bakar AB, Nna VU, Zakaria Z, Othman ZA, et al.
    Molecules, 2021 Aug 15;26(16).
    PMID: 34443531 DOI: 10.3390/molecules26164943
    The aim of the study was to determine the chemical profile, antioxidant properties and antimicrobial activities of Heterotrigona itama bee bread from Malaysia. The pH, presence of phytochemicals, antioxidant properties, total phenolic content (TPC) and total flavonoid content (TFC), as well as antimicrobial activities, were assessed. Results revealed a decrease in the pH of bee bread water extract (BBW) relative to bee bread ethanolic extract (BBE) and bee bread hot water extract (BBH). Further, alkaloids, flavonoids, phenols, tannins, saponins, terpenoids, resins, glycosides and xanthoproteins were detected in BBW, BBH and BBE. Also, significant decreases in TPC, TFC, DPPH activity and FRAP were detected in BBW relative to BBH and BBE. We detected phenolic acids such as gallic acid, caffeic acid, trans-ferulic acid, trans 3-hydroxycinnamic acid and 2-hydroxycinnamic acid, and flavonoids such as quercetin, kaempferol, apigenin and mangiferin in BBE using high-performance liquid chromatography analysis. The strongest antimicrobial activity was observed in Klebsilla pneumonia (MIC50 1.914 µg/mL), followed by E. coli (MIC50 1.923 µg/mL), Shigella (MIC50 1.813 µg/mL) and Salmonella typhi (MIC50 1.617 µg/mL). Bee bread samples possess antioxidant and antimicrobial properties. Bee bread contains phenolic acids and flavonoids, and could be beneficial in the management and treatment of metabolic diseases.
    Matched MeSH terms: Escherichia coli/drug effects; Escherichia coli/pathogenicity
  19. Muthulakshmi L, Rajini N, Nellaiah H, Kathiresan T, Jawaid M, Rajulu AV
    Int J Biol Macromol, 2017 Feb;95:1064-1071.
    PMID: 27984140 DOI: 10.1016/j.ijbiomac.2016.09.114
    In the present work, copper nanoparticles (CuNPs) were in situ generated inside cellulose matrix using Terminalia catappa leaf extract as a reducing agent. During this process, some CuNPs were also formed outside the matrix. The CuNPs formed outside the matrix were observed with transmission electron microscope (TEM) and scanning electron microscope (SEM). Majority of the CuNPs formed outside the matrix were in the size range of 21-30nm. The cellulose/CuNP composite films were characterized by Fourier transform infrared spectroscopic, X-Ray diffraction and thermogravimetric techniques. The crystallinity of the cellulose/CuNP composite films was found to be lower than that of the matrix indicating rearrangement of cellulose molecules by in situ generated CuNPs. Further, the expanded diffractogram of the composite films indicated the presence of a mixture of Cu, CuO and Cu2O nanoparticles. The thermal stability of the composites was found to be lower than that of the composites upto 350°C beyond which a reverse trend was observed. This was attributed to the catalytic behaviour of CuNPs for early degradation of the composites. The composite films possessed sufficient tensile strength which can replace polymer packaging films like polyethylene. Further, the cellulose/CuNP composite films exhibited good antibacterial activity against E.coli bacteria.
    Matched MeSH terms: Escherichia coli/drug effects; Escherichia coli/growth & development
  20. Kueh CL, Yong CY, Masoomi Dezfooli S, Bhassu S, Tan SG, Tan WS
    Biotechnol Prog, 2017 Mar;33(2):549-557.
    PMID: 27860432 DOI: 10.1002/btpr.2409
    Macrobrachium rosenbergii nodavirus (MrNV) is a virus native to giant freshwater prawn. Recombinant MrNV capsid protein has been produced in Escherichia coli, which self-assembled into virus-like particles (VLPs). However, this recombinant protein is unstable, degrading and forming heterogenous VLPs. In this study, MrNV capsid protein was produced in insect Spodoptera frugiperda (Sf9) cells through a baculovirus system. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed that the recombinant protein produced by the insect cells self-assembled into highly stable, homogenous VLPs each of approximately 40 nm in diameter. Enzyme-linked immunosorbent assay (ELISA) showed that the VLPs produced in Sf9 cells were highly antigenic and comparable to those produced in E. coli. In addition, the Sf9 produced VLPs were highly stable across a wide pH range (2-12). Interestingly, the Sf9 produced VLPs contained DNA of approximately 48 kilo base pairs and RNA molecules. This study is the first report on the production and characterization of MrNV VLPs produced in a eukaryotic system. The MrNV VLPs produced in Sf9 cells were about 10 nm bigger and had a uniform morphology compared with the VLPs produced in E. coli. The insect cell production system provides a good source of MrNV VLPs for structural and immunological studies as well as for host-pathogen interaction studies. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:549-557, 2017.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links