Displaying publications 21 - 40 of 197 in total

Abstract:
Sort:
  1. Santhanam RK, Fakurazi S, Ahmad S, Abas F, Ismail IS, Rukayadi Y, et al.
    Phytother Res, 2018 Aug;32(8):1608-1616.
    PMID: 29672974 DOI: 10.1002/ptr.6092
    The antiphoto aging property of Zanthoxylum rhetsa obtained from Pangkor Island, Malaysia, was evaluated. Solvent fractions of different polarity obtained from the methanolic extract of the bark material were initially tested for anticollagenase and antielastase activities. The ethyl acetate fraction showed bioactivity against the protease enzymes. Hence, it was subjected to further purification via column chromatography, to yield a major constituent, hesperidin. Subsequently, the ethyl acetate fraction and hesperidin were tested for their effects against UVB-induced cytotoxicity and expressions of inflammatory cytokines (IL-6, IL-1β, and TNF-α), NF-κB, and MMPs (MMP1, 3, and 9) in human dermal fibroblasts (HDF). Both fraction and pure compound prevented UVB-induced cytotoxicity in HDF cells, in a dose dependent manner. Moreover, the ethyl acetate fraction inhibited the increase of pro-inflammatory cytokines induced by UVB to a level similar to the control (without UV treatment). Additionally, the fraction significantly inhibited the expressions of NF-κB, MMP 1, MMP 3, and MMP 9 in HDF cells treated with UVB. Similar effects were observed with hesperidin. The results obtained suggested that the ethyl acetate fraction of Z. rhetsa and its bioactive constituent, hesperidin, have the potential to be used as active ingredients in sunscreen and antiphoto aging formulations.
  2. Abu Bakar Sajak A, Mediani A, Maulidiani, Mohd Dom NS, Machap C, Hamid M, et al.
    Phytomedicine, 2017 Dec 01;36:201-209.
    PMID: 29157816 DOI: 10.1016/j.phymed.2017.10.011
    BACKGROUND: Ipomoea aquatica (locally known as "kangkung") has previously been reported to have hypoglycemic activities on glucose level in diabetes patients. However, the effect of I. aquatica ethanolic extract on the metabolites in the body has remained unknown.

    PURPOSE: This study provides new insights on the changes of endogenous metabolites caused by I. aquatica ethanolic extract and improves the understanding on the therapeutic efficacy and mechanism of I. aquatica ethanolic extract.

    METHODS: By using a combination of 1H nuclear magnetic resonance (NMR) with multivariate analysis (MVDA), the changes of metabolites due to I. aquatica ethanolic extract administration in obese diabetic-induced Sprague Dawley rats (OB+STZ+IA) were identified.

    RESULTS: The results suggested 19 potential biomarkers with variable importance projections (VIP) above 0.5, which include creatine/creatinine, glucose, creatinine, citrate, carnitine, 2-oxoglutarate, succinate, hippurate, leucine, 1-methylnicotinamice (MNA), taurine, 3-hydroxybutyrate (3-HB), tryptophan, lysine, trigonelline, allantoin, formiate, acetoacetate (AcAc) and dimethylamine. From the changes in the metabolites, the affected pathways and aspects of metabolism were identified.

    CONCLUSION: I. aquatica ethanolic extract increases metabolite levels such as creatinine/creatine, carnitine, MNA, trigonelline, leucine, lysine, 3-HB and decreases metabolite levels, including glucose and tricarboxylic acid (TCA) intermediates. This implies capabilities of I. aquatica ethanolic extract promoting glycolysis, gut microbiota and nicotinate/nicotinamide metabolism, improving the glomerular filtration rate (GFR) and reducing the β-oxidation rate. However, the administration of I. aquatica ethanolic extract has several drawbacks, such as unimproved changes in amino acid metabolism, especially in reducing branched chain amino acid (BCAA) synthesis pathways and lipid metabolism.

  3. Al-Mekhlafi NA, Shaari K, Abas F, Kneer R, Jeyaraj EJ, Stanslas J, et al.
    Phytochemistry, 2012 Aug;80:42-9.
    PMID: 22633846 DOI: 10.1016/j.phytochem.2012.04.008
    Phytochemical investigation on the leaves of Labisia pumila (Myrsinaceae), an important medicinal herb in Malaysia, has led to the isolation of 1-O-methyl-6-acetoxy-5-(pentadec-10Z-enyl)resorcinol (1), labisiaquinone A (2) and labisiaquinone B (3). Along with these, 16 known compounds including 1-O-methyl-6-acetoxy-5-pentadecylresorcinol (4), 5-(pentadec-10Z-enyl)resorcinol (5), 5-(pentadecyl)resorcinol (6), (-)-loliolide (7), stigmasterol (8), 4-hydroxyphenylethylamine (9), 3,4,5-trihydroxybenzoic acid (10), 3,4-dihydroxybenzoic acid (11), (+)-catechin (12), (-)-epicatechin (13), kaempferol-3-O-α-rhamnopyranosyl-7-O-β-glycopyranoside (14), kaempferol-4'-O-β-glycopyranoside (15), quercetin-3-O-α-rhamnopyranoside (16), kaempferol-3-O-α-rhamnopyranoside (17), (9Z,12Z)-octadeca-9,12-dienoic acid (18) and stigmasterol-3-O-β-glycopyranoside (19) were also isolated. The structures of these compounds were established on the basis of 1D and 2D NMR spectroscopy techniques (¹H, ¹³C, COSY, HSQC, NOESY and HMBC experiments), mass spectrometry and chemical derivatization. Among the constituents tested 1 and 4 exhibited strongest cytotoxic activity against the PC3, HCT116 and MCF-7 cell lines (IC₅₀ values ≤ 10 μM), and they showed selectivity towards the first two-cell lines relative to the last one.
  4. Shadid KA, Shaari K, Abas F, Israf DA, Hamzah AS, Syakroni N, et al.
    Phytochemistry, 2007 Oct;68(20):2537-44.
    PMID: 17602714
    Phytochemical studies on the leaves and trunk bark of Garcinia cantleyana yielded five caged-xanthonoids including one tetra- and four tri-prenylated xanthones, cantleyanone A (1), 7-hydroxyforbesione (2) and cantleyanones B-D (4-6), as well as a simple xanthone, 4-(1,1-dimethylprop-2-enyl)-1,3,5,8-tetrahydroxyxanthone (3). Eight other known compounds, deoxygaudichaudione A, gaudichaudione H, friedelin, garbogiol, macranthol, glutin-5-en-3beta-ol, and a mixture of sitosterol and stigmasterol were also isolated. Their structures were elucidated by means of spectroscopic data and comparison of their NMR data with literature values. Significant cytotoxicity against MDA-MB-231, CaOV-3, MCF-7 and HeLa cancer cell-lines was demonstrated by cantleyanones B-D, 7-hydroxyforbesione, deoxygaudichaudione A and macranthol, with IC(50) values ranging from 0.22 to 17.17 microg/ml.
  5. Abdul Majid N, Abdul Hamid A, Salleh SZ, Saari N, Abas F, Pak Dek MS, et al.
    Phytochem Anal, 2020 Mar;31(2):191-203.
    PMID: 31381209 DOI: 10.1002/pca.2880
    INTRODUCTION: Natural products are obtaining much acceptance as ergogenic aid, not only among athletes but also among the general population including people with excess body fat. Under normal circumstances, an obese person will have the desire and ability to exercise reduced; mainly because they are easily fatigued. Thus, they need to boost their energy production so that they can be more active and healthier.

    OBJECTIVE: In this present work, Morinda citrifolia L. leaf extract (MLE) which is believed to possess ergogenic property, was evaluated on its effect on an obese animal model using 1 H-NMR based metabolomics.

    MATERIAL AND METHODS: Rats were fed with high fat diet (HFD) for 12 weeks for obese development. Once this was achieved, all the rats underwent endurance exercise (forced swimming test) every 2 weeks for 8 weeks together with treatment. The time to exhaustion was recorded for each rat. Three different dosages of MLE: 50 mg/kg, 100 mg/kg and 200 mg/kg of body weight were used together with two positive controls: 5 mg/kg caffeine and 100 mg/kg green tea. Blood was collected before and after treatments for metabolomics study.

    RESULTS: Findings showed that feeding the rats at a dose of 200 mg/kg body weight MLE significantly prolonged the exhaustive swimming time of the rats, and altered the metabolites present in their serum. Discriminating metabolites involved were the product of various metabolic pathways, including carbohydrate, lipids metabolism and energy metabolism. Treatment with 200 mg/kg body weight MLE resulted in significant improvement in the metabolic perturbations where the proximity of the obese exercised treated group to that of normal exercised group in the partial least squares discriminant analysis score plot was observed.

    CONCLUSION: The present work demonstrated ergogenic property of MLE based on the improved metabolic perturbation in exercised obese rats.

  6. Zolkeflee NKZ, Isamail NA, Maulidiani M, Abdul Hamid NA, Ramli NS, Azlan A, et al.
    Phytochem Anal, 2021 Jan;32(1):69-83.
    PMID: 31953888 DOI: 10.1002/pca.2917
    INTRODUCTION: Muntingia calabura from the Muntingiaceae family has been documented for several medicinal uses. The combinations of drying treatment and extracting solvents for a plant species need to be determined and optimised to ensure that the extracts contain adequate amounts of the bioactive metabolites.

    OBJECTIVE: Evaluate the metabolite variations and antioxidant activity among M. calabura leaves subjected to different drying methods and extracted with different ethanol ratios using proton nuclear magnetic resonance (1 H-NMR)-based metabolomics. Methodology The antioxidant activity of M. calabura leaves dried with three different drying methods and extracted with three different ethanol ratios was determined by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) scavenging assays. The metabolites variation among the extracts and correlation with antioxidant activity were analysed by 1 H-NMR-based metabolomics.

    RESULTS: Muntingia calabura leaves extracted with 50% and 100% ethanol from air-drying and freeze-drying methods had the highest total phenolic content and the lowest IC50 value for the DPPH scavenging activity. Meanwhile, oven-dried leaves extracted with 100% ethanol had the lowest IC50 value for the NO scavenging activity. A total of 43 metabolites, including sugars, organic acids, amino acids, phytosterols, phenolics and terpene glycoside were tentatively identified. A noticeable discrimination was observed in the different ethanol ratios by the principal component analysis. The partial least-squares analysis suggested that 32 compounds out of 43 compounds identified were the contributors to the bioactivities.

    CONCLUSION: The results established set the preliminary steps towards developing this plant into a high value product for phytomedicinal preparations.

  7. Wong PL, Ramli NS, Tan CP, Azlan A, Abas F
    Phytochem Anal, 2021 Sep;32(5):685-697.
    PMID: 33295100 DOI: 10.1002/pca.3015
    INTRODUCTION: Ardisia elliptica Thunb. (Primulaceae) is a medicinal herb that is traditionally used for the treatment of fever, diarrhoea, measles and herpes. However, there is limited information regarding the correlation of its phytoconstituents with the bioactivity. Optimisation of solvent extraction is vital for maximising retention of bioactive molecules.

    OBJECTIVE: This study investigated the metabolite variations in A. elliptica leaves and the correlation with antioxidant activities.

    METHODOLOGY: Total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radicals scavenging assays were performed on A. elliptica leaves extracted with four different ethanol ratios (0%, 50%, 70% and absolute ethanol). The correlation of metabolites with antioxidant activities was evaluated using a nuclear magnetic resonance (NMR)-based metabolomics approach.

    RESULTS: The results showed that the 50% and 70% ethanolic extracts retained the highest TPC, and the 70% ethanolic extract was the most active, exhibiting half maximal inhibitory concentration (IC50 ) values of 10.18 ± 0.83 and 43.05 ± 1.69 μg/mL, respectively, in both radical scavenging assays. A total of 46 metabolites were tentatively identified, including flavonoids, benzoquinones, triterpenes and phenolic derivatives. The 50% and 70% ethanolic extracts showed similarities in metabolites content and were well discriminated from water and absolute ethanol extracts in a principal component analysis (PCA) model. Moreover, 31 metabolites were found to contribute significantly to the differentiation and antioxidant activity.

    CONCLUSION: This study provides information on bioactive compounds in A. elliptica leaves, which is promising as a functional ingredient for food production or for the development of phytomedicinal products.

  8. Khoo LW, Kow ASF, Maulidiani M, Ang MY, Chew WY, Lee MT, et al.
    Phytochem Anal, 2019 Jan;30(1):46-61.
    PMID: 30183131 DOI: 10.1002/pca.2789
    INTRODUCTION: Clinacanthus nutans, a small shrub that is native to Southeast Asia, is commonly used in traditional herbal medicine and as a food source. Its anti-inflammation properties is influenced by the metabolites composition, which can be determined by different binary extraction solvent ratio and extraction methods used during plant post-harvesting stage.

    OBJECTIVE: Evaluate the relationship between the chemical composition of C. nutans and its anti-inflammatory properties using nuclear magnetic resonance (NMR) metabolomics approach.

    METHODOLOGY: The anti-inflammatory effect of C. nutans air-dried leaves extracted using five different binary extraction solvent ratio and two extraction methods was determined based on their nitric oxide (NO) inhibition effect in lipopolysaccharide-interferon-gamma (LPS-IFN-γ) activated RAW 264.7 macrophages. The relationship between extract bioactivity and metabolite profiles and quantifications were established using 1 H-NMR metabolomics and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The possible metabolite biosynthesis pathway was constructed to further strengthen the findings.

    RESULTS: Water and sonication prepared air-dried leaves possessed the highest NO inhibition activity (IC50  = 190.43 ± 12.26 μg/mL, P 

  9. Kadir NAAA, Azlan A, Abas F, Ismail IS
    Nutrients, 2020 Nov 14;12(11).
    PMID: 33202660 DOI: 10.3390/nu12113511
    A source of functional food can be utilized from a source that might otherwise be considered waste. This study investigates the hypocholesterolemic effect of defatted dabai pulp (DDP) from supercritical carbon dioxide extraction and the metabolic alterations associated with the therapeutic effects of DDP using 1H NMR urinary metabolomic analysis. Male-specific pathogen-free Sprague-Dawley rats were fed with a high cholesterol diet for 30 days to induce hypercholesterolemia. Later, the rats were administered with a 2% DDP treatment diet for another 30 days. Supplementation with the 2% DDP treatment diet significantly reduced the level of total cholesterol (TC), triglyceride, low-density lipoprotein (LDL), and inflammatory markers (C-reactive protein (CRP), interleukin 6 (IL6) and tumour necrosis factor-α (α-TNF)) and significantly increased the level of antioxidant profile (total antioxidant status (TAS), superoxide dismutase (SOD), glutathione peroxide (GPX), and catalase (CAT)) compared with the positive control group (PG) group (p < 0.05). The presence of high dietary fibre (28.73 ± 1.82 g/100 g) and phenolic compounds (syringic acid, 4-hydroxybenzoic acid and gallic acid) are potential factors contributing to the beneficial effect. Assessment of 1H NMR urinary metabolomics revealed that supplementation of 2% of DDP can partially recover the dysfunction in the metabolism induced by hypercholesterolemia via choline metabolism. 1H-NMR-based metabolomic analysis of urine from hypercholesterolemic rats in this study uncovered the therapeutic effect of DDP to combat hypercholesterolemia.
  10. Abd Wahab NA, Lajis NH, Abas F, Othman I, Naidu R
    Nutrients, 2020 Mar 02;12(3).
    PMID: 32131560 DOI: 10.3390/nu12030679
    Prostate cancer (PCa) is a heterogeneous disease and ranked as the second leading cause of cancer-related deaths in males worldwide. The global burden of PCa keeps rising regardless of the emerging cutting-edge technologies for treatment and drug designation. There are a number of treatment options which are effectively treating localised and androgen-dependent PCa (ADPC) through hormonal and surgery treatments. However, over time, these cancerous cells progress to androgen-independent PCa (AIPC) which continuously grow despite hormone depletion. At this particular stage, androgen depletion therapy (ADT) is no longer effective as these cancerous cells are rendered hormone-insensitive and capable of growing in the absence of androgen. AIPC is a lethal type of disease which leads to poor prognosis and is a major contributor to PCa death rates. A natural product-derived compound, curcumin has been identified as a pleiotropic compound which capable of influencing and modulating a diverse range of molecular targets and signalling pathways in order to exhibit its medicinal properties. Due to such multi-targeted behaviour, its benefits are paramount in combating a wide range of diseases including inflammation and cancer disease. Curcumin exhibits anti-cancer properties by suppressing cancer cells growth and survival, inflammation, invasion, cell proliferation as well as possesses the ability to induce apoptosis in malignant cells. In this review, we investigate the mechanism of curcumin by modulating multiple signalling pathways such as androgen receptor (AR) signalling, activating protein-1 (AP-1), phosphatidylinositol 3-kinases/the serine/threonine kinase (PI3K/Akt/mTOR), wingless (Wnt)/ß-catenin signalling, and molecular targets including nuclear factor kappa-B (NF-κB), B-cell lymphoma 2 (Bcl-2) and cyclin D1 which are implicated in the development and progression of both types of PCa, ADPC and AIPC. In addition, the role of microRNAs and clinical trials on the anti-cancer effects of curcumin in PCa patients were also reviewed.
  11. Abu Bakar Sajak A, Azlan A, Abas F, Hamzah H
    Nutrients, 2021 Oct 12;13(10).
    PMID: 34684574 DOI: 10.3390/nu13103573
    An herbal mixture composed of lemon, apple cider, garlic, ginger and honey as a polyphenol-rich mixture (PRM) has been reported to contain hypolipidemic activity on human subjects and hyperlipidemic rats. However, the therapeutic effects of PRM on metabolites are not clearly understood. Therefore, this study aimed to provide new information on the causal impact of PRM on the endogenous metabolites, pathways and serum biochemistry. Serum samples of hyperlipidemic rats treated with PRM were subjected to biochemistry (lipid and liver profile) and hydroxymethylglutaryl-CoA enzyme reductase (HMG-CoA reductase) analyses. In contrast, the urine samples were subjected to urine metabolomics using 1H NMR. The serum biochemistry revealed that PRM at 500 mg/kg (PRM-H) managed to lower the total cholesterol level and low-density lipoprotein (LDL-C) (p < 0.05) and reduce the HMG-CoA reductase activity. The pathway analysis from urine metabolomics reveals that PRM-H altered 17 pathways, with the TCA cycle having the highest impact (0.26). Results also showed the relationship between the serum biochemistry of LDL-C and HMG-CoA reductase and urine metabolites (trimethylamine-N-oxide, dimethylglycine, allantoin and succinate). The study's findings demonstrated the potential of PRM at 500 mg/kg as an anti-hyperlipidemic by altering the TCA cycle, inhibiting HMG-CoA reductase and lowering the LDL-C in high cholesterol rats.
  12. Wan Mohd Tajuddin WNB, Lajis NH, Abas F, Othman I, Naidu R
    Nutrients, 2019 Dec 06;11(12).
    PMID: 31817718 DOI: 10.3390/nu11122989
    Lung cancer is among the most common cancers with a high mortality rate worldwide. Despite the significant advances in diagnostic and therapeutic approaches, lung cancer prognoses and survival rates remain poor due to late diagnosis, drug resistance, and adverse effects. Therefore, new intervention therapies, such as the use of natural compounds with decreased toxicities, have been considered in lung cancer therapy. Curcumin, a natural occurring polyphenol derived from turmeric (Curcuma longa) has been studied extensively in recent years for its therapeutic effects. It has been shown that curcumin demonstrates anti-cancer effects in lung cancer through various mechanisms, including inhibition of cell proliferation, invasion, and metastasis, induction of apoptosis, epigenetic alterations, and regulation of microRNA expression. Several invitro and invivo studies have shown that these mechanisms are modulated by multiple molecular targets such as STAT3, EGFR, FOXO3a, TGF-β, eIF2α, COX-2, Bcl-2, PI3KAkt/mTOR, ROS, Fas/FasL, Cdc42, E-cadherin, MMPs, and adiponectin. In addition, limitations, strategies to overcome curcumin bioavailability, and potential side effects as well as clinical trials were also reviewed.
  13. Shaari K, Safri S, Abas F, Lajis NH, Israf DA
    Nat Prod Res, 2006 May 10;20(5):415-9.
    PMID: 16644538
    The leaves of Melicope ptelefolia (Rutaceae) afforded a new acetophenone named 2,4,6-trihydroxy-3-geranylacetophenone. The structure of the compound was established by mass and NMR spectroscopy.
  14. Ado MA, Maulidiani M, Ismail IS, Ghazali HM, Shaari K, Abas F
    Nat Prod Res, 2021 Sep;35(17):2992-2996.
    PMID: 31631709 DOI: 10.1080/14786419.2019.1679138
    Phytochemical investigation on the soluble fractions of n-hexane and dichloromethane of methanolic leaves extract of the Callicarpa maingayi K. & G. led to the isolation of three triterpenoids [euscaphic acid (1), arjunic acid (2), and ursolic acid (3)] together with two flavones [apigenin (4) and acacetin (5)], two phytosterols [stigmasterol 3-O-β-glycopyranoside (6) and sitosterol 3-O-β-glycopyranoside (7)], and a fatty acid [n-hexacosanoic acid (8)]. Six (6) compounds (1, 2, 3, 4, 5, and 8) are reported for the first time from this species. Their structures were elucidated and identified by extensive NMR techniques, GC-MS and comparison with the previously reported literature. Compound 3 was found to displayed good inhibition against acetylcholinesterase with an IC50 value of 21.5 ± 0.022 μM, while 1 and 2 exhibited pronounced α-glucosidase inhibitory activity with IC50 values of 22.4 ± 0.016 μM and 24.9 ± 0.012 μM, respectively.
  15. Kam WJ, Abas F, Hussain N, Mirhosseini H
    Nat Prod Res, 2020 Jul;34(13):1937-1941.
    PMID: 30691284 DOI: 10.1080/14786419.2018.1564296
    The objective of this study was to compare the antioxidant activity and cytotoxicity of Durio zibethinus M. (Durian) leaf extract from two extraction methods. Ultrasound-assisted extraction and Accelerated-solvent extraction were used to produce crude extract. The results revealed that UAE achieved 3× higher in total phenolic content in the leaf extract compared to ASE. DPPH radical scavenging activity was 4.6× higher in leaf extract from ASE. No significant differences reported in ferric reducing power, and total flavonoid content of the leaf extract between the two methods. Cytotoxicity via MTT assay demonstrated no significant differences in cell viability upon exposure to the leaf extract from both methods. This suggested that they were appropriate in producing Durio zibethinus M. leaf extract for end use application in food related product. Both ensured similar level of safety in Durio zibethinus M. leaf extract as a new potential ingredient for the food industry.
  16. Al-Mekhlafi NA, Shaaria K, Abas F, Jeyaraj EJ, Stanslas J, Khalivulla SI, et al.
    Nat Prod Commun, 2013 Apr;8(4):447-51.
    PMID: 23738449
    In the present study phytochemical investigation of the methanol extract of the stem bark of Horsfieldia superba led to the isolation of twenty compounds (1-20), of which three (1-3) were new. However, compounds 2 and 3 were previously reported as synthetic alpha,beta-lactones. The compounds were characterized as (-)-3,4',7-trihydroxy-3'-methoxyflavan (1), (-)-5,6-dihydro-6-undecyl-2H-pyran-2-one (2), and (-)-5,6-dihydro-6-tridecyl-2H-pyran-2-one (3). Seventeen other known compounds were also isolated and identified as (-)-viridiflorol (4), hexacosanoic acid (5), beta-sitosterol (6), methyl 2,4-dihydroxy-6-methylbenzoate (methylorsellinate) (7), methyl 2,4-dihydroxy-3,6-dimethylbenzoate (8), (-)-4'-hydroxy-7-methoxyflavan (9), (-)-4',7-dihydroxyflavan (10), (-)-4',7-dihydroxy-3'-methoxyflavan (11), (+)-3,4',7-trihydroxyflavan (12), (-)-catechin (13), (-)-epicatechin (14), (-)-7-hydroxy-3',4'-methylenedioxyflavan (15), 2',3,4-trihydroxy-4'-methoxydihydrochalcone (16), 3',4',7-trihydroxyflavone (17), (+)-4'-hydroxy-7-methoxyflavanone (18), hexadecanoic acid (palmitic acid) (19) and 3,4-dihydroxybenzoic acid (20). The structures of the compounds were fully characterized by various physical methods (melting point, optical rotation), spectral (UV, IR, ID and 2D NMR) and mass spectrometric techniques. In vitro assay of compounds 2 and 3 demonstrated moderate cytotoxic activities against human prostate (PC-3), colon (HCT-116) and breast (MCF-7) cancer cells, while the chloroform and ethyl acetate fractions of H. superba were found to exhibit moderate AChE inhibitory activity (IC50 72 and 60 microg/mL).
  17. Maulidiani, Shaari K, Paetz C, Stanslas J, Abas F, Lajis NH
    Nat Prod Commun, 2009 Aug;4(8):1031-6.
    PMID: 19768978
    Phytochemical investigation on Globba pendula resulted in the isolation of a new naturally occurring 16-oxo-(8)17-12-labdadien-15,11-olide 1 and benzofuran-2-carboxaldehyde 2. Other known compounds including isoandrographolide, indirubin, vanillin, vanillic acid, 2(3H)-benzoxazolone, as well as beta-sitosteryl-beta-D-glucopyranoside, beta-sitosterol, and 7alpha-hydroxysitosterol were also isolated. The structures were established based on spectroscopic data and comparison with the literature. Furthermore, the compound isoandrographolide has demonstrated strong cytotoxic properties towards a panel of cancer cell lines (MCF-7, PC-3, and H-460) with the IC50 values of 7.9, 8.7, and 9.0 microM, respectively.
  18. Asiri SM, Shaari K, Abas F, Al-Mekhlafi NA, Lajis NH
    Nat Prod Commun, 2012 Oct;7(10):1333-6.
    PMID: 23157003
    Two new naphthoquinones designated as 3alpha-hydroxy-2-(2-hydroxypropan-2-yI)-9alpha-methoxy-2,3,3alpha,9alpha-tetra-hydronaphtho[2,3-b]furan-4,9-dione (callicarpa-quinone A, 1) and 5-hydroxy-2-(2-hydroxypropan-2-yl)naphtho[2,3-b]furan-4,9-dione (callicarpaquinone B, 2) were isolated from the chloroform fraction of Callicarpa maingayi. Three other known compounds, identified as avicequinone-C (3), wodeshiol (4) and paulownin (5), were reported for the first time from this species. The structure elucidation of compounds was established by comprehensive 1D and 2D NMR spectroscopic analyses as well as EIMS, UV and IR spectral data. Compounds 1 and 2 were tested in vitro for their cytotoxic activity against human breast cancer MCF-7cells. Compound 2 exhibited strong cytotoxic activity with an IC50 value of 1.9 +/- 0.2 microM, while 1 showed moderate activity with an IC50 value of 25.0 +/- 4.3 microM.
  19. Toopkanloo SP, Tan TB, Abas F, Alharthi FA, Nehdi IA, Tan CP
    Nanomaterials (Basel), 2020 Dec 05;10(12).
    PMID: 33291386 DOI: 10.3390/nano10122432
    This study used highly lipophilic agents with an aim to increase the oxidant inhibitory activity and enhance photothermal stability of a novel mixed soy lecithin (ML)-based liposome by changing the composition of formulation within the membrane. Specifically, the development and optimization of the liposome intended for improving Trolox equivalent antioxidant capacity (TEAC) value and %TEAC loss was carried out by incorporating a natural antioxidant, quercetin (QU). In this context, a focus was set on QU encapsulation in ML-based liposomes and the concentration-dependent solubility of QU was investigated and calculated as encapsulation efficiency (EE). To explore the combined effects of the incorporation of plant sterols on the integrity and entrapment capacity of mixed phospholipid vesicles, conjugation of two types of phytosterols (PSs), namely β-sitosterol (βS) and stigmasterol (ST), to mixed membranes at different ratios was also performed. The EE measurement revealed that QU could be efficiently encapsulated in the stable ML-based liposome using 0.15 and 0.1 g/100 mL of βS and ST, respectively. The aforementioned liposome complex exhibited a considerable TEAC (197.23%) and enhanced TEAC loss (30.81%) when exposed to ultraviolet (UV) light (280-320 nm) over a 6 h duration. It appeared that the presence and type of PSs affect the membrane-integration characteristics as well as photodamage transformation of the ML-based liposome. The association of QU with either βS or ST in the formulation was justified by their synergistic effects on the enhancement of the EE of liposomes. Parallel to this, it was demonstrated that synergistic PS effects could be in effect in the maintenance of membrane order of the ML-based liposome. The findings presented in this study provided useful information for the development and production of stable QU-loaded ML-based liposomes for food and nutraceutical applications and could serve as a potential mixed lipids-based delivery system in the disease management using antioxidant therapy.
  20. Khoo LT, Abdullah JO, Abas F, Tohit ER, Hamid M
    Molecules, 2015 Feb 24;20(3):3697-715.
    PMID: 25719740 DOI: 10.3390/molecules20033697
    The aims of this study were to examine the bioactive component(s) responsible for the anticoagulant activity of M. malabathricum Linn. leaf hot water crude extract via bioassay-guided fractionation and to evaluate the effect of bioactive component(s) on the intrinsic blood coagulation pathway. The active anticoagulant fraction of F3 was subjected to a series of chromatographic separation and spectroscopic analyses. Furthermore, the effect of the bioactive component(s) on the intrinsic blood coagulation pathway was studied through immediate and time incubation mixing studies. Through Activated Partial Thromboplastin Time (APTT) assay-guided fractionation, Subfraction B was considered the most potent anticoagulant fraction. Characterisation of Subfraction B indicated that anticoagulant activity could partly be due to the presence of cinnamic acid and a cinnamic acid derivative. APTT assays for both the immediate and time incubation mixing were corrected back into normal clotting time range (35.4-56.3 s). In conclusion, cinnamic acid and cinnamic acid derivative from Subfraction B were the first such compounds to be discovered from M. malabathricum Linn. leaf hot water crude extract that possess anticoagulant activity. This active anticoagulant Subfraction B prolonged blood clotting time by causing factor(s) deficiency in the intrinsic blood coagulation pathway.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links