Displaying publications 21 - 40 of 46 in total

Abstract:
Sort:
  1. Rosli R, Abdul Kadir MR, Kamarul T
    Proc Inst Mech Eng H, 2014 Apr;228(4):342-9.
    PMID: 24622982 DOI: 10.1177/0954411914527074
    Anterior corpectomy and reconstruction using a plate with locking screws are standard procedures for the treatment of cervical spondylotic myelopathy. Although adding more screws to the construct will normally result in improved fixation stability, several issues need to be considered. Past reports have suggested that increasing the number of screws can result in the increase in spinal rigidity, decreased spine mobility, loss of bone and, possibly, screw loosening. In order to overcome this, options to have constrained, semi-constrained or hybrid screw and plate systems were later introduced. The purpose of this study is to compare the stability achieved by four and two screws using different plate systems after one-level corpectomy with placement of cage. A three-dimensional finite-element model of an intact C1-C7 segment was developed from computer tomography data sets, including the cortical bone, soft tissue and simulated corpectomy fusion at C4-C5. A spinal cage and an anterior cervical plate with different numbers of screws and plate systems were constructed to a fit one-level corpectomy of C5. Moment load of 1.0 N m was applied to the superior surface of C1, with C7 was fixed in all degrees of freedom. The kinematic stability of a two-screw plate was found to be statistically equivalent to a four-screw plate for one-level corpectomy. Thus, it can be a better option of fusion and infers comparable stability after one-level anterior cervical corpectomy, instead of a four-screw plate.
  2. Bajuri MN, Abdul Kadir MR, Murali MR, Kamarul T
    Med Biol Eng Comput, 2013 Feb;51(1-2):175-86.
    PMID: 23124814 DOI: 10.1007/s11517-012-0982-9
    The total replacement of wrists affected by rheumatoid arthritis (RA) has had mixed outcomes in terms of failure rates. This study was therefore conducted to analyse the biomechanics of wrist arthroplasty using recently reported implants that have shown encouraging results with the aim of providing some insights for the future development of wrist implants. A model of a healthy wrist was developed using computed tomography images from a healthy volunteer. An RA model was simulated based on all ten general characteristics of the disease. The ReMotion ™ total wrist system was then modelled to simulate total wrist arthroplasty (TWA). Finite element analysis was performed with loads simulating the static hand grip action. The results show that the RA model produced distorted patterns of stress distribution with tenfold higher contact pressure than the healthy model. For the TWA model, contact pressure was found to be approximately fivefold lower than the RA model. Compared to the healthy model, significant improvements were observed for the TWA model with minor variations in the stress distribution. In conclusion, the modelled TWA reduced contact pressure between bones but did not restore the stress distribution to the normal healthy condition.
  3. Raja Izaham RM, Abdul Kadir MR, Abdul Rashid AH, Hossain MG, Kamarul T
    Injury, 2012 Jun;43(6):898-902.
    PMID: 22204773 DOI: 10.1016/j.injury.2011.12.006
    The use of open wedge high tibial osteotomy (HTO) to correct varus deformity of the knee is well established. However, the stability of the various implants used in this procedure has not been previously demonstrated. In this study, the two most common types of plates were analysed (1) the Puddu plates that use the dynamic compression plate (DCP) concept, and (2) the Tomofix plate that uses the locking compression plate (LCP) concept. Three dimensional model of the tibia was reconstructed from computed tomography images obtained from the Medical Implant Technology Group datasets. Osteotomy and fixation models were simulated through computational processing. Simulated loading was applied at 60:40 ratios on the medial:lateral aspect during single limb stance. The model was fixed distally in all degrees of freedom. Simulated data generated from the micromotions, displacement and, implant stress were captured. At the prescribed loads, a higher displacement of 3.25 mm was observed for the Puddu plate model (p<0.001). Coincidentally the amount of stresses subjected to this plate, 24.7 MPa, was also significantly lower (p<0.001). There was significant negative correlation (p<0.001) between implant stresses to that of the amount of fracture displacement which signifies a less stable fixation using Puddu plates. In conclusion, this study demonstrates that the Tomofix plate produces superior stability for bony fixation in HTO procedures.
  4. Almasi D, Iqbal N, Sadeghi M, Sudin I, Abdul Kadir MR, Kamarul T
    Int J Biomater, 2016;2016:8202653.
    PMID: 27127513 DOI: 10.1155/2016/8202653
    There is an increased interest in the use of polyether ether ketone (PEEK) for orthopedic and dental implant applications due to its elastic modulus close to that of bone, biocompatibility, and its radiolucent properties. However, PEEK is still categorized as bioinert due to its low integration with surrounding tissues. Many studies have reported on methods to increase the bioactivity of PEEK, but there is still one-preparation method for preparing bioactive PEEK implant where the produced implant with desirable mechanical and bioactivity properties is required. The aim of this review is to present the progress of the preparation methods for improvement of the bioactivity of PEEK and to discuss the strengths and weaknesses of the existing methods.
  5. Sharifi R, Almasi D, Sudin IB, Abdul Kadir MR, Jamshidy L, Amiri SM, et al.
    Int J Biomater, 2018;2018:9607195.
    PMID: 30154853 DOI: 10.1155/2018/9607195
    The mechanical properties of coated layers are one of the important factors for the long-term success of orthopeadic and dental implants. In this study, the mechanical properties of the porous coated layer were examined via scratch and nanoindentation tests. The effect of compression load on the porous coated layer of sulphonated poly ether ether ketone/Hydroxyapatite was studied to determine whether it changes its mechanical properties. The water contact angle and surface roughness of the compressed coated layer were also measured. The results showed a significant increase in elastic modulus, with mean values ranging from 0.464 GPa to 1.199 GPa (p<0.05). The average scratch hardness also increased significantly from 69.9 MPa to 95.7 MPa after compression, but the surface roughness and wettability decreased significantly (p<0.05). Simple compression enhanced the mechanical properties of the sulphonated poly ether ether ketone/hydroxyapatite coated layer, and the desired mechanical properties for orthopaedic and dental implant application can be achieved.
  6. Jamuna-Thevi K, Saarani NN, Abdul Kadir MR, Hermawan H
    Mater Sci Eng C Mater Biol Appl, 2014 Oct;43:253-63.
    PMID: 25175212 DOI: 10.1016/j.msec.2014.07.028
    This paper discusses the successful fabrication of a novel triple-layered poly(lactic-co-glycolic acid) (PLGA)-based composite membrane using only a single step that combines the techniques of solvent casting and thermally induced phase separation/solvent leaching. The resulting graded membrane consists of a small pore size layer-1 containing 10 wt% non-stoichiometric nanoapatite (NAp)+1-3 wt% lauric acid (LA) for fibroblastic cell and bacterial inhibition, an intermediate layer-2 with 20-50 wt% NAp+1 wt% LA, and a large pore size layer-3 containing 30-100 wt% NAp without LA to allow bone cell growth. The synergic effects of 10-30 wt% NAp and 1 wt% LA in the membrane demonstrated higher tensile strength (0.61 MPa) and a more elastic behavior (16.1% elongation at break) in 3 wt% LA added membrane compared with the pure PLGA (0.49 MPa, 9.1%). The addition of LA resulted in a remarkable plasticizing effect on PLGA at 3 wt% due to weak intermolecular interactions in PLGA. The pure and composite PLGA membranes had good cell viability toward human skin fibroblast, regardless of LA and NAp contents.
  7. Ulum MF, Arafat A, Noviana D, Yusop AH, Nasution AK, Abdul Kadir MR, et al.
    Mater Sci Eng C Mater Biol Appl, 2014 Mar 1;36:336-44.
    PMID: 24433920 DOI: 10.1016/j.msec.2013.12.022
    Biodegradable metals such as magnesium, iron and their alloys have been known as potential materials for temporary medical implants. However, most of the studies on biodegradable metals have been focusing on optimizing their mechanical properties and degradation behavior with no emphasis on improving their bioactivity behavior. We therefore investigated the possibility of improving iron biodegradation rate and bioactivity by incorporating various bioactive bioceramics. The iron-based bioceramic (hydroxyapatite, tricalcium phosphate and biphasic calcium phosphate) composites were prepared by mechanical mixing and sintering process. Degradation studies indicated that the addition of bioceramics lowered the corrosion potential of the composites and slightly increased their corrosion rate compared to that of pure iron. In vitro cytotoxicity results showed an increase of cellular activity when rat smooth muscle cells interacted with the degrading composites compared to pure iron. X-ray radiogram analysis showed a consistent degradation progress with that found in vivo and positive tissue response up to 70 days implantation in sheep animal model. Therefore, the iron-based bioceramic composites have the potential to be used for biodegradable bone implant applications.
  8. Yusop AH, Bakir AA, Shaharom NA, Abdul Kadir MR, Hermawan H
    Int J Biomater, 2012;2012:641430.
    PMID: 22919393 DOI: 10.1155/2012/641430
    Scaffolds have been utilized in tissue regeneration to facilitate the formation and maturation of new tissues or organs where a balance between temporary mechanical support and mass transport (degradation and cell growth) is ideally achieved. Polymers have been widely chosen as tissue scaffolding material having a good combination of biodegradability, biocompatibility, and porous structure. Metals that can degrade in physiological environment, namely, biodegradable metals, are proposed as potential materials for hard tissue scaffolding where biodegradable polymers are often considered as having poor mechanical properties. Biodegradable metal scaffolds have showed interesting mechanical property that was close to that of human bone with tailored degradation behaviour. The current promising fabrication technique for making scaffolds, such as computation-aided solid free-form method, can be easily applied to metals. With further optimization in topologically ordered porosity design exploiting material property and fabrication technique, porous biodegradable metals could be the potential materials for making hard tissue scaffolds.
  9. Darmawan MF, Yusuf SM, Abdul Kadir MR, Haron H
    Leg Med (Tokyo), 2015 Mar;17(2):71-8.
    PMID: 25456051 DOI: 10.1016/j.legalmed.2014.09.006
    Age estimation was used in forensic anthropology to help in the identification of individual remains and living person. However, the estimation methods tend to be unique and applicable only to a certain population. This paper analyzed age estimation using twelve regression models carried out on X-ray images of the left hand taken from an Asian data set for subjects under the age of 19. All the nineteen bones of the left hand were measured using free image software and the statistical analysis were performed using SPSS. There are two methods to determine age in this study which are single bone method and all bones method. For single bone method, S-curve regression model was found to have the highest R-square value using second metacarpal for males, and third proximal phalanx for females. For age estimation using single bone, fifth metacarpal from males and fifth proximal phalanx from females can be used due to the lowest mean square error (MSE) value. To conclude, multiple linear regressions is the best techniques for age estimation in cases where all bones are available, but if not, S-curve regression can be used using single bone method.
  10. Daud R, Abdul Kadir MR, Izman S, Md Saad AP, Lee MH, Che Ahmad A
    J Foot Ankle Surg, 2013 Jul-Aug;52(4):426-31.
    PMID: 23623302 DOI: 10.1053/j.jfas.2013.03.007
    The trapezium shape of the talar dome limits the use of 2-dimensional plain radiography for morphometric assessment because only 2 of the 4 required parameters can be measured. We used computed tomography data to measure the 4 morphologic parameters of the trochlea tali: anterior width, posterior width, trochlea tali length, and angle of trapezium shape. A total of 99 subjects underwent computed tomography scanning, and the left and right talus bones were both virtually modeled in 3 dimensions. The 4 morphologic parameters were measured 3 times each to obtain the intraclass correlation, and analysis of variance was used to check for any significant differences between the repeated measurements. The average intraclass correlation coefficient for the measurements for 2 to 3 trials was 0.94 ± 0.04. Statistical analyses were performed on the data from all 198 talus bones using SAS software, comparing male and female and left and right bones. All 4 morphometric values were greater in the male group. No significant differences were found between the left and right talus bones. A strong positive correlation was observed between the trochlea tali length and the anterior width. The angle of trapezium shape showed no correlation with the other 3 parameters. The measurements were compared with the dimensions of the current talar components of 4 total ankle arthroplasty implants. However, most of them did not perfectly match the trapezium shape of the talus from our population. We successfully analyzed the trapezium shape of the trochlea tali using reliable virtual 3-dimensional measurements. Compared with other published reports, our study showed a relatively smaller dimension of the trochlea tali than the European counterparts.
  11. Khan NI, Ijaz K, Zahid M, Khan AS, Abdul Kadir MR, Hussain R, et al.
    Mater Sci Eng C Mater Biol Appl, 2015 Nov 1;56:286-93.
    PMID: 26249592 DOI: 10.1016/j.msec.2015.05.025
    Hydroxyapatite is used extensively in hard tissue repair due to its biocompatibility and similarity to biological apatite, the mineral component of bone. It differs subtly in composition from biological apatite which contains other ions such as magnesium, zinc, carbonate and silicon (believed to play biological roles). Traditional methods of hydroxyapatite synthesis are time consuming and require strict reaction parameter control. This paper outlines synthesis of magnesium substituted hydroxyapatite using simple microwave irradiation of precipitated suspensions. Microwave irradiation resulted in a drastic decrease in ageing times of amorphous apatitic phases. Time taken to synthesize hydroxyapatite (which remained stable upon heat treatment at 900°C for 1h) reduced twelve folds (to 2h) as compared to traditionally required times. The effects of increasing magnesium concentration in the precursors on particle size, surface area, phase-purity, agglomeration and thermal stability, were observed using scanning electron microscopy, BET surface area analysis, X-ray diffraction and photo acoustic Fourier transform infra-red spectroscopy. Porous agglomerates were obtained after a brief heat-treatment (1h) at 900°C.
  12. Khan MUA, Al-Thebaiti MA, Hashmi MU, Aftab S, Abd Razak SI, Abu Hassan S, et al.
    Materials (Basel), 2020 Feb 21;13(4).
    PMID: 32098139 DOI: 10.3390/ma13040971
    Advancement and development in bone tissue engineering, particularly that of composite scaffolds, are of great importance for bone tissue engineering. We have synthesized polymeric matrix using biopolymer (β-glucan), acrylic acid, and nano-hydroxyapatite through free radical polymerization method. Bioactive nanocomposite scaffolds (BNSs) were fabricated using the freeze-drying method and Ag was coated by the dip-coating method. The scaffolds have been characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction analysis (XRD) to investigate their functional groups, surface morphology, and phase analysis, respectively. The pore size and porosity of all BNS samples were found to be dependent on silver concentration. Mechanical testing of all BNS samples have substantial compressive strength in dry form that is closer to cancellous bone. The samples of BNS showed substantial antibacterial effect against DH5 alpha E. coli. The biological studies conducted using the MC3T3-E1 cell line via neutral red dye assay on the scaffolds have found to be biocompatible and non-cytotoxic. These bioactive scaffolds can bring numerous applications for bone tissue repairs and regenerations.
  13. Khan MUA, Abd Razak SI, Mehboob H, Abdul Kadir MR, Anand TJS, Inam F, et al.
    ACS Omega, 2021 Feb 16;6(6):4335-4346.
    PMID: 33623844 DOI: 10.1021/acsomega.0c05596
    In bone tissue engineering, multifunctional composite materials are very challenging. Bone tissue engineering is an innovative technique to develop biocompatible scaffolds with suitable orthopedic applications with enhanced antibacterial and mechanical properties. This research introduces a polymeric nanocomposite scaffold based on arabinoxylan-co-acrylic acid, nano-hydroxyapatite (nHAp), nano-aluminum oxide (nAl2O3), and graphene oxide (GO) by free-radical polymerization for the development of porous scaffolds using the freeze-drying technique. These polymeric nanocomposite scaffolds were coated with silver (Ag) nanoparticles to improve antibacterial activities. Together, nHAp, nAl2O3, and GO enhance the multifunctional properties of materials, which regulate their physicochemical and biomechanical properties. Results revealed that the Ag-coated polymeric nanocomposite scaffolds had excellent antibacterial properties and better microstructural properties. Regulated morphological properties and maximal antibacterial inhibition zones were found in the porous scaffolds with the increasing amount of GO. Moreover, the nanosystem and the polymeric matrix have improved the compressive strength (18.89 MPa) and Young's modulus (198.61 MPa) of scaffolds upon increasing the amount of GO. The biological activities of the scaffolds were investigated against the mouse preosteoblast cell lines (MC3T3-E1) and increasing the quantities of GO helps cell adherence and proliferation. Therefore, our findings showed that these silver-coated polymeric nanocomposite scaffolds have the potential for engineering bone tissue.
  14. Khan MUA, Raza MA, Razak SIA, Abdul Kadir MR, Haider A, Shah SA, et al.
    J Tissue Eng Regen Med, 2020 10;14(10):1488-1501.
    PMID: 32761978 DOI: 10.1002/term.3115
    It is a challenging task to develop active biomacromolecular wound dressing materials that are biocompatible and possesses antibacterial properties against the bacterial strains that cause severe skin disease. This work is focused on the preparation of a biocompatible and degradable hydrogel for wound dressing application using arabinoxylan (ARX) and guar gum (GG) natural polymers. Fourier transform infrared spectroscopy (FT-IR) confirmed that both ARX and GG interacted well with each other, and their interactions further increased with the addition of crosslinker tetraethyl orthosilicate. Scanning electron microscope (SEM) micrographs showed uniform porous morphologies of the hydrogels. The porous morphologies and uniform interconnected pores are attributed to the increased crosslinking of the hydrogel. Elastic modulus, tensile strength, and fracture strain of the hydrogels significantly improved (from ATG-1 to ATG-4) with crosslinking. Degradability tests showed that hydrogels lost maximum weight in 7 days. All the samples showed variation in swelling with pH. Maximum swelling was observed at pH 7. The hydrogel samples showed good antibacterial activity against Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) in PBS, good drug release profile (92% drug release), and nontoxic cellular behavior. The cells not only retained their cylindrical morphologies onto the hydrogel but were also performing their normal activities. It is, therefore, believed that as-developed hydrogel could be a potential material for wound dressing application.
  15. Saidin S, Abdul Kadir MR, Sulaiman E, Abu Kasim NH
    J Dent, 2012 Jun;40(6):467-74.
    PMID: 22366313 DOI: 10.1016/j.jdent.2012.02.009
    The aim of this study was to analyse micromotion and stress distribution at the connections of implants and four types of abutments: internal hexagonal, internal octagonal, internal conical and trilobe.
  16. Ishak MI, Abdul Kadir MR, Sulaiman E, Abu Kasim NH
    Int J Oral Maxillofac Surg, 2012 Sep;41(9):1077-89.
    PMID: 22575179 DOI: 10.1016/j.ijom.2012.04.010
    The aim of this study was to compare two different types of surgical approaches, intrasinus and extramaxillary, for the placement of zygomatic implants to treat atrophic maxillae. A computational finite element simulation was used to analyze the strength of implant anchorage for both approaches in various occlusal loading locations. Three-dimensional models of the craniofacial structures surrounding a region of interest, soft tissue and framework were developed using computed tomography image datasets. The implants were modelled using computer-aided design software. The bone was assumed to be linear isotropic with a stiffness of 13.4 GPa, and the implants were assumed to be made of titanium with a stiffness of 110 GPa. Masseter forces of 300 N were applied at the zygomatic arch, and occlusal loads of 150 N were applied vertically onto the framework surface at different locations. The intrasinus approach demonstrated more satisfactory results and could be a viable treatment option. The extramaxillary approach could also be recommended as a reasonable treatment option, provided some improvements are made to address the cantilever effects seen with that approach.
  17. Bakhsheshi-Rad HR, Hamzah E, Kasiri-Asgarani M, Jabbarzare S, Iqbal N, Abdul Kadir MR
    Mater Sci Eng C Mater Biol Appl, 2016 Mar;60:526-537.
    PMID: 26706560 DOI: 10.1016/j.msec.2015.11.057
    The present study addressed the synthesis of a bi-layered nanostructured fluorine-doped hydroxyapatite (nFHA)/polycaprolactone (PCL) coating on Mg-2Zn-3Ce alloy via a combination of electrodeposition (ED) and dip-coating methods. The nFHA/PCL composite coating is composed of a thick (70-80 μm) and porous layer of PCL that uniformly covered the thin nFHA film (8-10 μm) with nanoneedle-like microstructure and crystallite size of around 70-90 nm. Electrochemical measurements showed that the nFHA/PCL composite coating presented a high corrosion resistance (R(p)=2.9×10(3) kΩ cm(2)) and provided sufficient protection for a Mg substrate against galvanic corrosion. The mechanical integrity of the nFHA/PCL composite coatings immersed in SBF for 10 days showed higher compressive strength (34% higher) compared with the uncoated samples, indicating that composite coatings can delay the loss of compressive strength of the Mg alloy. The nFHA/PCL coating indicted better bonding strength (6.9 MPa) compared to PCL coating (2.2 MPa). Immersion tests showed that nFHA/PCL composite-coated alloy experienced much milder corrosion attack and more nucleation sites for apatite compared with the PCL coated and uncoated samples. The bi-layered nFHA/PCL coating can be a good alternative method for the control of corrosion degradation of biodegradable Mg alloy for implant applications.
  18. Nilghaz A, Wicaksono DH, Gustiono D, Abdul Majid FA, Supriyanto E, Abdul Kadir MR
    Lab Chip, 2012 Jan 7;12(1):209-18.
    PMID: 22089026 DOI: 10.1039/c1lc20764d
    This paper describes the fabrication of microfluidic cloth-based analytical devices (μCADs) using a simple wax patterning method on cotton cloth for performing colorimetric bioassays. Commercial cotton cloth fabric is proposed as a new inexpensive, lightweight, and flexible platform for fabricating two- (2D) and three-dimensional (3D) microfluidic systems. We demonstrated that the wicking property of the cotton microfluidic channel can be improved by scouring in soda ash (Na(2)CO(3)) solution which will remove the natural surface wax and expose the underlying texture of the cellulose fiber. After this treatment, we fabricated narrow hydrophilic channels with hydrophobic barriers made from patterned wax to define the 2D microfluidic devices. The designed pattern is carved on wax-impregnated paper, and subsequently transferred to attached cotton cloth by heat treatment. To further obtain 3D microfluidic devices having multiple layers of pattern, a single layer of wax patterned cloth can be folded along a predefined folding line and subsequently pressed using mechanical force. All the fabrication steps are simple and low cost since no special equipment is required. Diagnostic application of cloth-based devices is shown by the development of simple devices that wick and distribute microvolumes of simulated body fluids along the hydrophilic channels into reaction zones to react with analytical reagents. Colorimetric detection of bovine serum albumin (BSA) in artificial urine is carried out by direct visual observation of bromophenol blue (BPB) colour change in the reaction zones. Finally, we show the flexibility of the novel microfluidic platform by conducting a similar reaction in a bent pinned μCAD.
  19. Almasi D, Izman S, Sadeghi M, Iqbal N, Roozbahani F, Krishnamurithy G, et al.
    Int J Biomater, 2015;2015:475435.
    PMID: 25838826 DOI: 10.1155/2015/475435
    Polyether ether ketone (PEEK) is considered the best alternative material for titanium for spinal fusion cage implants due to its low elasticity modulus and radiolucent property. The main problem of PEEK is its bioinert properties. Coating with hydroxyapatite (HA) showed very good improvement in bioactivity of the PEEK implants. However the existing methods for deposition of HA have some disadvantages and damage the PEEK substrate. In our previous study a new method for deposition of HA on PEEK was presented. In this study cell proliferation of mesenchymal stem cell and apatite formation in simulated body fluid (SBF) tests were conducted to probe the effect of this new method in improvement of the bioactivity of PEEK. The mesenchymal stem cell proliferation result showed better cells proliferation on the treated layer in comparison with untreated PEEK. The apatite formation results showed the growth of the HA on the treated PEEK but there was not any sight of the growth of HA on the untreated PEEK even after 2 weeks. The results showed the new method of the HA deposition improved the bioactivity of the treated PEEK in comparison with the bare PEEK.
  20. Ramlee MH, Seng GH, Ros Felip A, Abdul Kadir MR
    Injury, 2021 Aug;52(8):2131-2141.
    PMID: 33745700 DOI: 10.1016/j.injury.2021.03.017
    An external fixator is a promising medical device that could provide optimum stability and reduce the rate of complications in treating bone fracture during intervention period. It is noted that the biomechanics behaviour of device can be altered by introducing more features such as material suitability and additional components. Therefore, this study was conducted via finite element method to investigate the effects of additional hollow cylinder coated with external fixator screws in treating Type III pilon fracture. Finite element models which have been validated with experimental data were used to simulate stresses at the pin-bone interface and relative micromovement at interfragmentary fractures during swing (70 N load) and stance phases (350 N load). All bones and external fixators were assigned with isotropic material properties while the cartilages were simulated with hyper-elastic. For the hollow cylinder, polyethylene was assigned due to its properties which are equivalent to the bone. From the results, it is found that stresses at the pin-bone interface for the coated screws were reduced to 54% as compared to the conventional fixator. For the micromovement, there was no difference between both models, whereby the value was 0.03 mm. The results supported previously published literature, in which high stresses are unavoidable at the interface, fortunately, those stresses did not exceed the ultimate strength of bone, which is safe for treating patients. In conclusion, if patients are allowed to bear weight bearing, the external fixator with coated screws is a more favourable option to be fixed into the bone to avoid complications at the interface.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links