Displaying publications 21 - 36 of 36 in total

Abstract:
Sort:
  1. Low LE, Siva SP, Ho YK, Chan ES, Tey BT
    Adv Colloid Interface Sci, 2020 Mar;277:102117.
    PMID: 32035999 DOI: 10.1016/j.cis.2020.102117
    Recently, there have been increasing demand for the application of Pickering emulsions in various industries due to its combined advantage in terms of cost, quality and sustainability. This review aims to provide a complete overview of the available methodology for the physical characterization of emulsions that are stabilized by solid particles (known as Pickering emulsion). Current approaches and techniques for the analysis of the formation and properties of the Pickering emulsion were outlined along with the expected results of these methods on the emulsions. Besides, the application of modelling techniques has also been elaborated for the effective characterization of Pickering emulsions. Additionally, approaches to assess the stability of Pickering emulsions against physical deformation such as coalescence and gravitational separation were reviewed. Potential future developments of these characterization techniques were also briefly discussed. This review can act as a guide to researchers to better understand the standard procedures of Pickering emulsion assessment and the advanced methods available to date to study these emulsions, down to the minute details.
  2. Lim HP, Tey BT, Chan ES
    J Control Release, 2014 Jul 28;186:11-21.
    PMID: 24816070 DOI: 10.1016/j.jconrel.2014.04.042
    Natural biopolymers have attracted considerable interest for the development of delivery systems for protein drugs owing to their biocompatibility, non-toxicity, renewability and mild processing conditions. This paper offers an overview of the current status and future perspectives of particle designs using biopolymers for the stabilization and controlled-delivery of a model protein drug--insulin. We first describe the design criteria for polymeric encapsulation and subsequently classify the basic principles of particle fabrication as well as the existing particle designs for oral insulin encapsulation. The performances of these existing particle designs in terms of insulin stability and in vitro release behavior in acidic and alkaline media, as well as their in vivo performance are compared and reviewed. This review forms the basis for future works on the optimization of particle design and material formulation for the development of an improved oral delivery system for protein drugs.
  3. Lim HP, Ng SD, Dasa DB, Adnan SA, Tey BT, Chan ES, et al.
    Int J Biol Macromol, 2023 Mar 31;232:123461.
    PMID: 36720328 DOI: 10.1016/j.ijbiomac.2023.123461
    Formulation of water-in-oil (W/O) Pickering emulsion (PE) for food applications has been largely restricted by the limited choices of food-grade Pickering emulsifiers. In this study, composite microgels made of chitosan and carrageenan were explored as a dual (pH and thermal) stimuli-responsive Pickering emulsifier for the stabilization of W/O PE. The chitosan-carrageenan (CS-CRG) composite microgels not only exhibited pH- and thermo-responsiveness, but also displayed enhanced lipophilicity as compared to the discrete polymers. The stability of the CS-CRG-stabilized W/O PE system (CS-CRG PE) was governed by CS:CRG mass ratio and oil fractions used. The CS-CRG PE remained stable at acidic pH and at temperatures below 40 °C. The instability of CS-CRG composite microgels at alkaline pH and at temperatures above 40 °C rendered the demulsification of CS-CRG PE. This stimuli-responsive W/O PE could unlock new opportunities for the development of stimuli-responsive W/O PE using food-grade materials.
  4. Liew JC, Tan WS, Alitheen NB, Chan ES, Tey BT
    J Biosci Bioeng, 2010 Sep;110(3):338-44.
    PMID: 20547346 DOI: 10.1016/j.jbiosc.2010.02.017
    Serum deprivation inhibits cell growth and initiates apoptosis cell death in mammalian cell cultures. Since apoptosis is a genetically controlled cell death pathway, over-expression of anti-apoptotic proteins may provide a way to delay apoptosis. This study investigated the ability of the X-linked inhibitor of apoptosis protein (XIAP) to inhibit apoptosis induced by serum deprivation. Study includes evaluation of the ability of XIAP to prolong culture period and its effect on cell proliferation in serum-deprived media. The full length human XIAP was introduced into CHO-K1 cell lines and the effects of XIAP over-expression on the inhibition of apoptosis induced by serum-deprived conditions were examined. In batch cultures, cells over-expressing XIAP showed decreased levels of apoptosis and a higher number of viable cell under serum-deprived conditions compared to the control cell lines. The viability of control cells dropped to 40% after 2days of serum deprivation, the XIAP expressing cells still maintained at a viability higher than 90%. Further investigation revealed that the caspase-3 activity of the CHO-K1 cell line was inhibited as a result of XIAP expression.
  5. Leong JY, Tey BT, Tan CP, Chan ES
    ACS Appl Mater Interfaces, 2015 Aug 5;7(30):16169-76.
    PMID: 26148344 DOI: 10.1021/acsami.5b04486
    Ionotropic gelation has been an attractive method for the fabrication of biopolymeric oil-core microcapsules due to its safe and mild processing conditions. However, the mandatory use of a nozzle system to form the microcapsules restricts the process scalability and the production of small microcapsules (<100 μm). We report, for the first time, a nozzleless and surfactant-free approach to fabricate oil-core biopolymeric microcapsules through ionotropic gelation at the interface of an O/W Pickering emulsion. This approach involves the self-assembly of calcium carbonate (CaCO3) nanoparticles at the interface of O/W emulsion droplets followed by the addition of a polyanionic biopolymer into the aqueous phase. Subsequently, CaCO3 nanoparticles are dissolved by pH reduction, thus liberating Ca(2+) ions to cross-link the surrounding polyanionic biopolymer to form a shell that encapsulates the oil droplet. We demonstrate the versatility of this method by fabricating microcapsules from different types of polyanionic biopolymers (i.e., alginate, pectin, and gellan gum) and water-immiscible liquid cores (i.e., palm olein, cyclohexane, dichloromethane, and toluene). In addition, small microcapsules with a mean size smaller than 100 μm can be produced by selecting the appropriate conventional emulsification methods available to prepare the Pickering emulsion. The simplicity and versatility of this method allows biopolymeric microcapsules to be fabricated with ease by ionotropic gelation for numerous applications.
  6. Lee YY, Tang TK, Chan ES, Phuah ET, Lai OM, Tan CP, et al.
    PMID: 33480262 DOI: 10.1080/10408398.2021.1873729
    Structured lipid is a type of modified form of lipid that is "fabricated" with the purpose to improve the nutritional and functional properties of conventional fats and oils derived from animal and plant sources. Such healthier choice of lipid received escalating attention from the public for its capability to manage the rising prevalence of metabolic syndrome. Of which, medium-chain triacylglycerol (MCT) and medium-and long-chain triacylglycerol (MLCT) are the few examples of the "new generation" custom-made healthful lipids which are mainly composed of medium chain fatty acid (MCFA). MCT is made up exclusively of MCFA whereas MLCT contains a mixture of MCFA and long chain fatty acid (LCFA), respectively. Attributed by the unique metabolism of MCFA which is rapidly metabolized by the body, MCFA and MCT showed to acquire multiple physiological and functional properties in managing and reversing certain health disorders. Several chemically or enzymatically oils and fats modification processes catalyzed by a biological or chemical catalyst such as acidolysis, interesterification and esterification are adopted to synthesis MCT and MLCT. With their purported health benefits, MCT and MLCT are widely being used as nutraceutical in food and pharmaceutical sectors. This article aims to provide a comprehensive review on MCT and MLCT, with an emphasis on the basic understanding of its structures, properties, unique metabolism; the current status of the touted health benefits; latest routes of production; its up-to-date applications in the different food systems; relevant patents filed and its drawbacks.
  7. Lee MF, Chan ES, Tan WS, Tam KC, Tey BT
    J Chromatogr A, 2015 Oct 9;1415:161-5.
    PMID: 26358561 DOI: 10.1016/j.chroma.2015.08.056
    Poly(oligo(ethylene glycol) methacrylate) (POEGMA), an inert polymer was grafted onto an anion exchange adsorbent for the exclusion of relatively larger hepatitis B virus-like particles (HB-VLPs) from the anion exchange ligand (Q) and at the same time this process allowed the selective adsorption of smaller size Escherichia coli host cell proteins (HCPs). The chain lengths of the POEGMA grafted were modulated by varying the amount of monomers used in the polymer grafting. The purification factor and yield of the HB-VLPs obtained from the flow-through of negative chromatography were 2.3 and 66.0±3.1%, respectively, when shorter chain length of POEGMA (SQ) was grafted. Adsorbent grafted with longer chain of POEGMA (LQ) excluded some HCPs that are larger in size together with the HB-VLPs, reducing the purity of the recovered HB-VLPs. Further heat-treatment of the flow-through pool from SQ followed by centrifugation increased the purity of heat stable HB-VLPs to 87.5±1.1%. Heat-treatment of the flow through sample resulted in thermal denaturation and aggregation of HCPs, while the heat stable HB-VLPs still remained intact as observed under a transmission electron microscope. The performance of the negative chromatography together with heat treatment in the purification of HB-VLPs is far better than the reported bind-and-elute techniques.
  8. Lee MF, Chan ES, Tan WS, Tam KC, Tey BT
    J Chromatogr A, 2016 May 6;1445:1-9.
    PMID: 27059397 DOI: 10.1016/j.chroma.2016.03.066
    Purification of virus-like particles (VLPs) in bind-and-elute mode has reached a bottleneck. Negative chromatography has emerged as the alternative solution; however, benchmark of negative chromatography media and their respective optimized conditions are absent. Hence, this study was carried out to compare the performance of different negative chromatography media for the purification of hepatitis B VLPs (HB-VLPs) from clarified Escherichia coli feedstock. The modified anion exchange media, core-shell adsorbents (InertShell and InertLayer 1000) and polymer grafted adsorbents (SQ) were compared. The results of chromatography from packed bed column of core-shell adsorbents showed that there is a trade-off between the purity and recovery of HB-VLPs in the flowthrough fraction due to the shell thickness. Atomic force microscopic analysis revealed funnel-shaped pore channels in the shell layer which may contribute to the entrapment of HB-VLPs. A longer residence time at a lower feed flow rate (0.5ml/min) improved slightly the HB-VLPs purity in all modified adsorbents, but the recovery in InertShell reduced substantially. The preheat-treatment is not recommended for the negative chromatography as the thermal-induced co-aggregation of HCPs and HB-VLPs would flow along with HB-VLPs and thus reduced the HB-VLPs purity in the flowthrough. Further reduction in the feedstock concentration enhanced the purity of HB-VLPs especially in InertLayer 1000 but reduced substantially the recovery of HB-VLPs. In general, the polymer grafted adsorbent, SQ, performed better than the core-shell adsorbents in handling a higher feedstock concentration.
  9. Lee MF, Chan ES, Tam KC, Tey BT
    J Chromatogr A, 2015 May 15;1394:71-80.
    PMID: 25836051 DOI: 10.1016/j.chroma.2015.03.034
    A thermo-responsive random copolymer, POEGMA (poly(oligoethylene glycol) methacrylate) grafted on cationized agarose adsorbent was used for size selective protein adsorption. The effects of OEGMA300 ((oligoethylene glycol) methyl ether methacrylate, Mn=300g/mol) content and temperature on the adsorption of bovine serum albumin (BSA) were evaluated. Increasing the content of OEGMA300 resulted a reduction in BSA adsorption due to the enhanced shielding effect of OEGMA300 chains. Grafting of POEGMA chains onto cationized agarose adsorbent reduced the BSA adsorption by more than 95% at 26.5°C, which is below the LCST (lower critical solution temperature) of POEGMA. The BSA adsorption capacities for adsorbents grafted with 10 and 20mol% of OEGMA300 decreased by 48% and 46% respectively at 38°C, a temperature higher than their LCSTs. The temperature-dependent adsorption of BSA on the adsorbents was attributed to changes in the polymer conformation. The thermal transition of grafted POEGMA conformation exposed the ligand when the temperature was increased. Myoglobin (Myo), which was smaller than BSA, its adsorption behavior was less dependent on the polymer conformation. The adsorption of myoglobin onto the adsorbent with and without POEGMA showed similar percentage of reduction whereas the adsorption of BSA onto the adsorbent with POEGMA decreased by 7.6 times compared to the one without POEGMA. The packed bed of POEGMA grafted adsorbent was used for flow through separation of a protein mixture consisted of virus-like particle, Hepatitis B virus-like particle (HBVLP), BSA and insulin aspart. The recovery of HBVLP in 20mol% of OEGMA300 grafted adsorbent was increased by 19% compared to ungrafted adsorbent. The flow through of BSA can be reduced by increasing the operating temperature above LCST of 20mol% of OEGMA300 while the smaller protein, insulin aspart, remained adsorbed onto the cationized surface. Hence, this thermo-responsive adsorbent has a potential for size-selective separation of protein especially for the recovery of large biomolecule.
  10. Jegannathan KR, Abang S, Poncelet D, Chan ES, Ravindra P
    Crit Rev Biotechnol, 2008;28(4):253-64.
    PMID: 19051104 DOI: 10.1080/07388550802428392
    Increase in volume of biodiesel production in the world scenario proves that biodiesel is accepted as an alternative to conventional fuel. Production of biodiesel using alkaline catalyst has been commercially implemented due to its high conversion and low production time. For the product and process development of biodiesel, enzymatic transesterification has been suggested to produce a high purity product with an economic, environment friendly process at mild reaction conditions. The enzyme cost being the main hurdle can be overcome by immobilization. Immobilized enzyme, which has been successfully used in various fields over the soluble counterpart, could be employed in biodiesel production with the aim of reducing the production cost by reusing the enzyme. This review attempts to provide an updated compilation of the studies reported on biodiesel production by using lipase immobilized through various techniques and the parameters, which affect their functionality.
  11. Hoe BC, Chan ES, Nagasundara Ramanan R, Ooi CW
    Compr Rev Food Sci Food Saf, 2020 11;19(6):4031-4061.
    PMID: 33337051 DOI: 10.1111/1541-4337.12648
    Phytonutrients are plant-derived bioactives which are widely utilized as colorants or supplements in food, cosmetic, and pharmaceutical products. To meet the global demand for phytonutrients, oil palm has emerged as a promising source of phytonutrients on account of its large-scale plantation worldwide and high oil productivity. Phytonutrients including carotenoids, tocols, sterols, squalene, phospholipids, coenzyme Q10, and polyphenols can be found in crude palm oil as well as in the byproducts (e.g. palm oil mill effluent and palm-pressed fiber oil) generated from the palm oil milling process. However, the high viscosity and semisolid properties of palm oil are problematic in phytonutrient extraction. Another major challenge is the retention of the sensitive phytonutrients during the extraction process. Over the years, the advances in the extraction methods have improved the extractability of phytonutrients. The emerging extraction methods can operate under mild conditions to mitigate the risk of phytonutrient degradation. This review outlines the types of phytonutrient in palm oil and their extraction strategies. The working principles and operating conditions of extraction methods are discussed along with their potential and limitations in terms of extraction efficiency and practicability. The methods for pretreatment of feedstocks for improving extraction efficiency are also highlighted. The challenges in the extraction of phytonutrient from palm oil feedstock are summarized. Lastly, we provide suggestions for overcoming the limitations and improving the performances of phytonutrient extraction.
  12. Hia IL, Pasbakhsh P, Chan ES, Chai SP
    Sci Rep, 2016 10 03;6:34674.
    PMID: 27694922 DOI: 10.1038/srep34674
    Alginate microcapsules containing epoxy resin were developed through electrospraying method and embedded into epoxy matrix to produce a capsule-based self-healing composite system. These formaldehyde free alginate/epoxy microcapsules were characterized via light microscope, field emission scanning electron microscope, fourier transform infrared spectroscopy and thermogravimetric analysis. Results showed that epoxy resin was successfully encapsulated within alginate matrix to form porous (multi-core) microcapsules with pore size ranged from 5-100 μm. The microcapsules had an average size of 320 ± 20 μm with decomposition temperature at 220 °C. The loading capacity of these capsules was estimated to be 79%. Under in situ healing test, impact specimens showed healing efficiency as high as 86% and the ability to heal up to 3 times due to the multi-core capsule structure and the high impact energy test that triggered the released of epoxy especially in the second and third healings. TDCB specimens showed one-time healing only with the highest healing efficiency of 76%. The single healing event was attributed by the constant crack propagation rate of TDCB fracture test. For the first time, a cost effective, environmentally benign and sustainable capsule-based self-healing system with multiple healing capabilities and high healing performance was developed.
  13. Chan ES, Lee BB, Ravindra P, Poncelet D
    J Colloid Interface Sci, 2009 Oct 1;338(1):63-72.
    PMID: 19604515 DOI: 10.1016/j.jcis.2009.05.027
    The aim of this work was to develop prediction models for shape and size of ca-alginate macrobeads produced through extrusion-dripping method. The relationship between the process variables on the shape and size of the alginate drops before and after gelation was established with the aid of image analysis. The results show that a critical Ohnersorge number (Oh)>0.24 was required to form spherical beads. The shape transition of ca-alginate beads could be typically distinguished into three phases along the collecting distance and it was affected by the combined influence of the solution properties, the collecting distance and the drop size. Mathematical equations and a master shape diagram were developed to reveal a clear operating region and the overall process limits within which spherical ca-alginate beads could be formed. In terms of bead size, the overall size correction factor (K) which accounted for the liquid loss factor (k(LF)) and the shrinkage factor (k(SF)), varied between 0.73 and 0.85 under the experimental conditions. The size prediction model correlated well with the experimental data. The approach and the outcome could be used as a model to develop prediction tools for similar bead production systems.
  14. Chan ES, Lee PP, Ravindra P, Krishnaiah K, Voo WP
    Appl Microbiol Biotechnol, 2010 Mar;86(1):385-91.
    PMID: 20033402 DOI: 10.1007/s00253-009-2384-y
    The aim of this work was to develop a standard quantitative method to measure the acid tolerance of probiotic cells when exposed to a simulated gastric fluid. Three model strains of different cell concentrations were exposed to a standard simulated gastric fluid of fixed volume. The fluid pH ranged from pH 1.5 to 2.5. In general, the death kinetics followed an exponential trend. The overall death constant, k (d), for all strains was found to be in a power relationship with the pH value and the initial cell concentration, and it can be expressed as k(d)=k(AII) (pH(-9.0)N(0)(-0.19)) where k (AII) is defined as the acid intolerance indicator and N (0) is the initial cell concentration (CFU/ml). This equation was validated with the experimental data with an average R (2) of 0.98. The acid intolerance of cells can be quantitatively expressed by the k (AII) values, where higher value indicates higher intolerance. In conclusion, a standard quantitative method has been developed to measure the acid tolerance of probiotic cells. This could facilitate the selection of probiotic strains and processing technologies.
  15. Adiiba SH, Chan ES, Lee YY, Amelia, Chang MY, Song CP
    J Sci Food Agric, 2022 Dec;102(15):6921-6929.
    PMID: 35662022 DOI: 10.1002/jsfa.12053
    BACKGROUND: Crude palm oil (CPO) is rich with phytonutrients such as carotenoids and tocols which possesses many health benefits. The aim of this research was to develop a methanol-free process to produce palm phytonutrients via enzymatic hydrolysis. In this work, triacylglycerol was hydrolyzed into free fatty acids (FFAs) using three different types of liquid lipases derived from Aspergillus oryzae (ET 2.0), Aspergillus niger (Habio) and Candida antartica (CALB).

    RESULTS: ET 2.0 was found to be the best enzyme for hydrolysis. Under the optimum condition, the FFA content achievable was 790 g kg-1 after 24 h of reaction with 1:1 water-to-oil mass ratio at 50 °C and stirring speed of 9 × g. Furthermore, with the addition of 2 g kg-1 ascorbic acid, it was found that 98% of carotenoids and 96% of tocols could be retained after hydrolysis.

    CONCLUSION: This work shows that enzymatic hydrolysis, which is inherently safer, cleaner and sustainable is feasible to replace the conventional methanolysis for the production of palm phytonutrients. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  16. Abdulla R, Chan ES, Ravindra P
    Crit Rev Biotechnol, 2011 Mar;31(1):53-64.
    PMID: 20572796 DOI: 10.3109/07388551.2010.487185
    The fuel crisis and environmental concerns, mainly due to global warming, have led researchers to consider the importance of biofuels such as biodiesel. Vegetable oils, which are too viscous to be used directly in engines, are converted into their corresponding methyl or ethyl esters by a process called transesterification. With the recent debates on "food versus fuel," non-edible oils, such as Jatropha curcas, are emerging as one of the main contenders for biodiesel production. Much research is still needed to explore and realize the full potential of a green fuel from J. curcas. Upcoming projects and plantations of Jatropha in countries such as India, Malaysia, and Indonesia suggest a promising future for this plant as a potential biodiesel feedstock. Many of the drawbacks associated with chemical catalysts can be overcome by using lipases for enzymatic transesterification. The high cost of lipases can be overcome, to a certain extent, by immobilization techniques. This article reviews the importance of the J. curcas plant and describes existing research conducted on Jatropha biodiesel production. The article highlights areas where further research is required and relevance of designing an immobilized lipase for biodiesel production is discussed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links