Displaying publications 21 - 40 of 165 in total

Abstract:
Sort:
  1. Mohamad NV, Ima-Nirwana S, Chin KY
    Biomed Pharmacother, 2021 May;137:111368.
    PMID: 33582449 DOI: 10.1016/j.biopha.2021.111368
    Tocotrienol has been shown to prevent bone loss in animal models of postmenopausal osteoporosis, but the low oral bioavailability might limit its use. A self-emulsifying drug delivery system (SEDDS) could increase the bioavailability of tocotrienol. However, evidence of this system in improving the skeletal effects of tocotrienol is scanty. This study aims to evaluate the therapeutic efficacy of annatto tocotrienol with SEDDS in a rat model of postmenopausal bone loss. Ten-month-old female Sprague Dawley rats were randomized into six groups. The baseline group was euthanatized at the onset of the study. Four other groups underwent ovariectomy to induce estrogen deficiency. The sham underwent similar surgery procedure, but their ovaries were retained. Eight weeks after surgery, the ovariectomized rats received one of the four different regimens orally daily: (a) SEDDS, (b) annatto tocotrienol [60 mg/kg body weight (b.w.)] without SEDDS, (c) annatto-tocotrienol (60 mg/kg b.w.) with SEDDS, (d) raloxifene (1 mg/kg b.w.). After eight weeks of treatment, blood was collected for the measurement of delta-tocotrienol level and oxidative stress markers. The rats were euthanized and their bones were harvested for the evaluation of the bone microstructure, calcium content and strength. Circulating delta-tocotrienol level was significantly higher in rats receiving annatto tocotrienol with SEDDS compared to the group receiving unformulated annatto-tocotrienol (p 
  2. Chin KY, Pang KL
    Nutrients, 2017 Sep 26;9(10).
    PMID: 28954409 DOI: 10.3390/nu9101060
    Osteoarthritis is a major cause of morbidity among the elderly worldwide. It is a disease characterized by localized inflammation of the joint and destruction of cartilage, leading to loss of function. Impaired chondrocyte repair mechanisms, due to inflammation, oxidative stress and autophagy, play important roles in the pathogenesis of osteoarthritis. Olive and its derivatives, which possess anti-inflammatory, antioxidant and autophagy-enhancing activities, are suitable candidates for therapeutic interventions for osteoarthritis. This review aimed to summarize the current evidence on the effects of olive and its derivatives, on osteoarthritis and chondrocytes. The literature on animal and human studies has demonstrated a beneficial effect of olive and its derivatives on the progression of osteoarthritis. In vitro studies have suggested that the augmentation of autophagy (though sirtuin-1) and suppression of inflammation by olive polyphenols could contribute to the chondroprotective effects of olive polyphenols. More research and well-planned clinical trials are required to justify the use of olive-based treatment in osteoarthritis.
  3. Sapian S, Taib IS, Latip J, Katas H, Chin KY, Mohd Nor NA, et al.
    Int J Mol Sci, 2021 Oct 27;22(21).
    PMID: 34769045 DOI: 10.3390/ijms222111616
    Diabetes cardiomyopathy is one of the key factors of mortality among diabetic patients around the globe. One of the prior contributors to the progression of diabetic cardiomyopathy is cardiac mitochondrial dysfunction. The cardiac mitochondrial dysfunction can induce oxidative stress in cardiomyocytes and was found to be the cause of majority of the heart morphological and dynamical changes in diabetic cardiomyopathy. To slow down the occurrence of diabetic cardiomyopathy, it is crucial to discover therapeutic agents that target mitochondrial-induced oxidative stress. Flavonoid is a plentiful phytochemical in plants that shows a wide range of biological actions against human diseases. Flavonoids have been extensively documented for their ability to protect the heart from diabetic cardiomyopathy. Flavonoids' ability to alleviate diabetic cardiomyopathy is primarily attributed to their antioxidant properties. In this review, we present the mechanisms involved in flavonoid therapies in ameliorating mitochondrial-induced oxidative stress in diabetic cardiomyopathy.
  4. Wong SK, Mohamad NV, Jayusman PA, Shuid AN, Ima-Nirwana S, Chin KY
    Aging Male, 2019 Jun;22(2):89-101.
    PMID: 29508640 DOI: 10.1080/13685538.2018.1448058
    Selective estrogen receptor modulators (SERMs) represent a class of drugs that act as agonist or antagonist for estrogen receptor in a tissue-specific manner. The SERMs drugs are initially used for the prevention and treatment of osteoporosis in postmenopausal women. Bone health in prostate cancer patients has become a significant concern, whereby patients undergo androgen deprivation therapy is often associated with deleterious effects on bone. Previous preclinical and epidemiological findings showed that estrogens play a dominant role in improving bone health as compared to testosterone in men. Therefore, this evidence-based review aims to assess the available evidence derived from animal and human studies on the effects of SERMs on the male skeletal system. The effects of SERMs on bone mineral density (BMD)/content (BMC), bone histomorphometry, bone turnover, bone strength and fracture risk have been summarized in this review.
  5. Chin KY
    Drug Des Devel Ther, 2016;10:3029-3042.
    PMID: 27703331
    Osteoarthritis is a degenerative disease of the joint affecting aging populations worldwide. It has an underlying inflammatory cause, which contributes to the loss of chondrocytes, leading to diminished cartilage layer at the affected joints. Compounds with anti-inflammatory properties are potential treatment agents for osteoarthritis. Curcumin derived from Curcuma species is an anti-inflammatory compound as such. This review aims to summarize the antiosteoarthritic effects of curcumin derived from clinical and preclinical studies. Many clinical trials have been conducted to determine the effectiveness of curcumin in osteoarthritic patients. Extracts of Curcuma species, curcuminoids and enhanced curcumin, were used in these studies. Patients with osteoarthritis showed improvement in pain, physical function, and quality of life after taking curcumin. They also reported reduced concomitant usage of analgesics and side effects during treatment. In vitro studies demonstrated that curcumin could prevent the apoptosis of chondrocytes, suppress the release of proteoglycans and metal metalloproteases and expression of cyclooxygenase, prostaglandin E-2, and inflammatory cytokines in chondrocytes. These were achieved by blocking the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) system in the chondrocytes, by preventing the activation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, phosphorylation, and translocation of the p65 subunit of NF-κB complexes into the nucleus. In conclusion, curcumin is a potential candidate for the treatment of osteoarthritis. More well-planned randomized control trials and enhanced curcumin formulation are required to justify the use of curcumin in treating osteoarthritis.
  6. Chin KY, Ima-Nirwana S
    Front Pharmacol, 2018;9:946.
    PMID: 30186176 DOI: 10.3389/fphar.2018.00946
    Osteoarthritis is a debilitating disease of the joint involving cartilage degeneration and chondrocytes apoptosis. Oxidative stress is one of the many proposed mechanisms underpinning joint degeneration in osteoarthritis. The current pharmacotherapies emphasize pain and symptomatic management of the patients but do not alter the biological processes underlying the cartilage degeneration. Vitamin E is a potential agent to prevent or treat osteoarthritis due to its antioxidant and anti-inflammatory effects. This review aims to summarize the current evidence on the relationship between vitamin E and osteoarthritis derived from preclinical and human studies. Cellular studies showed that vitamin E mitigated oxidative stress in cartilage explants or chondrocyte culture invoked by mechanical stress or free radicals. Animal studies suggested that vitamin E treatment prevented cartilage degeneration and improve oxidative status in animal models of osteoarthritis. Low circulating or synovial vitamin E was observed in human osteoarthritic patients compared to healthy controls. Observational studies also demonstrated that vitamin E was related to induction or progression of osteoarthritis in the general population. Vitamin E supplementation might improve the outcomes in patients with osteoarthritis, but negative results were also reported. Different isomers of vitamin E might possess distinct anti-osteoarthritic effects. As a conclusion, vitamin E may retard the progression of osteoarthritis by ameliorating oxidative stress and inflammation of the joint. Further studies are warranted to develop vitamin E as an anti-osteoarthritis agent to reduce the global burden of this disease.
  7. Chin KY, Ima-Nirwana S, Mohamed IN, Aminuddin A, Johari MH, Ngah WZ
    Int J Med Sci, 2014;11(4):349-55.
    PMID: 24578612 DOI: 10.7150/ijms.7104
    Alteration in lipid profile is a common observation in patients with thyroid dysfunction, but the current knowledge on the relationship between lipids and thyroid hormone levels in euthyroid state is insufficient. The current study aimed to determine the association between thyroid hormones and thyroid-stimulating hormone (TSH) with lipid profile in a euthyroid male population.
  8. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S
    Nutrients, 2016 Jun 07;8(6).
    PMID: 27338453 DOI: 10.3390/nu8060347
    Metabolic syndrome (MetS) and osteoporosis are two major healthcare problems worldwide. Metabolic syndrome is a constellation of medical conditions consisting of central obesity, hyperglycemia, hypertension, and dyslipidemia, in which each acts on bone tissue in different ways. The growing prevalence of MetS and osteoporosis in the population along with the controversial findings on the relationship between both conditions suggest the importance for further investigation and discussion on this topic. This review aims to assess the available evidence on the effects of each component of MetS on bone metabolism from the conventional to the contemporary. Previous studies suggested that the two conditions shared some common underlying pathways, which include regulation of calcium homeostasis, receptor activator of NF-κB ligand (RANKL)/receptor activator of the NF-κB (RANK)/osteoprotegerin (OPG) and Wnt-β-catenin signaling pathways. In conclusion, we suggest that MetS may have a potential role in developing osteoporosis and more studies are necessary to further prove this hypothesis.
  9. Mohamad NV, Wong SK, Wan Hasan WN, Jolly JJ, Nur-Farhana MF, Ima-Nirwana S, et al.
    Aging Male, 2019 Jun;22(2):129-140.
    PMID: 29925283 DOI: 10.1080/13685538.2018.1482487
    Testosterone is the predominant gonadal androgen in men. Low testosterone levels are found to be associated with an increased in metabolic risk and systematic inflammation. Since adipose tissue is a source of inflammatory cytokines, testosterone may regulate inflammation by acting on adipose tissue. This review aimed to explore the role of testosterone in inflammation and its mechanism of action. Both animal studies and human studies showed that (1) testosterone deficiency was associated with an increase in pro-inflammatory cytokines; (2) testosterone substitution reduced pro-inflammatory cytokines. The suppression of inflammation by testosterone were observed in patients with coronary artery disease, prostate cancer and diabetes mellitus through the increase in anti-inflammatory cytokines (IL-10) and the decrease in pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α). Despite these, some studies also reported a non-significant relationship. In conclusion, testosterone may possess anti-inflammatory properties but its magnitude is debatable. More evidence is needed to validate the use of testosterone as a marker and in the management of chronic inflammatory diseases.
  10. Subramaniam S, Chan CY, Soelaiman IN, Mohamed N, Muhammad N, Ahmad F, et al.
    Arch Osteoporos, 2019 11 28;14(1):117.
    PMID: 31781876 DOI: 10.1007/s11657-019-0666-2
    The concordance between osteoporosis self-assessment tool for Asians (OSTA) and dual-energy X-ray absorptiometry (DXA) was fair in the study. Modification of OSTA cutoff values improved its sensitivity to identify subjects at risk for suboptimal bone health (osteopenia/osteoporosis) and osteoporosis.

    PURPOSE: Osteoporosis self-assessment tool for Asians (OSTA) is a convenient screening algorithm used widely to identify patients at risk of osteoporosis. Currently, the number of studies validating OSTA in Malaysian population is limited. This study aimed to validate the performance of OSTA in identifying subjects with osteoporosis determined with DXA.

    METHODS: This cross-sectional study recruited 786 Malaysians in Klang Valley, Malaysia. Their bone health status was assessed by DXA and OSTA. The association and agreement between OSTA and bone mineral density assessment by DXA were determined by Pearson's correlation and Cohen's kappa, respectively. Receiver operating characteristics (ROC) curves were used to determine the sensitivity, specificity, and area under the curve (AUC) for OSTA.

    RESULTS: OSTA and DXA showed a fair association in the study (r = 0.382, κ = 0.159, p 

  11. Chin KY, Ima-Nirwana S
    Nutrients, 2014 Apr 10;6(4):1424-41.
    PMID: 24727433 DOI: 10.3390/nu6041424
    Recent studies have found conflicting evidence on the role of α-tocopherol (αTF) on bone health. This nonsystematic review aimed to summarize the current evidence on the effects of αTF on bone health from cell culture, animal, and human studies in order to clarify the role of αTF on bone health. Our review found that αTF exerted beneficial, harmful or null effects on bone formation cells. Animal studies generally showed positive effects of αTF supplementation on bone in various models of osteoporosis. However, high-dose αTF was possibly detrimental to bone in normal animals. Human studies mostly demonstrated a positive relationship between αTF, as assessed using high performance liquid chromatography and/or dietary questionnaire, and bone health, as assessed using bone mineral density and/or fracture incidence. Three possible reasons high dosage of αTF can be detrimental to bone include its interference with Vitamin K function on bone, the blocking of the entry of other Vitamin E isomers beneficial to bone, and the role of αTF as a prooxidant. However, these adverse effects have not been shown in human studies. In conclusion, αTF may have a dual role in bone health, whereby in the appropriate doses it is beneficial but in high doses it may be harmful to bone.
  12. Chin KY, Ima-Nirwana S
    Aging Male, 2015 Mar;18(1):60-6.
    PMID: 25166624 DOI: 10.3109/13685538.2014.954995
    This study aimed to determine the effects of orchidectomy and supraphysiological testosterone replacement on trabecular structure and gene expression in the bone.
  13. Mohamad NV, Ima-Nirwana S, Chin KY
    Aging Male, 2020 Dec;23(5):327-334.
    PMID: 29495911 DOI: 10.1080/13685538.2018.1446075
    This study aimed to compare the skeletal effect between GnRH agonist therapy and orchidectomy in male rats assessed using serum turnover markers and bone histomorphometry. Three-month-old male Sprague-Dawley rats (n = 46) were divided into three experimental arms, baseline, buserelin, and orchidectomy. In the buserelin arm, the rats received a daily subcutaneous injection of either normal saline or buserelin acetate at 25 µg/kg or 75 µg/kg. In the orchidectomy arm, the rats were either sham-operated or orchidectomized. The rats were euthanized after the three-month treatment. Blood was collected for the evaluation of bone turnover markers. Femurs were harvested for bone histomorphometry examination. A significant increase in serum C-telopeptide of type 1 collagen was observed in the orchidectomized group compared with the sham group (p 
  14. Chin KY, Soelaiman IN, Mohamed IN, Ibrahim S, Wan Ngah WZ
    Arch Osteoporos, 2012;7:135-45.
    PMID: 23225291 DOI: 10.1007/s11657-012-0091-2
    The influences of age, physical activity, and body anthropometry on calcaneal speed of sound are different among young adults, middle-aged, and elderly men.
  15. Ekeuku SO, Chin KY, Qian J, Zhang Y, Qu H, Ahmad F, et al.
    Int J Med Sci, 2023;20(13):1711-1721.
    PMID: 37928881 DOI: 10.7150/ijms.84604
    Background: Menopause is accompanied by increased oxidative stress, partly contributing to weight gain and bone marrow adiposity. Traditional Chinese medication, E'Jiao, has been demonstrated to reduce excessive bone remodelling during oestrogen deprivation, but its effects on body composition and bone marrow adiposity during menopause remain elusive. Objective: To determine the effects of E'Jiao on body composition, bone marrow adiposity and skeletal redox status in ovariectomised (OVX) rats. Methods: Seven groups of three-month-old female Sprague Dawley rats were established (n=6/group): baseline, sham, OVX control, OVX-treated with low, medium or high-dose E'Jiao (0.26, 0.53, 1.06 g/kg, p.o.) or calcium carbonate (1% in tap water, ad libitum). The supplementation was terminated after 8 weeks. Whole-body composition analysis was performed monthly using dual-energy X-ray absorptiometry. Analysis of bone-marrow adipocyte numbers and skeletal antioxidant activities were performed on the femur. Results: Increased total mass, lean mass, and bone marrow adipocyte number were observed in the OVX control versus the sham group. Low-dose E'Jiao supplementation counteracted these changes. Besides, E'Jiao at all doses increased skeletal catalase and superoxide dismutase activities but lowered glutathione levels in the OVX rats. Skeletal malondialdehyde level was not affected by ovariectomy but was lowered with E'Jiao supplementation. However, peroxisome proliferator-activated receptor gamma protein expression was not affected by ovariectomy or any treatment. Conclusion: E'Jiao, especially at the low dose, prevented body composition changes and bone marrow adiposity due to ovariectomy. These changes could be mediated by the antioxidant actions of E'Jiao. It has the potential to be used among postmenopausal women to avoid adiposity.
  16. Chin KY, Ima-Nirwana S
    Drug Des Devel Ther, 2015;9:2049-61.
    PMID: 25897211 DOI: 10.2147/DDDT.S79660
    Osteoporosis causes significant health care and economic burden to society, leading to a relentless search for effective preventive agents. Tocotrienol, a member of the vitamin E family, has demonstrated promising potential as an osteoporosis-preventing agent. This review summarizes evidence on the effects of tocotrienol on bone in animal models. Techniques used to examine the effects of tocotrienol on bone in animals included bone histomorphometry, X-ray microtomography, dual-energy X-ray absorptiometry, bone turnover markers, bone calcium content, and biomechanical strength. Tocotrienol was shown to improve osteoblast number, bone formation, mineral deposition, and bone microarchitecture in osteopenic rats. It also decreased osteoclast number and bone erosion in the rats. Tocotrienol supplementation resulted in an improvement in bone mineral density, although biomechanical strength was not significantly altered in the rats. The beneficial effects of tocotrienol on bone can be attributed to its role as an antioxidant, anti-inflammatory agent, suppressor of the mevalonate pathway, and modulator of genes favorable to bone formation.
  17. Chin KY, Ima-Nirwana S, Mohamed IN, Ahmad F, Mohd Ramli ES, Aminuddin A, et al.
    PMID: 25789255 DOI: 10.1186/s40200-015-0136-3
    BACKGROUND: Previous studies on the relationship between bone health and metabolic syndrome (MS) have revealed heterogeneous results. There are limited studies employing bone quantitative ultrasonometry in evaluating this relationship. This study aimed to determine the relationship between MS and bone health in a group of Malaysian middle-aged and elderly men using bone quantitative ultrasonometry.

    METHODS: This cross-sectional study recruited 309 free living Chinese and Malay men aged 40 years and above residing in Klang Valley, Malaysia. Their demographic and anthropometric data were collected. Their calcaneal speed of sound (SOS) was measured using a CM-200 bone ultrasonometer. Their blood was collected for the evaluation of lipid profile, total testosterone and sex hormone-binding globulin. The joint interim MS definition was used for the classification of subjects. Multiple linear regression analysis was used to assess the association between SOS and indicators of MS and the presence of MS, with suitable adjustment for confounders.

    RESULTS: There was no significant difference in SOS value between MS and non-MS subjects (p > 0.05). The SOS values among subjects with different MS scores did not differ significantly (p > 0.05). There were no significant associations between SOS values and indicators of MS or the presence of MS (p > 0.05).

    CONCLUSIONS: The relationship between bone health and MS is not significant in Malaysian middle-aged and elderly men. A longitudinal study should be conducted to evaluate the association between bone loss and MS to confirm this finding.

  18. Amyra Natasha A, Ahmad Syukri A, Siti Nor Diana MK, Ima-Nirwana S, Chin KY
    J Taibah Univ Med Sci, 2018 Apr;13(2):205-209.
    PMID: 31435325 DOI: 10.1016/j.jtumed.2017.06.005
    Background: Individuals aged 30-60 years have a high possibility of experiencing low back pain. However, children and adolescents are not exempted from this problem. This study aimed to determine the relationship between backpack usage and the frequency of low back pain in pre-university students.

    Methods: A total of 101 currently enrolled pre-university students were recruited for this cross-sectional study. They answered a questionnaire about their demographic details and their frequency of backpack usage. Their backpacks were weighed for four consecutive school days. The Roland-Morris Disability Questionnaire and Body Discomfort Chart were used to rate discomfort levels.

    Results: The use and weight of a backpack were not significantly associated with low back pain, as indicated by the Roland-Morris Disability Questionnaire and Body Discomfort Chart (p > 0.05).

    Conclusion: This study did not find an association between the use of a backpack and low back pain in Malaysian pre-university students.

  19. Wong SK, Chin KY, Ima-Nirwana S
    Front Pharmacol, 2020;11:430.
    PMID: 32317977 DOI: 10.3389/fphar.2020.00430
    Lithium, the lightest natural-occurring alkali metal with an atomic number of three, stabilizes the mood to prevent episodes of acute manic and depression. Multiple lines of evidence point to lithium as an anti-suicidal, anti-viral, anti-cancer, immunomodulatory, neuroprotective and osteoprotective agent. This review article provides a comprehensive review of studies investigating the bone-enhancing effects of lithium and its possible underlying molecular mechanisms. Most of the animal experimental studies reported the beneficial effects of lithium in defective bones but not in healthy bones. In humans, the effects of lithium on bones remain heterogeneous. Mechanistically, lithium promotes osteoblastic activities by activating canonical Wingless (Wnt)/beta (β)-catenin, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and bone morphogenetic protein-2 (BMP-2) transduction pathways but suppresses osteoclastic activities by inhibiting the receptor activator of nuclear factor-kappa B (RANK)/receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) system, nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and calcium signaling cascades. In conclusion, lithium confers protection to the skeleton but its clinical utility awaits further validation from human clinical trials.
  20. Ekeuku SO, Pang KL, Chin KY
    Molecules, 2021 Apr 16;26(8).
    PMID: 33923673 DOI: 10.3390/molecules26082319
    BACKGROUND: Osteoporosis results from excessive bone resorption and reduced bone formation, triggered by sex hormone deficiency, oxidative stress and inflammation. Tanshinones are a class of lipophilic phenanthrene compounds found in the roots of Salvia miltiorrhiza with antioxidant and anti-inflammatory activities, which contribute to its anti-osteoporosis effects. This systematic review aims to provide an overview of the skeletal beneficial effects of tanshinones.

    METHODS: A systematic literature search was conducted in January 2021 using Pubmed, Scopus and Web of Science from the inception of these databases. Original studies reporting the effects of tanshinones on bone through cell cultures, animal models and human clinical trials were considered.

    RESULTS: The literature search found 158 unique articles on this topic, but only 20 articles met the inclusion criteria and were included in this review. The available evidence showed that tanshinones promoted osteoblastogenesis and bone formation while reducing osteoclastogenesis and bone resorption.

    CONCLUSIONS: Tanshinones modulates bone remodelling by inhibiting osteoclastogenesis and osteoblast apoptosis and stimulating osteoblastogenesis. Therefore, it might complement existing strategies to prevent bone loss.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links