Displaying publications 21 - 40 of 158 in total

Abstract:
Sort:
  1. Abd Rahman NA, Li S, Schmid S, Shaharudin S
    Phys Ther Sport, 2023 Jan;59:60-72.
    PMID: 36516512 DOI: 10.1016/j.ptsp.2022.11.011
    Low back pain (LBP) can result in increased direct medical and non-medical costs to patients, employers, and health care providers. This systematic review aimed to provide a better understanding of the biomechanical factors associated with chronic non-specific LBP in adults. SCOPUS, ScienceDirect, MEDLINE, and Web of Science databases were searched. In total, 26 studies were included and significant differences were noted between healthy controls and LBP patients in various motion. Biomechanical factors among adults with non-specific LBP were altered and differed as compared to healthy controls in various motion might be to compensate the pain during those motions. This review highlighted the biomechanical differences across those with non-specific LBP and healthy adults. Both groups showed a similar level of pain during functional tasks but LBP patients suffered from a moderate level of disability. Future studies should not rely on questionnaire-based pain scale only. The biomechanical factors summarized in this review can be used to diagnose non-specific LBP accurately, and as modifiable targets for exercise-based intervention.
  2. Haagsma JA, James SL, Castle CD, Dingels ZV, Fox JT, Hamilton EB, et al.
    Inj Prev, 2020 Oct;26(Supp 1):i12-i26.
    PMID: 31915273 DOI: 10.1136/injuryprev-2019-043296
    BACKGROUND: The epidemiological transition of non-communicable diseases replacing infectious diseases as the main contributors to disease burden has been well documented in global health literature. Less focus, however, has been given to the relationship between sociodemographic changes and injury. The aim of this study was to examine the association between disability-adjusted life years (DALYs) from injury for 195 countries and territories at different levels along the development spectrum between 1990 and 2017 based on the Global Burden of Disease (GBD) 2017 estimates.

    METHODS: Injury mortality was estimated using the GBD mortality database, corrections for garbage coding and CODEm-the cause of death ensemble modelling tool. Morbidity estimation was based on surveys and inpatient and outpatient data sets for 30 cause-of-injury with 47 nature-of-injury categories each. The Socio-demographic Index (SDI) is a composite indicator that includes lagged income per capita, average educational attainment over age 15 years and total fertility rate.

    RESULTS: For many causes of injury, age-standardised DALY rates declined with increasing SDI, although road injury, interpersonal violence and self-harm did not follow this pattern. Particularly for self-harm opposing patterns were observed in regions with similar SDI levels. For road injuries, this effect was less pronounced.

    CONCLUSIONS: The overall global pattern is that of declining injury burden with increasing SDI. However, not all injuries follow this pattern, which suggests multiple underlying mechanisms influencing injury DALYs. There is a need for a detailed understanding of these patterns to help to inform national and global efforts to address injury-related health outcomes across the development spectrum.

  3. Tan KS, Wang D, Lu Z, Zhang Y, Li S, Lin Y, et al.
    Int J Mol Sci, 2021 Oct 06;22(19).
    PMID: 34639145 DOI: 10.3390/ijms221910806
    Heart failure is the end-stage of all cardiovascular diseases with a ~25% 5-year survival rate, and insufficient mitochondrial energy production to meet myocardial demand is the hallmark of heart failure. Mitochondrial components involved in the regulation of ATP production remain to be fully elucidated. Recently, roles of 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase) in the pathophysiological processes of heart diseases have emerged, implicated by evidence that mitochondrial CNPase proteins are associated with mitochondrial integrity under metabolic stress. In this study, a zebrafish heart failure model was established, by employing antisense morpholino oligonucleotides and the CRISPR-Cas9 gene-editing system, which recapitulates heart failure phenotypes including heart dysfunction, pericardial edema, ventricular enlargement, bradycardia, and premature death. The translational implications of CNPase in the pathophysiological process of heart failure were tested in a pressure overload-induced heart hypertrophy model, which was carried out in rats through transverse abdominal aorta constriction (TAAC). AAV9-mediated myocardial delivery of CNPase mitigated the hypertrophic response through the specific hydrolysis of 2'-3'-cyclic nucleotides, supported by the decrease of cardiac hypertrophy and fibrosis, the integrity of mitochondrial ultrastructure, and indicators of heart contractility in the AAV9-TAAC group. Finally, the biometrics of a mitochondrial respiration assay carried out on a Seahorse cellular energy analyzer demonstrated that CNPase protects mitochondrial respiration and ATP production from AngII-induced metabolic stress. In summary, this study provides mechanistic insights into CNPase-2',3'-cyclic nucleotide metabolism that protects the heart from energy starvation and suggests novel therapeutic approaches to treat heart failure by targeting CNPase activity.
  4. Li A, Wang Q, Huang Y, Hu L, Li S, Wang Q, et al.
    Virus Res, 2023 Apr 15;328:199080.
    PMID: 36882131 DOI: 10.1016/j.virusres.2023.199080
    Chinese sacbrood virus (CSBV) is the most severe pathogen of Apis cerana, which leads to serious fatal diseases in bee colonies and eventual catastrophe for the Chinese beekeeping industry. Additionally, CSBV can potentially infect Apis mellifera by bridging the species barrier and significantly affect the productivity of the honey industry. Although several approaches, such as feeding royal jelly, traditional Chinese medicine, and double-stranded RNA treatments, have been employed to suppress CSBV infection, their practical applicabilities are constrained due to their poor effectiveness. In recent years, specific egg yolk antibodies (EYA) have been increasingly utilized in passive immunotherapy for infectious diseases without any side effects. According to both laboratory research and practical use, EYA have demonstrated superior protection for bees against CSBV infection. This review provided an in-depth analysis of the issues and drawbacks in this field in addition to provide a thorough summary of current advancements in CSBV studies. Some promising strategies for the synergistic study of EYA against CSBV, including the exploitation of novel antibody drugs, novel TCM monomer/formula determination, and development of nucleotide drugs, are also proposed in this review. Furthermore, the prospects for the future perspectives of EYA research and applications are presented. Collectively, EYA would terminate CSBV infection soon, as well as will provide scientific guidance and references to control and manage other viral infections in apiculture.
  5. Li S, Silvestri V, Leslie G, Rebbeck TR, Neuhausen SL, Hopper JL, et al.
    J Clin Oncol, 2022 May 10;40(14):1529-1541.
    PMID: 35077220 DOI: 10.1200/JCO.21.02112
    PURPOSE: To provide precise age-specific risk estimates of cancers other than female breast and ovarian cancers associated with pathogenic variants (PVs) in BRCA1 and BRCA2 for effective cancer risk management.

    METHODS: We used data from 3,184 BRCA1 and 2,157 BRCA2 families in the Consortium of Investigators of Modifiers of BRCA1/2 to estimate age-specific relative (RR) and absolute risks for 22 first primary cancer types adjusting for family ascertainment.

    RESULTS: BRCA1 PVs were associated with risks of male breast (RR = 4.30; 95% CI, 1.09 to 16.96), pancreatic (RR = 2.36; 95% CI, 1.51 to 3.68), and stomach (RR = 2.17; 95% CI, 1.25 to 3.77) cancers. Associations with colorectal and gallbladder cancers were also suggested. BRCA2 PVs were associated with risks of male breast (RR = 44.0; 95% CI, 21.3 to 90.9), stomach (RR = 3.69; 95% CI, 2.40 to 5.67), pancreatic (RR = 3.34; 95% CI, 2.21 to 5.06), and prostate (RR = 2.22; 95% CI, 1.63 to 3.03) cancers. The stomach cancer RR was higher for females than males (6.89 v 2.76; P = .04). The absolute risks to age 80 years ranged from 0.4% for male breast cancer to approximately 2.5% for pancreatic cancer for BRCA1 carriers and from approximately 2.5% for pancreatic cancer to 27% for prostate cancer for BRCA2 carriers.

    CONCLUSION: In addition to female breast and ovarian cancers, BRCA1 and BRCA2 PVs are associated with increased risks of male breast, pancreatic, stomach, and prostate (only BRCA2 PVs) cancers, but not with the risks of other previously suggested cancers. The estimated age-specific risks will refine cancer risk management in men and women with BRCA1/2 PVs.

  6. Ye Z, Nguyen TL, Dite GS, MacInnis RJ, Schmidt DF, Makalic E, et al.
    Breast Cancer Res, 2023 Oct 25;25(1):127.
    PMID: 37880807 DOI: 10.1186/s13058-023-01733-1
    BACKGROUND: Mammogram risk scores based on texture and density defined by different brightness thresholds are associated with breast cancer risk differently and could reveal distinct information about breast cancer risk. We aimed to investigate causal relationships between these intercorrelated mammogram risk scores to determine their relevance to breast cancer aetiology.

    METHODS: We used digitised mammograms for 371 monozygotic twin pairs, aged 40-70 years without a prior diagnosis of breast cancer at the time of mammography, from the Australian Mammographic Density Twins and Sisters Study. We generated normalised, age-adjusted, and standardised risk scores based on textures using the Cirrus algorithm and on three spatially independent dense areas defined by increasing brightness threshold: light areas, bright areas, and brightest areas. Causal inference was made using the Inference about Causation from Examination of FAmilial CONfounding (ICE FALCON) method.

    RESULTS: The mammogram risk scores were correlated within twin pairs and with each other (r = 0.22-0.81; all P 

  7. Advokaat EL, Marshall NT, Li S, Spakman W, Krijgsman W, van Hinsbergen DJJ
    Tectonics, 2018 Aug;37(8):2486-2512.
    PMID: 30333679 DOI: 10.1029/2018TC005010
    SE Asia comprises a heterogeneous assemblage of fragments derived from Cathaysia (Eurasia) in the north and Gondwana in the south, separated by suture zones representing closed former ocean basins. The western part of the region comprises Sundaland, which was formed by Late Permian-Triassic amalgamation of continental and arc fragments now found in Indochina, the Thai Penisula, Peninsular Malaysia, and Sumatra. On Borneo, the Kuching Zone formed the eastern margin of Sundaland since the Triassic. To the SE of the Kuching Zone, the Gondwana-derived continental fragments of SW Borneo and East Kalimantan accreted in the Cretaceous. South China-derived fragments accreted to north of the Kuching Zone in the Miocene. Deciphering this complex geodynamic history of SE Asia requires restoration of its deformation history, but quantitative constraints are often sparse. Paleomagnetism may provide such constraints. Previous paleomagnetic studies demonstrated that Sundaland and fragments in Borneo underwent vertical axis rotations since the Cretaceous. We provide new paleomagnetic data from Eocene-Miocene sedimentary rocks in the Kutai Basin, east Borneo, and critically reevaluate the published database, omitting sites that do not pass widely used, up-to-date reliability criteria. We use the resulting database to develop an updated kinematic restoration. We test the regional or local nature of paleomagnetic rotations against fits between the restored orientation of the Sunda Trench and seismic tomography images of the associated slabs. Paleomagnetic data and mantle tomography of the Sunda slab indicate that Sundaland did not experience significant vertical axis rotations since the Late Jurassic. Paleomagnetic data show that Borneo underwent a ~35° counterclockwise rotation constrained to the Late Eocene and an additional ~10° counterclockwise rotation since the Early Miocene. How this rotation was accommodated relative to Sundaland is enigmatic but likely involved distributed extension in the West Java Sea between Borneo and Sumatra. This Late Eocene-Early Oligocene rotation is contemporaneous with and may have been driven by a marked change in motion of Australia relative to Eurasia, from eastward to northward, which also has led to the initiation of subduction along the eastern Sunda trench and the proto-South China Sea to the south and north of Borneo, respectively.
  8. Soo JAL, Makhtar MMZ, Shoparwe NF, Otitoju TA, Mohamad M, Tan LS, et al.
    Membranes (Basel), 2021 Aug 31;11(9).
    PMID: 34564493 DOI: 10.3390/membranes11090676
    Textile industry effluent contains a high amount of toxic colorants. These dyes are carcinogenic and threats to the environment and living beings. In this study, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) was used as the based polymer for PIMs with bis-(2-ethylhexyl) phosphate (B2EHP) and dioctyl phthalate (DOP) as the carrier and plasticizer. The fabricated PIMs were employed to extract the cation dye (Malachite Green; MG) from the feeding phase. PIMs were also characterized by scanning electron microscopy (SEM), atomic force microscope (AFM), contact angle, water uptake, Fourier-transform infrared spectroscopy (FTIR) and ions exchange capacity. The performance of the PIMs was investigated under various conditions such as percentage of carrier and initial dye concentration. With permeability and flux values of 0.1188 cm/min and 1.1913 mg cm/min, PIM produced with 18% w/w PVDF-co-HFP, 21% w/w B2EHP, 1% w/w DOP and 40% w/w THF and was able to achieve more than 97% of MG extraction. The experimental data were then fitted with a pseudo-second-order (PSO) model, and the calculated R2 value was ~0.99. This shows that the data has a good fit with the PSO model. PIM is a potential alternative technology in textile industry effluent treatment; however, the right formulation is crucial for developing a highly efficient membrane.
  9. Li S, Lu BP, Feng J, Zhou JJ, Xie ZZ, Liang C, et al.
    Trop Biomed, 2020 Dec 01;37(4):852-863.
    PMID: 33612738 DOI: 10.47665/tb.37.4.852
    Fructose-1,6-bisphosphate aldolase (FbA), a well characterized glycometabolism enzyme, has been found to participate in other important processes besides the classic catalysis. To understand the important functions of three fructose-1,6-bisphosphate aldolases from Clonorchis sinensis (CsFbAs, CsFbA-1/2/3) in host-parasite interplay, the open reading frames of CsFbAs were cloned into pET30a (+) vector and the resulting recombinant plasmids were transformed into Escherichia coli BL21 (DE3) for expression of the proteins. Purified recombinant CsFbAs proteins (rCsFbAs) were approximately 45.0 kDa on 12% SDS-PAGE and could be probed with each rat anti-rCsFbAs sera by western blotting analysis. ELISA and ligand blot overlay indicated that rCsFbAs of 45.0 kDa as well as native CsFbAs of 39.5 kDa from total worm extracts and excretory-secretory products of Clonorchis sinensis (CsESPs) could bind to human plasminogen, and the binding could be efficiently inhibited by lysine analog ε-aminocaproic acid. Our results suggested that as both the components of CsESPs and the plasminogen binding proteins, three CsFbAs might be involved in preventing the formation of the blood clot so that Clonorchis sinensis could acquire enough nutrients from host tissue for their successful survival and colonization in the host. Our work will provide us with new information about the biological function of three CsFbAs and their roles in hostparasite interplay.
  10. Xie Z, Li Y, Xiong K, Tu Z, Waiho K, Yang C, et al.
    Environ Pollut, 2023 Aug 15;331(Pt 2):121921.
    PMID: 37263564 DOI: 10.1016/j.envpol.2023.121921
    Anthropologic activities caused frequent eutrophication in coastal and estuarine waters, resulting in diel-cycling hypoxia. Given global climate change, extreme weather events often occur, thus salinity fluctuation frequently breaks out in these waters. This study aimed to evaluate the combined effects of salinity and hypoxia on intestinal microbiota and digestive enzymes of Crassostrea hongkongensis. Specifically, we sequenced 16 S rRNA of intestinal microbiota and measured the digestive enzymes trypsin (TRS), lipase (LPS) and amylase (AMY) in oysters exposed for 28 days to three salinities (10, 25 and 35) and two dissolved oxygen conditions, normoxia (6 mg/L) and hypoxia (6 mg/L for 12 h, 2 mg/L for 12 h). Oysters in normoxia and salinity of 25 were treated as control. After 28-day exposure, for microbial components, Fusobacteriota, Firmicutes, Bacteroidota, Proteobacteria and Actinobacteriota comprised the majority for all experimental groups. Compared with the control group, the diversity and structure of intestinal microbiota tended to change in all treated groups. The species richness in C. hongkongensis intestine also changed. It was the most significant that high salinity increased Proteobacteria proportion while low salinity and hypoxia increased Fusobacteriota but decreased Proteobacteria, respectively. Additionally, Actinobacteriota was sensitive and changed under environmental stressor (P 
  11. Chen X, Yang B, Huang W, Wang T, Li Y, Zhong Z, et al.
    Int J Mol Sci, 2018 Dec 05;19(12).
    PMID: 30563128 DOI: 10.3390/ijms19123897
    Polyphenol oxidase (PPO) catalyzes the o-hydroxylation of monophenols and oxidation of o-diphenols to quinones. Although the effects of PPO on plant physiology were recently proposed, little has been done to explore the inherent molecular mechanisms. To explore the in vivo physiological functions of PPO, a model with decreased PPO expression and enzymatic activity was constructed on Clematis terniflora DC. using virus-induced gene silencing (VIGS) technology. Proteomics was performed to identify the differentially expressed proteins (DEPs) in the model (VC) and empty vector-carrying plants (VV) untreated or exposed to high levels of UV-B and dark (HUV-B+D). Following integration, it was concluded that the DEPs mainly functioned in photosynthesis, glycolysis, and redox in the PPO silence plants. Mapman analysis showed that the DEPs were mainly involved in light reaction and Calvin cycle in photosynthesis. Further analysis illustrated that the expression level of adenosine triphosphate (ATP) synthase, the content of chlorophyll, and the photosynthesis rate were increased in VC plants compared to VV plants pre- and post HUV-B+D. These results indicate that the silence of PPO elevated the plant photosynthesis by activating the glycolysis process, regulating Calvin cycle and providing ATP for energy metabolism. This study provides a prospective approach for increasing crop yield in agricultural production.
  12. Waiho K, Fazhan H, Zhang Y, Li S, Zhang Y, Zheng H, et al.
    Genomics, 2020 01;112(1):323-331.
    PMID: 30807818 DOI: 10.1016/j.ygeno.2019.02.012
    PIWI-interacting RNAs (piRNAs) are abundantly found in germ cells and involved in gametogenesis and gonadal development. Information on the regulatory roles of piRNAs in crustacean reproduction, however, is scarce. Thus, we identified gonadal piRNAs of mud crab Scylla paramamosain. Of the 115,491 novel piRNAs, 596 were differentially expressed. Subsequently, 389,887 potential piRNA-target genes were predicted. The expression of 4 piRNAs and 9 genes with high piRNA interactions were validated with the inclusion of additional immature specimens, including LRP2 that is involved in growth and reproduction, MDN1 in ribosome biogenesis pathway and gametogenesis, and PRKDC, a DNA repair gene involved in gonadal differentiation and maturation. KEGG analysis further revealed the involvement of predicted piRNA target genes in gametogenesis- and reproduction-related pathways. Our findings provide baseline information of mud crab piRNAs and their differential expression between testes and ovaries suggests that piRNAs play an essential role in regulating gametogenesis and gonadal development.
  13. Li Y, Dong W, Zhang L, Yang Y, Song Y, Shi N, et al.
    Aesthet Surg J, 2024 Jan 25.
    PMID: 38271268 DOI: 10.1093/asj/sjae010
    BACKGROUND: Large and long ears are regarded as symbols of wealth and health in eastern Asian culture, patients with lying ears wish their ears to be more exposed and prominent. Surgeries correcting lying ears have been documented.

    OBJECTIVES: We report correction of lying ears and aesthetic modification of helix and ear lobule with HA injections.

    METHODS: We performed HA injections at auriculocephalic sulcus (AS) to increase cranioauricular angle (CA) and correct lying ears. The injections at helix and lobule were case-specific. The CA was measured and photographs were taken at baseline and 1-, 3-, 6-, and 10-month follow-ups. Efficacy was assessed using a 5-point global aesthetic improvement scale (GAIS). Adverse events (AEs) were recorded.

    RESULTS: Forty-six patients (92 ears) received HA injections and completed follow-ups. Instant correction outcomes were observed. Sixteen (34.8%) patients received one touch-up injection, whose clinical efficacy persisted for 1 to 1.5 years. The GAIS for over 90% of cases with touch-up treatment was "very much improved" or "much improved" at all follow-ups. The GAIS for over 70% of cases without touch-up treatment was "very much improved" or "much improved" at 1, 3, and 6-month follow-ups. CA increased significantly compared with the baseline. Patients also reported "more V-shaped face shape" and "lifted jawline" effects. No serious AEs occurred.

    CONCLUSIONS: As an alternative technique to surgeries, HA filler injections at AS effectively corrected lying ears. This technique produced immediate, long-lasting, and aesthetically pleasing results. The side effects and downtime were minimal.

  14. Li W, Wang F, Wang X, Xu W, Liu F, Hu R, et al.
    J Biochem Mol Toxicol, 2024 Feb;38(2):e23645.
    PMID: 38348716 DOI: 10.1002/jbt.23645
    Prostate cancer (PCa) is an extremely common genitourinary malignancy among elderly men. Many evidence have shown the efficacy of curcumin (CUR) in inhibiting the progression of PCa. However, the pharmacological function of CUR in PCa is still not quite clear. In this research, CUR was found to suppress the proliferation and enhance the apoptotic rate in in vitro PCa cell models in a dose- and time-dependent manner. In a xenograft animal model, the administration of CUR contributed to a significant decrease in the growth of the xenograft tumor induced by the transplanted PC-3 cells. Ubiquitin-conjugating enzyme E2 C is implicated in the modulation of multiple types of cancers. In humans, the expression levels of UBE2C are significantly higher in PCa versus benign prostatic hyperplasia. Treatment with CUR decreased the expression of UBE2C, whereas it increased miR-483-3p expression. In contrast with the control mice, the CUR-treated mice showed a significant reduction in UBE2C and Ki-67 in PCa cells. The capability of proliferation, migration, and invasion of PCa cells was inhibited by the knockdown of UBE2C mediated by siRNA. Furthermore, dual luciferase reporter gene assay indicated the binding of miR-483-3p to UBE2C. In summary, CUR exerts its antitumor effects through regulation of the miR-483-3p/UBE2C axis by decreasing UBE2C and increasing miR-483-3p. The findings may also provide new molecular markers for PCa diagnosis and treatment.
  15. Lin Y, Hu J, Li S, Hamzah SS, Jiang H, Zhou A, et al.
    Molecules, 2019 Jun 27;24(13).
    PMID: 31252525 DOI: 10.3390/molecules24132374
    Fresh-cut fruits and vegetables are the main sources of foodborne illness outbreaks with implicated pathogens such as Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes. This study aimed at investigating the influence of two key parameters (concentration of curcumin and illumination time) on the effects of curcumin-based photodynamic sterilization on the preservation of fresh-cut Hami melons. The results indicated that illumination with 50 μmol/L curcumin for 60 min using a blue LED lamp reduced the total aerobic microorganism count by ~1.8 log CFU/g in fresh-cut Hami melons. Besides this, the effects of photodynamic sterilization on the soluble solids content, color, water content, firmness, and sensory indices of the fresh-cut Hami melons were also evaluated. Compared to the control group, photodynamic sterilization can effectively delay the browning rate and maintain the luminosity, firmness, water content, and soluble solids content of fresh-cut Hami melon. The sensory quality was indeed preserved well after 9 days of storage in a fridge. These results showed that photodynamic sterilization is an effective and promising technology to prolong the shelf life of fresh-cut Hami melons.
  16. Tsai MH, Chan CK, Chang YC, Yu YT, Chuang ST, Fan WL, et al.
    Clin Genet, 2017 Oct;92(4):397-404.
    PMID: 28170089 DOI: 10.1111/cge.12992
    BACKGROUND AND AIMS: Mutations in the disheveled, Egl-10 and pleckstrin domain-containing protein 5 (DEPDC5) gene have emerged as an important cause of various familial focal epilepsy syndromes. However, the significance of DEPDC5 mutations in patients with sporadic focal epilepsy has yet to be characterized.

    MATERIALS AND METHODS: We studied a kindred of familial focal epilepsy with variable foci using whole-exome sequencing. We subsequently studied a cohort of 293 patients with focal epilepsy and sequenced all exons of DEPDC5 using targeted resequencing.

    RESULTS: We reported a Taiwanese family with a novel splice site mutation which affected mRNA splicing and activated the downstream mammalian target of rapamycin (mTOR) pathway. Among patients with focal epilepsies, the majority (220/293) of these patients had sporadic focal epilepsy without malformation of cortical development. Two (0.9%) of these patients had probably pathogenic mutations in the DEPDC5 gene.

    DISCUSSION AND CONCLUSIONS: Our finding suggests that DEPDC5 is not only the most common gene for familial focal epilepsy but also could be a significant gene for sporadic focal epilepsy. Since focal epilepsies account for more than 60% of all epilepsies, the effect of mTORC1 inhibitor on patients with focal epilepsy due to DEPDC5 mutations will be an important future direction of research.

  17. Nie J, Aweya JJ, Yu Z, Zhou H, Wang F, Yao D, et al.
    J Immunol, 2022 Aug 01;209(3):476-487.
    PMID: 35851542 DOI: 10.4049/jimmunol.2200078
    Although invertebrates' innate immunity relies on several immune-like molecules, the diversity of these molecules and their immune response mechanisms are not well understood. Here, we show that Penaeus vannamei hemocyanin (PvHMC) undergoes specific deacetylation under Vibrio parahaemolyticus and LPS challenge. In vitro deacetylation of PvHMC increases its binding capacity with LPS and antibacterial activity against Gram-negative bacteria. Lysine residues K481 and K484 on the Ig-like domain of PvHMC are the main acetylation sites modulated by the acetyltransferase TIP60 and deacetylase HDAC3. Deacetylation of PvHMC on K481 and K484 allows PvHMC to form a positively charged binding pocket that interacts directly with LPS, whereas acetylation abrogates the positive charge to decrease PvHMC-LPS attraction. Besides, V. parahaemolyticus and LPS challenge increases the expression of Pvhdac3 to induce PvHMC deacetylation. This work indicates that, during bacterial infections, deacetylation of hemocyanin is crucial for binding with LPS to clear Gram-negative bacteria in crustaceans.
  18. Guo L, Wang Y, Xu X, Cheng KK, Long Y, Xu J, et al.
    J Proteome Res, 2021 01 01;20(1):346-356.
    PMID: 33241931 DOI: 10.1021/acs.jproteome.0c00431
    Identification of phosphorylation sites is an important step in the function study and drug design of proteins. In recent years, there have been increasing applications of the computational method in the identification of phosphorylation sites because of its low cost and high speed. Most of the currently available methods focus on using local information around potential phosphorylation sites for prediction and do not take the global information of the protein sequence into consideration. Here, we demonstrated that the global information of protein sequences may be also critical for phosphorylation site prediction. In this paper, a new deep neural network model, called DeepPSP, was proposed for the prediction of protein phosphorylation sites. In the DeepPSP model, two parallel modules were introduced to extract both local and global features from protein sequences. Two squeeze-and-excitation blocks and one bidirectional long short-term memory block were introduced into each module to capture effective representations of the sequences. Comparative studies were carried out to evaluate the performance of DeepPSP, and four other prediction methods using public data sets The F1-score, area under receiver operating characteristic curves (AUROC), and area under precision-recall curves (AUPRC) of DeepPSP were found to be 0.4819, 0.82, and 0.50, respectively, for S/T general site prediction and 0.4206, 0.73, and 0.39, respectively, for Y general site prediction. Compared with the MusiteDeep method, the F1-score, AUROC, and AUPRC of DeepPSP were found to increase by 8.6, 2.5, and 8.7%, respectively, for S/T general site prediction and by 20.6, 5.8, and 18.2%, respectively, for Y general site prediction. Among the tested methods, the developed DeepPSP method was also found to produce best results for different kinase-specific site predictions including CDK, mitogen-activated protein kinase, CAMK, AGC, and CMGC. Taken together, the developed DeepPSP method may offer a more accurate phosphorylation site prediction by including global information. It may serve as an alternative model with better performance and interpretability for protein phosphorylation site prediction.
  19. Yang J, Cánovas-Márquez JT, Li P, Li S, Niu J, Wang X, et al.
    J Agric Food Chem, 2021 Aug 25;69(33):9632-9641.
    PMID: 34428900 DOI: 10.1021/acs.jafc.1c03307
    Malate as an important intermediate metabolite, its subcellular location, and concentration have a significant impact on fungal lipid metabolism. Previous studies showed that the mitochondrial malate transporter plays an important role in lipid accumulation in Mucor circinelloides by manipulating intracellular malate concentration. However, the role of plasma membrane malate transporters in oleaginous fungi remains unexplored. Therefore, in this work, two plasma membrane malate transporters "2-oxoglutarate:malate antiporters" (named SoDIT-a and SoDIT-b) of M. circinelloides WJ11 were deleted, and the consequences in growth capacity, lipid accumulation, and metabolism were analyzed. The results showed that deletion of sodit-a or/and sodit-b reduced the extracellular malate, confirming that the products of both genes participate in malate transportation. In parallel, the lipid contents in mutants increased approximately 10-40% higher than that in the control strain, suggesting that the defect in plasma membrane malate transport results in an increase of malate available for lipid biosynthesis. Furthermore, transcriptional analysis showed that the expression levels of multiple key genes involved in the lipid biosynthesis were also increased in the knockout mutants. To the best of our knowledge, this is the first report that demonstrated the association between plasma membrane malate transporters and lipid accumulation in M. circinelloides.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links