Filth flies at wet markets can be a vector harbouring multiple antimicrobial-resistant (MAR) nontyphoidal Salmonella (NTS), and such strains are a significant threat to public health as they may cause severe infections in humans. This study aims to investigate the prevalence of antimicrobial-resistant NTS, especially Salmonella Enteritidis and S. Typhimurium harboured by filth flies at wet markets, and investigate their survival in the simulated gastric fluid (SGF). Filth flies (n = 90) were captured from wet markets in Klang, Malaysia, and processed to isolate Salmonella spp. The isolates (n = 16) were identified using the multiplex-touchdown PCR and assessed their antimicrobial susceptibility against 11 antimicrobial agents. Finally, three isolates with the highest MAR index were subjected to SGF survival tests. It was observed that 17.8 % of flies (n = 16/90) harbouring Salmonella, out of which 10 % (n = 9/90) was S. Enteritidis, 2.2 % (n = 2/90) was S. Typhimurium, and 5.6 % was unidentified serotypes of Salmonella enterica subsp. I. 43.8 % (n = 7/16) were confirmed as MAR, and they were observed to be resistant against ampicillin, chloramphenicol, kanamycin, streptomycin, and nalidixic acid. Three strains, F35, F75, and F85 demonstrated the highest MAR index and were able to survive (>6-log10) in the SGF (180 min), indicating their potential virulence and invasiveness. This study provides significant insights into the prevalence and severity of MAR nontyphoidal Salmonella harboured by filth flies in wet markets, which may help inform strategies for controlling the spread and outbreak of foodborne disease.
Coronavirus is a pandemic that has become a concern for the whole world. This disease has stepped out to its greatest extent and is expanding day by day. Coronavirus, termed as a worldwide disease, has caused more than 8 lakh deaths worldwide. The foremost cause of the spread of coronavirus is SARS-CoV and SARS-CoV-2, which are part of the coronavirus family. Thus, predicting the patients suffering from such pandemic diseases would help to formulate the difference in inaccurate and infeasible time duration. This paper mainly focuses on the prediction of SARS-CoV and SARS-CoV-2 using the B-cells dataset. The paper also proposes different ensemble learning strategies that came out to be beneficial while making predictions. The predictions are made using various machine learning models. The numerous machine learning models, such as SVM, Naïve Bayes, K-nearest neighbors, AdaBoost, Gradient boosting, XGBoost, Random forest, ensembles, and neural networks are used in predicting and analyzing the dataset. The most accurate result was obtained using the proposed algorithm with 0.919 AUC score and 87.248% validation accuracy for predicting SARS-CoV and 0.923 AUC and 87.7934% validation accuracy for predicting SARS-CoV-2 virus.
Artonin E is a prenylated flavonoid isolated from the stem bark of Artocarpus elasticus Reinw.(Moraceae). This study aimed to investigate the apoptotic mechanisms induced by artonin E in a metastatic human ovarian cancer cell line SKOV-3 in vitro. MTT assay, clonogenic assay, acridine orange and propidium iodide double staining, cell cycle and annexin V analyses were performed to explore the mode of artonin E-induced cell death at different time points. DNA laddering, activation of caspases-3, -8, and -9, multi-parametric cytotoxicity-3 analysis by high-content screening, measurement of reactive oxygen species generation, and Western blot were employed to study the pathways involved in the apoptosis. MTT results showed that artonin E inhibited the growth of SKOV-3 cells, with IC50 values of 6.5±0.5 μg/mL after 72 h treatment, and showed less toxicity toward a normal human ovarian cell line T1074, with IC50 value of 32.5±0.5 μg/mL. Results showed that artonin E induced apoptosis and cell cycle arrest at the S phase. This compound also promoted the activation of caspases-3, -8, and -9. Further investigation into the depletion of mitochondrial membrane potential and release of cytochrome c revealed that artonin E treatment induced apoptosis via regulation of the expression of pro-survival and pro-apoptotic Bcl-2 family members. The expression levels of survivin and HSP70 proteins were also down regulated in SKOV-3 cells treated with artonin E. We propose that artonin E induced an antiproliferative effect that led to S phase cell cycle arrest and apoptosis through dysregulation of mitochondrial pathways, particularly the pro- and anti-apoptosis signaling pathways.
Zerumbone (ZER), a potential anticancer compound, isolated from the fresh rhizomes of Zingiber zerumbet. In this investigation, the cytotoxic properties of ZER were evaluated, on cancer cells of human cervix (HeLa), breast and ovary, and normal cells of Chinese Hamster ovary, using MTT assay. Apoptogenic effects of ZER on HeLa were studied using fluorescence microscopy (AO/PI double staining), scanning and transmission electron microscopy (SEM and TEM), and colorimetric assay of the apoptosis promoter enzyme, caspase-3. The results of MTT assay showed that ZER has less effect on normal cells compared to cancer cells. The lowest IC(50) of ZER was observed on HeLa cells. Cytological observations showed nuclear and chromatin condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, holes, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by double staining of AO/PI, SEM and TEM. Statistical analysis (two-tailed t-test) of differential counting of 200 cells under fluorescence microscope revealed significant difference in apoptotic cells populations between treated and untreated HeLa cells. In addition, ZER has increased the cellular level of caspase-3 on the treated HeLa cells. It could be concluded that ZER was able to produce distinctive morphological features of cell death that corresponds to apoptosis.
The plant Typhonium flagelliforme, commonly known as "rodent tuber" in Malaysia, is often used as a health supplement and traditional remedy for alternative cancer therapies, including leukemia. This study aimed to evaluate in vitro anti-leukemic activity of dichloromethane extract/fraction number 7 (DCM/F7) from T. flagelliforme tuber on human T4 lymphoblastoid (CEMss) cell line. The DCM extract of tuber has been fractionated by column chromatography. The obtained fractions were evaluated for its cytotoxicity toward CEMss cells as well as human primary blood lymphocytes (PBLs). Assessment of apoptosis produced by the most active fraction was evaluated by various microscopic techniques and further confirmation of apoptosis was done by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Phytochemical screening was done by gas chromatography-mass spectrometry (GC-MS). The results shows that 7 out of 12 fractions showed significant cytotoxicity against the selected cell line CEMss, in which fractions DCM/F7, DCM/F11 and DCM/F12 showed exceptional activity with 3, 5 and 6.2 μg ml(-1), respectively. Further studies in the non-cancerous PBL exhibited significant selectivity of DCM/F7 compared to other fractions. Cytological observations showed chromatin condensation, cell shrinkage, abnormalities of cristae, membrane blebbing, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by double-staining of acridine orange (AO)/propidium iodide (PI), SEM and TEM. In addition, DCM/F7 has increased the cellular DNA breaks on treated cells. GC-MS revealed that DCM/F7 contains linoleic acid, hexadecanoic acid and 9-hexadecanoic acid. The present results indicate that T. flagelliforme possess a valuable anti-leukemic effect and was able to produce distinctive morphological features of cell death that corresponds to apoptosis.
We investigated the antioxidant potential, cytotoxic effect, and TNF-α inhibition activity with NF-κB activation response in a chloroform fraction of Centratherum anthelminticum seeds (CACF). The antioxidant property of CACF was evaluated with DPPH, ORAC, and FRAP assays, which demonstrated significant antioxidant activity. The cytotoxicity of CACF was tested using the MTT assay; CACF effective inhibitory concentrations (IC(50)) for A549, PC-3, MCF-7, and WRL-68 cells were 31.42 ± 5.4, 22.61 ± 1.7, 8.1 ± 0.9, and 54.93 ± 8.3 μg/mL, respectively. CACF effectively and dose-dependently inhibited TNF-α release, in vitro and in vivo. CACF inhibited TNF-α secretion in stimulated RAW264.7 macrophage supernatants with an IC(50) of 0.012 μg/mL, without affecting their viability; the highest dose tested reduced serum TNF-α by 61%. Acute toxicity testing in rats revealed that CACF was non-toxic at all doses tested. Matching the cytotoxic activity towards a mechanistic approach, CACF dose-dependently exhibited in vitro inhibitory effects against the activation of NF-κB translocation in MCF-7 cells. Preliminary phytochemical screening with GC/MS analysis detected 22 compounds in CACF, of which morpholinoethyl isothiocyanate was the most abundant (29.04%). The study reveals the potential of CACF in the treatment of breast cancer and in oxidative stress conditions with associated inflammatory responses.
This study investigated the in vivo antileukemic activity of palladium nanoparticles (Pd@W.tea-NPs) mediated by white tea extract in a murine model. The cell viability effect of Pd@W.tea-NPs, "blank" Pd nanoparticles, and white tea extract alone was determined in murine leukemia WEHI-3B cells and normal mouse fibroblasts (3T3 cells). Apoptotic and cell cycle arrest effects of Pd@W.tea-NPs in WEHI-3B cells were evaluated. The effects of Pd@W.tea-NPs administered orally to leukemic mice at 50 and 100 mg/kg daily over 28 days were evaluated. Pd@W.tea-NPs reduced the viability of WHEI-3B cells with IC50 7.55 μg/ml at 72 h. Blank Pd nanoparticles and white tea extract alone had smaller effects on WHEI-3B viability and on normal fibroblasts. Pd@W.tea-NPs increased the proportion of Annexin V-positive WHEI-3B cells and induced G2/M cell cycle arrest. Leukemic cells in the spleen were reduced by Pd@W.tea-NPs with an increase in Bax/Bcl-2 and cytochrome-C protein and mRNA levels indicating the activation of the mitochondrial apoptotic pathway. These effects replicated the effects of ATRA and were not observed using blank Pd nanoparticles. Pd@W.tea-NPs afford therapeutic efficacy against leukemia likely to pivot on activation of the mitochondrial pathway of apoptotic signaling and hence appear attractive potential candidates for development as a novel anticancer agent.
Murraya koenigii Spreng has been traditionally claimed as a remedy for cancer. The current study investigated the anticancer effects of girinimbine, a carbazole alkaloid isolated from Murraya koenigii Spreng, on A549 lung cancer cells in relation to apoptotic mechanistic pathway. Girinimbine was isolated from Murraya koenigii Spreng. The antiproliferative activity was assayed using MTT and the apoptosis detection was done by annexin V and lysosomal stability assays. Multiparameter cytotoxicity assays were performed to investigate the change in mitochondrial membrane potential and cytochrome c translocation. ROS, caspase, and human apoptosis proteome profiler assays were done to investigate the apoptotic mechanism of cell death. The MTT assay revealed that the girinimbine induces cell death with an IC50 of 19.01 μ M. A significant induction of early phase of apoptosis was shown by annexin V and lysosomal stability assays. After 24 h treatment with 19.01 μ M of girinimbine, decrease in the nuclear area and increase in mitochondrial membrane potential and plasma membrane permeability were readily visible. Moreover the translocation of cytochrome c also was observed. Girinimbine mediates its antiproliferative and apoptotic effects through up- and downregulation of apoptotic and antiapoptotic proteins. There was a significant involvement of both intrinsic and extrinsic pathways. Moreover, the upregulation of p53 as well as the cell proliferation repressor proteins, p27 and p21, and the significant role of insulin/IGF-1 signaling were also identified. Moreover the caspases 3 and 8 were found to be significantly activated. Our results taken together indicated that girinimbine may be a potential agent for anticancer drug development.
The use of evidence-based complementary and alternative medicine is increasing rapidly. Eleucine indica (EI) is traditionally used in ailments associated with liver and kidneys. The therapeutic benefit of the medicinal plants is often attributed to their antioxidant properties. Therefore, the aim of this study was to screen the hexane, dicholoromethane, ethyl acetate (EA) and methanol extracts (MeTH) of EI for their antioxidant, antibacterial and anti-cancer effects using total phenolic contents (TPCs) and DPPH, disc diffusion method and MTT cytotoxicity assays, respectively. The MeTH was showed to have the highest TPC and scavenging activity (77.7%) on DPPH assay, followed by EA (64.5%), hexane (47.19%) and DCM (40.83%) extracts, whereas the MeTH showed no inhibitory effect on all tested bacteria strains. However, the EA extract exhibited a broad spectrum antibacterial activity against all tested bacteria except Bacillus subtilis, in which this bacterium was found to be resistant to all EI extracts. Meanwhile, hexane extract was demonstrated to have a remarkable antibacterial activity against methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, while the dicholoromethane extract did not exhibit significant activity against P. aeruginosa. None of the extracts showed significant cytotoxic activity towards MCF-7, HT-29 and CEM-SS human cancer cell lines after 72 h incubation time (IC(50) > 30 μg/ml). These results demonstrate that the extract prepared from the EI possesses antioxidant activity in vitro in addition to antibacterial properties. Further investigations are needed to verify the antioxidant effects in vitro and in vivo.
The novel coronavirus disease, which originated in Wuhan, developed into a severe public health problem worldwide. Immense stress in the society and health department was advanced due to the multiplying numbers of COVID carriers and deaths. This stress can be lowered by performing a high-speed diagnosis for the disease, which can be a crucial stride for opposing the deadly virus. A good large amount of time is consumed in the diagnosis. Some applications that use medical images like X-Rays or CT-Scans can pace up the time used in diagnosis. Hence, this paper aims to create a computer-aided-design system that will use the chest X-Ray as input and further classify it into one of the three classes, namely COVID-19, viral Pneumonia, and healthy. Since the COVID-19 positive chest X-Rays dataset was low, we have exploited four pre-trained deep neural networks (DNNs) to find the best for this system. The dataset consisted of 2905 images with 219 COVID-19 cases, 1341 healthy cases, and 1345 viral pneumonia cases. Out of these images, the models were evaluated on 30 images of each class for the testing, while the rest of them were used for training. It is observed that AlexNet attained an accuracy of 97.6% with an average precision, recall, and F1 score of 0.98, 0.97, and 0.98, respectively.
Zerumbone (ZER), a monosesquiterpene found in the subtropical ginger (Zingiber zerumbet Smith), possesses antiproliferative properties to several cancer cells lines, including the cervical, skin and colon cancers. In this study, the antitumourigenic effects of ZER were assessed in rats induced to develop liver cancer with a single intraperitoneal injection of diethylnitrosamine (DEN, 200 mg/kg) and dietary 2-acetylaminofluorene (AAF) (0.02%). The rats also received intraperitoneal ZER injections at 15, 30 or 60 mg/kg body wt. twice a week for 11 weeks, beginning week four post-DEN injection. The hepatocytes of positive control (DEN/AAF) rats were smaller with larger hyperchromatic nuclei than normal, showing cytoplasmic granulation and intracytoplasmic violaceous material, which were characteristics of hepatocarcinogenesis. Histopathological evaluations showed that ZER protects the rat liver from the carcinogenic effects of DEN and AAF. Serum alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (AP) and alpha-fetoprotein (AFP) were significantly lower (P<0.05) in ZER-treated than untreated rats with liver cancer. The liver malondialdehyde (MDA) concentrations significantly (P<0.05) increased in the untreated DEN/AAF rats indicating hepatic lipid peroxidation. There was also significant (P<0.05) reduction in the hepatic tissue glutathione (GSH) concentrations. The liver sections of untreated DEN/AAF rats also showed abundant proliferating cell nuclear antigen (PCNA), while in ZER-treated rats the expression of this antigen was significantly (P<0.05) lowered. By the TUNEL assay, there were significantly (P<0.05) higher numbers of apoptotic cells in DEN/AAF rats treated with ZER than those untreated. Zerumbone treatment had also increased Bax and decreased Bcl-2 protein expression in the livers of DEN/AAF rats, which suggested increased apoptosis. Even after 11 weeks of ZER treatment, there was no evidence of abnormality in the liver of normal rats. This study suggests that ZER reduces oxidative stress, inhibits proliferation, induces mitochondria-regulated apoptosis, thus minimising DEN/AAF-induced carcinogenesis in rat liver. Therefore, ZER has great potential in the treatment of liver cancers.
Heterotrigona itama stingless bee propolis extract is known for its diverse bioactive compounds, making it a potential natural shield against UV radiation. This research assesses the photoprotective potential of crude ethanol extract from H. itama propolis collected from four structures (involucrum, pillar, pot, and entrance) of five bee hives (H1-H5), totalling 20 samples. Initially, the samples underwent testing for SPF value and UV absorption spectra. The crude ethanol extract (E) from the involucrum (H4) with the highest SPF value and broadest spectrum was selected for fractionation using hexane and water. Subsequently, the extract (E) and its hexane (H) and water (W) fractions were subjected to SPF analysis, UVA/UVB absorption assessment, determination of total phenolic and flavonoid content, free radical scavenging capacity, anti-collagenase effects, and cytotoxicity assessment. Additionally, LC-MS/MS analysis was performed to identify chemical constituents in the active fraction (W). The extract E demonstrated an SPF of 8.23 ± 0.09 and UV absorption. Notably, its fraction W exhibited the highest SPF (16.55 ± 0.24) at 100 μg/mL, surpassing the H fraction (SPF 5.7 ± 0.45). Phenolic content was highest in the H fraction (388.95 ± 4.54 mg/g GAE DW), followed by the W fraction (286.76 ± 6.48 mg/g GAE DW) and crude E (91.83 ± 4.12 mg/g GAE DW) from the involucrum. Regarding flavonoids, the fraction W led with 79.82 ± 6.21 mg/g QE DW, followed by the H fraction (45.56 ± 0.05 mg/g QE DW) and E (34.57 ± 1.11 mg/g QE DW). The extract E also exhibited modest DPPH scavenging (EC50 = 120 μg/mL), while the H fraction demonstrated stronger activity (EC50 = 4.37 μg/mL), and the W fraction displayed moderate effects (EC50 = 17.55 μg/mL). Notably, the W fraction showed remarkable anti-collagenase activity, outperforming the positive control, EG. HaCaT cell cytotoxicity revealed that the extract E was cytotoxic, whereas the H and W fractions showed no toxicity. LC-MS/MS analysis identified bioactive flavonoids (e.g., pratensein, quercetin) in the W fraction. These findings highlight the superior photoprotective properties of the water fraction from the involucrum of H. itama stingless bee propolis extract, suggesting its potential as a natural and effective ingredient for sunscreen and skincare formulations.
Tanacetum polycephalum (L.) Schultz-Bip (Mokhaleseh) has been traditionally used in the treatment of headaches, migraines, hyperlipidemia and diabetes. The present study aimed to evaluate its anticancer properties and possible mechanism of action using MCF7 as an in vitro model. T. polycephalum leaves were extracted using hexane, chloroform and methanol solvents and the cytotoxicity was evaluated using the MTT assay. Detection of the early apoptotic cells was investigated using acridine orange/propidium iodide staining. An Annexin-V-FITC assay was carried out to observe the phosphatidylserine externalization as a marker for apoptotic cells. High content screening was applied to analyze the cell membrane permeability, nuclear condensation, mitochondrial membrane potential (MMP) and cytochrome c release. Apoptosis was confirmed by using caspase-8, caspase-9 and DNA laddering assays. In addition, Bax/Bcl-2 expressions and cell cycle arrest also have been investigated. MTT assay revealed significant cytotoxicity of T. Polycephalum hexane extract (TPHE) on MCF7 cells with the IC50 value of 6.42±0.35 µg/mL. Significant increase in chromatin condensation was also observed via fluorescence analysis. Treatment of MCF7 cells with TPHE encouraged apoptosis through reduction of MMP by down-regulation of Bcl-2 and up-regulation of Bax, triggering the cytochrome c leakage from mitochondria to the cytosol. The treated MCF7 cells significantly arrested at G1 phase. The chromatographic analysis elicited that the major active compound in this extract is 8β-hydroxy-4β,15-dihydrozaluzanin C. Taken together, the results presented in this study demonstrated that the hexane extract of T. Polycephalum inhibits the proliferation of MCF7 cells, resulting in the cell cycle arrest and apoptosis, which was explained to be through the mitochondrial pathway.
Ferulago angulata is a medicinal plant that is traditionally known for its anti-inflammatory and antiulcer properties. The present study was aimed to evaluate its anticancer activity and the possible mechanism of action using MCF-7 as an in vitro model. F. angulata leaf extracts were prepared using solvents in the order of increasing polarity. As determined by MTT assay, F. angulata leaves hexane extract (FALHE) revealed the strongest cytotoxicity against MCF-7 cells with the half maximal inhibitory concentration (IC50) value of 5.3 ± 0.82 μg/mL. The acute toxicity study of FALHE provided evidence of the safety of the plant extract. Microscopic and flow cytometric analysis using annexin-V probe showed an induction of apoptosis in MCF-7 by FALHE. Treatment of MCF-7 cells with FALHE encouraged the intrinsic pathway of apoptosis, with cell death transducing signals that reduced the mitochondrial membrane potential with cytochrome c release from mitochondria to cytosol. The released cytochrome c triggered the activation of caspase-9. Meanwhile, the overexpression of caspase-8 suggested the involvement of an extrinsic pathway in the induced apoptosis at the late stage of treatment. Moreover, flow cytometric analysis showed that FALHE treatment significantly arrested MCF-7 cells in the G1 phase, which was associated with upregulation of p21 and p27 assessed by quantitative polymerase chain reaction. Immunofluorescence and the quantitative polymerase chain reaction analysis of MCF-7 cells after treatment with FALHE revealed an upregulation of Bax and a downregulation of Bcl-2 proteins. These findings proposed that FALHE suppressed the proliferation of MCF-7 cells via cell cycle arrest and the induction of apoptosis through intrinsic pathway.
The fruit hull of Garcinia mangostana Linn. has been used in traditional medicine for treatment of various inflammatory diseases. Hence, this study aims to investigate the in vitro and in vivo anti-inflammatory effect of β mangostin (βM), a major compound present in Garcinia mangostana.
The current in vitro study was designed to investigate the anti-inflammatory, cytotoxic and antioxidant activities of boesenbergin A (BA), a chalcone derivative of known structure isolated from Boesenbergia rotunda. Human hepatocellular carcinoma (HepG2), colon adenocarcinoma (HT-29), non-small cell lung cancer (A549), prostate adenocarcinoma (PC3), and normal hepatic cells (WRL-68) were used to evaluate the cytotoxicity of BA using the MTT assay. The antioxidant activity of BA was assessed by the ORAC assay and compared to quercetin as a standard reference antioxidant. ORAC results are reported as the equivalent concentration of Trolox that produces the same level of antioxidant activity as the sample tested at 20 µg/mL. The toxic effect of BA on different cell types, reported as IC50, yielded 20.22 ± 3.15, 10.69 ± 2.64, 20.31 ± 1.34, 94.10 ± 1.19, and 9.324 ± 0.24 µg/mL for A549, PC3, HepG2, HT-29, and WRL-68, respectively. BA displayed considerable antioxidant activity, when the results of ORAC assay were reported as Trolox equivalents. BA (20 µg/mL) and quercetin (5 µg/mL) were equivalent to a Trolox concentration of 11.91 ± 0.23 and 160.32 ± 2.75 µM, respectively. Moreover, the anti-inflammatory activity of BA was significant at 12.5 to 50 µM and without any significant cytotoxicity for the murine macrophage cell line RAW 264.7 at 50 µM. The significant biological activities observed in this study indicated that BA may be one of the agents responsible for the reported biological activities of B. rotunda crude extract.
Boesenbergia rotunda (L) Mansf. has been used for the treatment of gastrointestinal disorders including peptic ulcer. In the current study we aimed to investiagte the anti-ulcer activities of methanolic extract of B. rotunda (MEBR) and its main active compound, pinostrobin on ethanol-induced ulcer in rats. The possible involevement of lipid peroxidation, nitric oxide, cyclooxygenases and free radical scavenging mechanisms also has been investigated.
The plant Typhonium flagelliforme (TF), commonly known as 'rodent tuber' in Malaysia, is often used as traditional remedy for cancer, including leukemia.
Typhonium flagelliforme (TF) is a tropical plant, traditionally used by the ethnic population of Malaysia for the cure of various cancers. This plant had shown to induce antiproliferative effect as well as apoptosis in cancer cells. However, there is no available information to address that TF affects murine leukemia cells in vitro and in vivo. Here, we investigated in vitro and in vivo effects of TF on murine leukemia WEHI-3 cells. It was found that the growth of leukemia cells in vitro was inhibited by the various extracts of TF. Among these fractions, the dichloromethane (DCM) tuber extracts of TF showed the lowest IC(50) (24.0 ± 5.2 μg/ml) and had demonstrated apoptogenic effect when observed under fluorescent microscope. We investigated the in vivo effects of DCM tuber extracts of TF on murine leukemia cells, and the results showed that the counts of immature granulocytes and monocytes were significantly decreased in peripheral blood of BALB/c leukemia mice after the oral administration of DCM tuber extracts of TF for 28 days with three doses (200, 400 and 800 mg/kg). These results were confirmed by observing the spleen histopathology and morphology of enlarged spleen and liver in leukemia mice when compared with the control. Furthermore, the cell death mechanism in the spleen tissue of treated mice was found via apoptosis.
Drug resistance presents a challenge in chemotherapy and has attracted research interest worldwide and particular attention has been given to natural compounds to overcome this difficulty. Pulchrin A, a new compound isolated from natural products has demonstrated novel potential for development as a drug. The identification of pulchrin A was conducted using several spectroscopic techniques such as nuclear magnetic resonance, liquid chromatography mass spectrometer, infrared and ultraviolet spectrometry. The cytotoxicity effects on CAOV-3 cells indicates that pulchrin A is more active than cisplatin, which has an IC50 of 22.3 μM. Significant changes in cell morphology were present, such as cell membrane blebbing and formation of apoptotic bodies. The involvement of phosphatidylserine (PS) in apoptosis was confirmed by Annexin V-FITC after a 24 h treatment. Apoptosis was activated through the intrinsic pathway by activation of procaspases 3 and 9 as well as cleaved caspases 3 and 9 and ended at the executioner pathway, with the occurrence of DNA laddering. Apoptosis was further confirmed via gene and protein expression levels, in which Bcl-2 protein was down-regulated and Bax protein was up-regulated. Furthermore, the CAOV-3 cell cycle was disrupted at the G0/G1 phase, leading to apoptosis. Molecular modeling of Bcl-2 proteins demonstrated a high- binding affinity, which inhibited the function of Bcl-2 proteins and led to cell death. Results of the current study can shed light on the development of new therapeutic agents, particularly, human ovarian cancer treatments.