Displaying publications 21 - 40 of 80 in total

Abstract:
Sort:
  1. Ataollahi F, Pramanik S, Moradi A, Dalilottojari A, Pingguan-Murphy B, Wan Abas WA, et al.
    J Biomed Mater Res A, 2015 Jul;103(7):2203-13.
    PMID: 24733741 DOI: 10.1002/jbm.a.35186
    Extracellular environments can regulate cell behavior because cells can actively sense their mechanical environments. This study evaluated the adhesion, proliferation and morphology of endothelial cells on polydimethylsiloxane (PDMS)/alumina (Al2 O3 ) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 2.5, 5, 7.5, and 10 wt % Al2 O3 at a curing temperature of 50°C for 4 h. The substrates were then characterized by mechanical, structural, and morphological analyses. The cell adhesion, proliferation, and morphology of cultured bovine aortic endothelial (BAEC) cells on substrate materials were evaluated by using resazurin assay and 1,1'-dioctadecyl-1,3,3,3',3'-tetramethylindocarbocyanine perchlorate-acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The composites (PDMS/2.5, 5, 7.5, and 10 wt % Al2 O3 ) exhibited higher stiffness than the pure PDMS substrate. The results also revealed that stiffer substrates promoted endothelial cell adhesion and proliferation and also induced spread morphology in the endothelial cells compared with lesser stiff substrates. Statistical analysis showed that the effect of time on cell proliferation depended on stiffness. Therefore, this study concludes that the addition of different Al2 O3 percentages to PDMS elevated substrate stiffness which in turn increased endothelial cell adhesion and proliferation significantly and induced spindle shape morphology in endothelial cells.
  2. Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, et al.
    Biosens Bioelectron, 2014 Apr 15;54:585-97.
    PMID: 24333570 DOI: 10.1016/j.bios.2013.10.075
    Advanced diagnostic technologies, such as polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), have been widely used in well-equipped laboratories. However, they are not affordable or accessible in resource-limited settings due to the lack of basic infrastructure and/or trained operators. Paper-based diagnostic technologies are affordable, user-friendly, rapid, robust, and scalable for manufacturing, thus holding great potential to deliver point-of-care (POC) diagnostics to resource-limited settings. In this review, we present the working principles and reaction mechanism of paper-based diagnostics, including dipstick assays, lateral flow assays (LFAs), and microfluidic paper-based analytical devices (μPADs), as well as the selection of substrates and fabrication methods. Further, we report the advances in improving detection sensitivity, quantification readout, procedure simplification and multi-functionalization of paper-based diagnostics, and discuss the disadvantages of paper-based diagnostics. We envision that miniaturized and integrated paper-based diagnostic devices with the sample-in-answer-out capability will meet the diverse requirements for diagnosis and treatment monitoring at the POC.
  3. Moo EK, Abusara Z, Abu Osman NA, Pingguan-Murphy B, Herzog W
    J Biomech, 2013 Aug 9;46(12):2024-31.
    PMID: 23849134 DOI: 10.1016/j.jbiomech.2013.06.007
    Morphological studies of live connective tissue cells are imperative to helping understand cellular responses to mechanical stimuli. However, photobleaching is a constant problem to accurate and reliable live cell fluorescent imaging, and various image thresholding methods have been adopted to account for photobleaching effects. Previous studies showed that dual photon excitation (DPE) techniques are superior over conventional one photon excitation (OPE) confocal techniques in minimizing photobleaching. In this study, we investigated the effects of photobleaching resulting from OPE and DPE on morphology of in situ articular cartilage chondrocytes across repeat laser exposures. Additionally, we compared the effectiveness of three commonly-used image thresholding methods in accounting for photobleaching effects, with and without tissue loading through compression. In general, photobleaching leads to an apparent volume reduction for subsequent image scans. Performing seven consecutive scans of chondrocytes in unloaded cartilage, we found that the apparent cell volume loss caused by DPE microscopy is much smaller than that observed using OPE microscopy. Applying scan-specific image thresholds did not prevent the photobleaching-induced volume loss, and volume reductions were non-uniform over the seven repeat scans. During cartilage loading through compression, cell fluorescence increased and, depending on the thresholding method used, led to different volume changes. Therefore, different conclusions on cell volume changes may be drawn during tissue compression, depending on the image thresholding methods used. In conclusion, our findings confirm that photobleaching directly affects cell morphology measurements, and that DPE causes less photobleaching artifacts than OPE for uncompressed cells. When cells are compressed during tissue loading, a complicated interplay between photobleaching effects and compression-induced fluorescence increase may lead to interpretations in cell responses to mechanical stimuli that depend on the microscopic approach and the thresholding methods used and may result in contradictory interpretations.
  4. Moo EK, Herzog W, Han SK, Abu Osman NA, Pingguan-Murphy B, Federico S
    Biomech Model Mechanobiol, 2012 Sep;11(7):983-93.
    PMID: 22234779 DOI: 10.1007/s10237-011-0367-2
    Experimental findings indicate that in-situ chondrocytes die readily following impact loading, but remain essentially unaffected at low (non-impact) strain rates. This study was aimed at identifying possible causes for cell death in impact loading by quantifying chondrocyte mechanics when cartilage was subjected to a 5% nominal tissue strain at different strain rates. Multi-scale modelling techniques were used to simulate cartilage tissue and the corresponding chondrocytes residing in the tissue. Chondrocytes were modelled by accounting for the cell membrane, pericellular matrix and pericellular capsule. The results suggest that cell deformations, cell fluid pressures and fluid flow velocity through cells are highest at the highest (impact) strain rate, but they do not reach damaging levels. Tangential strain rates of the cell membrane were highest at the highest strain rate and were observed primarily in superficial tissue cells. Since cell death following impact loading occurs primarily in superficial zone cells, we speculate that cell death in impact loading is caused by the high tangential strain rates in the membrane of superficial zone cells causing membrane rupture and loss of cell content and integrity.
  5. Tan SL, Sulaiman S, Pingguan-Murphy B, Selvaratnam L, Tai CC, Kamarul T
    Cell Tissue Bank, 2011 Feb;12(1):59-70.
    PMID: 19953328 DOI: 10.1007/s10561-009-9164-x
    This study investigates the feasibility of processed human amnion (HAM) as a substrate for chondrogenic differentiation of mesenchymal stem cells (MSCs). HAM preparations processed by air drying (AD) and freeze drying (FD) underwent histological examination and MSC seeding in chondrogenic medium for 15 days. Monolayer cultures were used as control for chondrogenic differentiation and HAMs without cell seeding were used as negative control. Qualitative observations were made using scanning electron microscopy analysis and quantitative analyses were based on the sulfated glycosaminoglycans (GAG) assays performed on day 1 and day 15. Histological examination of HAM substrates before seeding revealed a smooth surface in AD substrates, while the FD substrates exhibited a porous surface. Cell attachment to AD and FD substrates on day 15 was qualitatively comparable. GAG were significantly highly expressed in cells seeded on FD HAM substrates. This study indicates that processed HAM is a potentially valuable material as a cell-carrier for MSC differentiation.
  6. Moo EK, Osman NA, Pingguan-Murphy B, Abas WA, Spence WD, Solomonidis SE
    Acta Bioeng Biomech, 2009;11(4):37-43.
    PMID: 20405814
    Conventionally, patellar tendon-bearing (PTB) sockets, which need high dexterity of prosthetist, are widely used. Lack of chartered and experienced prosthetist has often led to painful experience of wearing prosthesis and this will in turn deter the patients to wear the prosthesis, which will further aggravate stump shrinkage. Thus, the hydrostatic socket which demands relatively lower level of fabricating skill is proposed to replace the PTB socket in order to produce the equivalent, if not better, quality of support to the amputee patients. Both sockets' pressure profiles are studied and compared using finite element analysis (FEA) software. Three-dimensional models of both sockets were developed using MIMICS software. The analysis results showed that hydrostatic socket did exhibit more uniform pressure profiles than that of PTB socket. PTB socket showed pressure concentration near the proximal brim of the socket and also at the distal fibula. It was also found that the pressure magnitude in hydrostatic socket is relatively lower than that of PTB socket.
  7. Alhalawani AM, Curran DJ, Pingguan-Murphy B, Boyd D, Towler MR
    J Funct Biomater, 2013;4(4):329-57.
    PMID: 24956193 DOI: 10.3390/jfb4040329
    This study investigates the use of gallium (Ga) based glass polyalkenoate cements (GPCs) as a possible alternative adhesive in sternal fixation, post sternotomy surgery. The glass series consists of a Control (CaO-ZnO-SiO2), and LGa-1 and LGa-2 which contain Ga at the expense of zinc (Zn) in 0.08 mol% increments. The additions of Ga resulted in increased working time (75 s to 137 s) and setting time (113 to 254 s). Fourier Transform Infrared (FTIR) analysis indicated that this was a direct result of increased unreacted poly(acrylic acid) (PAA) and the reduction of crosslink formation during cement maturation. LGa samples (0.16 wt % Ga) resulted in an altered ion release profile, particularly for 30 days analysis, with maximum Ca2+, Zn2+, Si4+ and Ga3+ ions released into the distilled water. The additions of Ga resulted in increased roughness and decreased contact angles during cement maturation. The presence of Ga has a positive effect on the compressive strength of the samples with strengths increasing over 10 MPa at 7 days analysis compared to the 1 day results. The additions of Ga had relatively no effect on the flexural strength. Tensile testing of bovine sterna proved that the LGa samples (0.16 wt % Ga) are comparable to the Control samples.
  8. Moradi A, Ataollahi F, Sayar K, Pramanik S, Chong PP, Khalil AA, et al.
    J Biomed Mater Res A, 2016 Jan;104(1):245-56.
    PMID: 26362913 DOI: 10.1002/jbm.a.35561
    Extracellular matrices have drawn attention in tissue engineering as potential biomaterials for scaffold fabrication because of their bioactive components. Noninvasive techniques of scaffold fabrication and cross-linking treatments are believed to maintain the integrity of bioactive molecules while providing proper architectural and mechanical properties. Cartilage matrix derived scaffolds are designed to support the maintenance of chondrocytes and provide proper signals for differentiation of chondroinducible cells. Chondroinductive potential of bovine articular cartilage matrix derived porous scaffolds on human dermal fibroblasts and the effect of scaffold shrinkage on chondrogenesis were investigated. An increase in sulfated glycosaminoglycans production along with upregulation of chondrogenic genes confirmed that physically treated cartilage matrix derived scaffolds have chondrogenic potential on human dermal fibroblasts.
  9. Choi JR, Hu J, Gong Y, Feng S, Wan Abas WA, Pingguan-Murphy B, et al.
    Analyst, 2016 05 10;141(10):2930-9.
    PMID: 27010033 DOI: 10.1039/c5an02532j
    Lateral flow assays (LFAs) have been extensively explored in nucleic acid testing (NAT) for medical diagnostics, food safety analysis and environmental monitoring. However, the amount of target nucleic acid in a raw sample is usually too low to be directly detected by LFAs, necessitating the process of amplification. Even though cost-effective paper-based amplification techniques have been introduced, they have always been separately performed from LFAs, hence increasing the risk of reagent loss and cross-contaminations. To date, integrating paper-based nucleic acid amplification into colorimetric LFA in a simple, portable and cost-effective manner has not been introduced. Herein, we developed an integrated LFA with the aid of a specially designed handheld battery-powered system for effective amplification and detection of targets in resource-poor settings. Interestingly, using the integrated paper-based loop-mediated isothermal amplification (LAMP)-LFA, we successfully performed highly sensitive and specific target detection, achieving a detection limit of as low as 3 × 10(3) copies of target DNA, which is comparable to the conventional tube-based LAMP-LFA in an unintegrated format. The device may serve in conjunction with a simple paper-based sample preparation to create a fully integrated paper-based sample-to-answer diagnostic device for point-of-care testing (POCT) in the near future.
  10. Choi JR, Hu J, Wang S, Yang H, Wan Abas WA, Pingguan-Murphy B, et al.
    Crit Rev Biotechnol, 2017 Feb;37(1):100-111.
    PMID: 26912259
    Dengue endemic is a serious healthcare concern in tropical and subtropical countries. Although well-established laboratory tests can provide early diagnosis of acute dengue infections, access to these tests is limited in developing countries, presenting an urgent need to develop simple, rapid, and robust diagnostic tools. Point-of-care (POC) devices, particularly paper-based POC devices, are typically rapid, cost-effective and user-friendly, and they can be used as diagnostic tools for the prompt diagnosis of dengue at POC settings. Here, we review the importance of rapid dengue diagnosis, current dengue diagnostic methods, and the development of paper-based POC devices for diagnosis of dengue infections at the POC.
  11. Zeimaran E, Pourshahrestani S, Djordjevic I, Pingguan-Murphy B, Kadri NA, Towler MR
    Mater Sci Eng C Mater Biol Appl, 2015 Aug;53:175-88.
    PMID: 26042705 DOI: 10.1016/j.msec.2015.04.035
    Biodegradable elastomers have clinical applicability due to their biocompatibility, tunable degradation and elasticity. The addition of bioactive glasses to these elastomers can impart mechanical properties sufficient for hard tissue replacement. Hence, a composite with a biodegradable polymer matrix and a bioglass filler can offer a method of augmenting existing tissue. This article reviews the applications of such composites for skeletal augmentation.
  12. Choi JR, Tang R, Wang S, Wan Abas WA, Pingguan-Murphy B, Xu F
    Biosens Bioelectron, 2015 Dec 15;74:427-39.
    PMID: 26164488 DOI: 10.1016/j.bios.2015.06.065
    Nucleic acid testing (NAT), as a molecular diagnostic technique, including nucleic acid extraction, amplification and detection, plays a fundamental role in medical diagnosis for timely medical treatment. However, current NAT technologies require relatively high-end instrumentation, skilled personnel, and are time-consuming. These drawbacks mean conventional NAT becomes impractical in many resource-limited disease-endemic settings, leading to an urgent need to develop a fast and portable NAT diagnostic tool. Paper-based devices are typically robust, cost-effective and user-friendly, holding a great potential for NAT at the point of care. In view of the escalating demand for the low cost diagnostic devices, we highlight the beneficial use of paper as a platform for NAT, the current state of its development, and the existing challenges preventing its widespread use. We suggest a strategy involving integrating all three steps of NAT into one single paper-based sample-to-answer diagnostic device for rapid medical diagnostics in the near future.
  13. Yong KW, Wan Safwani WK, Xu F, Wan Abas WA, Choi JR, Pingguan-Murphy B
    Biopreserv Biobank, 2015 Aug;13(4):231-9.
    PMID: 26280501 DOI: 10.1089/bio.2014.0104
    Mesenchymal stem cells (MSCs) hold many advantages over embryonic stem cells (ESCs) and other somatic cells in clinical applications. MSCs are multipotent cells with strong immunosuppressive properties. They can be harvested from various locations in the human body (e.g., bone marrow and adipose tissues). Cryopreservation represents an efficient method for the preservation and pooling of MSCs, to obtain the cell counts required for clinical applications, such as cell-based therapies and regenerative medicine. Upon cryopreservation, it is important to preserve MSCs functional properties including immunomodulatory properties and multilineage differentiation ability. Further, a biosafety evaluation of cryopreserved MSCs is essential prior to their clinical applications. However, the existing cryopreservation methods for MSCs are associated with notable limitations, leading to a need for new or improved methods to be established for a more efficient application of cryopreserved MSCs in stem cell-based therapies. We review the important parameters for cryopreservation of MSCs and the existing cryopreservation methods for MSCs. Further, we also discuss the challenges to be addressed in order to preserve MSCs effectively for clinical applications.
  14. Pramanik S, Ataollahi F, Pingguan-Murphy B, Oshkour AA, Osman NAA
    Sci Rep, 2015 May 07;5:9806.
    PMID: 25950377 DOI: 10.1038/srep09806
    Scaffold design from xenogeneic bone has the potential for tissue engineering (TE). However, major difficulties impede this potential, such as the wide range of properties in natural bone. In this study, sintered cortical bones from different parts of a bovine-femur impregnated with biodegradable poly(ethylene glycol) (PEG) binder by liquid phase adsorption were investigated. Flexural mechanical properties of the PEG-treated scaffolds showed that the scaffold is stiffer and stronger at a sintering condition of 1000°C compared with 900°C. In vitro cytotoxicity of the scaffolds evaluated by Alamar Blue assay and microscopic tests on human fibroblast cells is better at 1000°C compared with that at 900°C. Furthermore, in vitro biocompatibility and flexural property of scaffolds derived from different parts of a femur depend on morphology and heat-treatment condition. Therefore, the fabricated scaffolds from the distal and proximal parts at 1000°C are potential candidates for hard and soft TE applications, respectively.
  15. Mirza EH, Pan-Pan C, Wan Ibrahim WM, Djordjevic I, Pingguan-Murphy B
    J Biomed Mater Res A, 2015 Nov;103(11):3554-63.
    PMID: 25940780 DOI: 10.1002/jbm.a.35495
    Articular cartilage is a tissue specifically adapted to a specific niche with a low oxygen tension (hypoxia), and the presence of such conditions is a key factor in regulating growth and survival of chondrocytes. Zinc deficiency has been linked to cartilage-related disease, and presence of Zinc is known to provide antibacterial benefits, which makes its inclusion attractive in an in vitro system to reduce infection. Inclusion of 1% zinc oxide nanoparticles (ZnONP) in poly octanediol citrate (POC) polymer cultured in hypoxia has not been well determined. In this study we investigated the effects of ZnONP on chondrocyte proliferation and matrix synthesis cultured under normoxia (21% O2 ) and hypoxia (5% O2 ). We report an upregulation of chondrocyte proliferation and sulfated glycosaminoglycan (S-GAG) in hypoxic culture. Results demonstrate a synergistic effect of oxygen concentration and 1% ZnONP in up-regulation of anabolic gene expression (Type II collagen and aggrecan), and a down regulation of catabolic (MMP-13) gene expression. Furthermore, production of transcription factor hypoxia-inducible factor 1A (HIF-1A) in response to hypoxic condition to regulate chondrocyte survival under hypoxia is not affected by the presence of 1% ZnONP. Presence of 1% ZnONP appears to act to preserve homeostasis of cartilage in its hypoxic environment.
  16. Chua KH, Raduan F, Wan Safwani WK, Manzor NF, Pingguan-Murphy B, Sathapan S
    Cell Prolif, 2013 Jun;46(3):300-11.
    PMID: 23672290 DOI: 10.1111/cpr.12029
    OBJECTIVES: This study investigated effects of reduced serum condition and vascular endothelial growth factor (VEGF) on angiogenic potential of adipose stromal cells (ASCs) in vitro.

    MATERIALS AND METHODS: Adipose stromal cells were cultured in three different types of medium: (i) F12/DMEM (FD) supplemented with 10% FBS from passage 0 (P0) to P6; (ii) FD supplemented with 2% FBS at P6; and (iii) FD supplemented with 2% FBS plus 50 ng/ml of VEGF at P6. Morphological changes and growth rate of ASCs were recorded. Changes in stemness, angiogenic and endogenic genes' expressions were analysed using Real-Time PCR.

    RESULTS: Adipose stromal cells changed from fibroblast-like shape when cultured in 10% FBS medium to polygonal when cultured in 2% FBS plus VEGF-supplemented medium. Their growth rate was lower in 2% FBS medium, but increased with addition of VEGF. Real-Time PCR showed that ASCs maintained most of their stemness and angiogenic genes' expression in 10% FBS at P1, P5 and P6, but this increased significantly in 2% FBS at P6. Endogenic genes expression such as PECAM-1, VE chaderin and VEGFR-2 decreased after serial passage in 10% FBS, but increased significantly at P6 in 2% FBS. Addition of VEGF did not cause any significant change in gene expression level.

    CONCLUSION: Adipose stromal cells had greater angiogenic potential when cultured in reduced serum conditions. VEGF did not enhance their angiogenic potential in 2% FBS-supplemented medium.

  17. Yong KW, Li Y, Huang G, Lu TJ, Safwani WK, Pingguan-Murphy B, et al.
    Am J Physiol Heart Circ Physiol, 2015 Aug 15;309(4):H532-42.
    PMID: 26092987 DOI: 10.1152/ajpheart.00299.2015
    Cardiac myofibroblast differentiation, as one of the most important cellular responses to heart injury, plays a critical role in cardiac remodeling and failure. While biochemical cues for this have been extensively investigated, the role of mechanical cues, e.g., extracellular matrix stiffness and mechanical strain, has also been found to mediate cardiac myofibroblast differentiation. Cardiac fibroblasts in vivo are typically subjected to a specific spatiotemporally changed mechanical microenvironment. When exposed to abnormal mechanical conditions (e.g., increased extracellular matrix stiffness or strain), cardiac fibroblasts can undergo myofibroblast differentiation. To date, the impact of mechanical cues on cardiac myofibroblast differentiation has been studied both in vitro and in vivo. Most of the related in vitro research into this has been mainly undertaken in two-dimensional cell culture systems, although a few three-dimensional studies that exist revealed an important role of dimensionality. However, despite remarkable advances, the comprehensive mechanisms for mechanoregulation of cardiac myofibroblast differentiation remain elusive. In this review, we introduce important parameters for evaluating cardiac myofibroblast differentiation and then discuss the development of both in vitro (two and three dimensional) and in vivo studies on mechanoregulation of cardiac myofibroblast differentiation. An understanding of the development of cardiac myofibroblast differentiation in response to changing mechanical microenvironment will underlie potential targets for future therapy of cardiac fibrosis and failure.
  18. Rozila I, Azari P, Munirah S, Safwani WKZW, Pingguan-Murphy B, Chua KH
    Polymers (Basel), 2021 Feb 17;13(4).
    PMID: 33671175 DOI: 10.3390/polym13040597
    (1) Background: Stem cells in combination with scaffolds and bioactive molecules have made significant contributions to the regeneration of damaged bone tissues. A co-culture system can be effective in enhancing the proliferation rate and osteogenic differentiation of the stem cells. Hence, the aim of this study was to investigate the osteogenic differentiation of human adipose derived stem cells when co-cultured with human osteoblasts and seeded on polycaprolactone (PCL):hydroxyapatite (HA) scaffold; (2) Methods: Human adipose-derived stem cells (ASC) and human osteoblasts (HOB) were seeded in three different ratios of 1:2, 1:2 and 2:1 in the PCL-HA scaffolds. The osteogenic differentiation ability was evaluated based on cell morphology, proliferation rate, alkaline phosphatase (ALP) activity, calcium deposition and osteogenic genes expression levels using quantitative RT-PCR; (3) Results: The co-cultured of ASC/HOB in ratio 2:1 seeded on the PCL-HA scaffolds showed the most positive osteogenic differentiation as compared to other groups, which resulted in higher ALP activity, calcium deposition and osteogenic genes expression, particularly Runx, ALP and BSP. These genes indicate that the co-cultured ASC/HOB seeded on PCL-HA was at the early stage of osteogenic development; (4) Conclusions: The combination of co-culture system (ASC/HOB) and PCL-HA scaffolds promote osteogenic differentiation and early bone formation.
  19. Nam HY, Murali MR, Ahmad RE, Pingguan-Murphy B, Raghavendran HRB, Kamarul T
    Stem Cells Int, 2020;2020:5385960.
    PMID: 32908542 DOI: 10.1155/2020/5385960
    It has been suggested that mechanical strain may elicit cell differentiation in adult somatic cells through activation of epithelial sodium channels (ENaC). However, such phenomenon has not been previously demonstrated in mesenchymal stromal cells (MSCs). The present study was thus conducted to investigate the role of ENaC in human bone marrow-derived MSCs (hMSCs) tenogenic differentiation during uniaxial tensile loading. Passaged-2 hMSCs were seeded onto silicone chambers coated with collagen I and subjected to stretching at 1 Hz frequency and 8% strain for 6, 24, 48, and 72 hours. Analyses at these time points included cell morphology and alignment observation, immunocytochemistry and immunofluorescence staining (collagen I, collagen III, fibronectin, and N-cadherin), and gene expression (ENaC subunits, and tenogenic markers). Unstrained cells at similar time points served as the control group. To demonstrate the involvement of ENaC in the differentiation process, an ENaC blocker (benzamil) was used and the results were compared to the noninhibited hMSCs. ENaC subunits' (α, β, γ, and δ) expression was observed in hMSCs, although only α subunit was significantly increased during stretching. An increase in tenogenic genes' (collagen1, collagen3, decorin, tenascin-c, scleraxis, and tenomodulin) and proteins' (collagen I, collagen III, fibronectin, and N-cadherin) expression suggests that hMSCs underwent tenogenic differentiation when subjected to uniaxial loading. Inhibition of ENaC function resulted in decreased expression of these markers, thereby suggesting that ENaC plays a vital role in tenogenic differentiation of hMSCs during mechanical loading.
  20. Peake NJ, Hobbs AJ, Pingguan-Murphy B, Salter DM, Berenbaum F, Chowdhury TT
    Osteoarthritis Cartilage, 2014 Nov;22(11):1800-7.
    PMID: 25086404 DOI: 10.1016/j.joca.2014.07.018
    C-type natriuretic peptide (CNP) has been demonstrated in human and mouse models to play critical roles in cartilage homeostasis and endochondral bone formation. Indeed, targeted inactivation of the genes encoding CNP results in severe dwarfism and skeletal defects with a reduction in growth plate chondrocytes. Conversely, cartilage-specific overexpression of CNP was observed to rescue the phenotype of CNP deficient mice and significantly enhanced bone growth caused by growth plate expansion. In vitro studies reported that exogenous CNP influenced chondrocyte differentiation, proliferation and matrix synthesis with the response dependent on CNP concentration. The chondroprotective effects were shown to be mediated by natriuretic peptide receptor (Npr)2 and enhanced synthesis of cyclic guanosine-3',5'-monophosphate (cGMP) production. Recent studies also showed certain homeostatic effects of CNP are mediated by the clearance inactivation receptor, Npr3, highlighting several mechanisms in maintaining tissue homeostasis. However, the CNP signalling systems are complex and influenced by multiple factors that will lead to altered signalling and tissue dysfunction. This review will discuss the differential role of CNP signalling in regulating cartilage and bone homeostasis and how the pathways are influenced by age, inflammation or sex. Evidence indicates that enhanced CNP signalling may prevent growth retardation and protect cartilage in patients with inflammatory joint disease.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links