Displaying publications 21 - 40 of 205 in total

Abstract:
Sort:
  1. Show PL, Tan CP, Shamsul Anuar M, Ariff A, Yusof YA, Chen SK, et al.
    Bioresour Technol, 2012 Jul;116:226-33.
    PMID: 22061444 DOI: 10.1016/j.biortech.2011.09.131
    An extractive fermentation technique was developed using a thermoseparating reagent to form a two-phase system for simultaneous cell cultivation and downstream processing of extracellular Burkholderia cepacia lipase. A 10% (w/w) solution of ethylene oxide-propylene oxide (EOPO) with a molecular mass of 3900 g/mol and pH 8.5, a 200 rpm speed, and 30 °C were selected as the optimal conditions for lipase production (55 U/ml). Repetitive batch fermentation was performed by continuous replacement of the top phase every 24h, which resulted in an average cell growth mass of 4.7 g/L for 10 extractive batches over 240 h. In scaling-up the process, a bench-scale bioreactor was tested under the conditions that had been optimized in flasks. The production rate and recovery yield were higher in the bioreactor compared to fermentation performed in flasks.
  2. Nyam KL, Teh YN, Tan CP, Kamariah L
    Malays J Nutr, 2012 Aug;18(2):265-74.
    PMID: 24575672 MyJurnal
    In order to overcome the stability problems of oils and fats, synthetic antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ) have widespread use as food additives in many countries. Recent reports reveal that these compounds may be implicated in many health risks, including cancer and carcinogenesis. Hence, there is a move towards the use of natural antioxidants of plant origin to replace these synthetic antioxidants.
  3. Zulkurnain M, Lai OM, Latip RA, Nehdi IA, Ling TC, Tan CP
    Food Chem, 2012 Nov 15;135(2):799-805.
    PMID: 22868161 DOI: 10.1016/j.foodchem.2012.04.144
    The formation of 3-monochloropropane-1,2-diol (3-MCPD) esters in refined palm oil during deodorisation is attributed to the intrinsic composition of crude palm oil. Utilising D-optimal design, the effects of the degumming and bleaching processes on the reduction in 3-MCPD ester formation in refined palm oil from poor-quality crude palm oil were studied relative to the palm oil minor components that are likely to be their precursors. Water degumming remarkably reduced 3-MCPD ester formation by up to 84%, from 9.79 mg/kg to 1.55 mg/kg. Bleaching with synthetic magnesium silicate caused a further 10% reduction, to 0.487 mg/kg. The reduction in 3-MCPD ester formation could be due to the removal of related precursors prior to the deodorisation step. The phosphorus content of bleached palm oil showed a significant correlation with 3-MCPD ester formation.
  4. Anarjan N, Tan CP, Nehdi IA, Ling TC
    Food Chem, 2012 Dec 1;135(3):1303-9.
    PMID: 22953858 DOI: 10.1016/j.foodchem.2012.05.091
    Astaxanthin colloidal particles were produced using solvent-diffusion technique in the presence of different food grade surface active compounds, namely, Polysorbate 20 (PS20), sodium caseinate (SC), gum Arabic (GA) and the optimum combination of them (OPT). Particle size and surface charge characteristics, rheological behaviour, chemical stability, colour, in vitro cellular uptake, in vitro antioxidant activity and residual solvent concentration of prepared colloidal particles were evaluated. The results indicated that in most cases the mixture of surface active compounds lead to production of colloidal particles with more desirable physicochemical and biological properties, as compared to using them individually. The optimum combination of PS20, SC and GA could produce the astaxanthin colloidal particles with small particle size, polydispersity index (PDI), conductivity and higher zeta potential, mobility, cellular uptake, colour intensity and in vitro antioxidant activity. In addition, all prepared astaxanthin colloidal particles had significantly (p<0.05) higher cellular uptake than pure astaxanthin powder.
  5. KoohiKamali S, Tan CP, Ling TC
    ScientificWorldJournal, 2012;2012:475027.
    PMID: 22593688 DOI: 10.1100/2012/475027
    In this study, the methanolysis process of sunflower oil was investigated to get high methyl esters (biodiesel) content using sodium methoxide. To reach to the best process conditions, central composite design (CCD) through response surface methodology (RSM) was employed. The optimal conditions predicted were the reaction time of 60 min, an excess stoichiometric amount of alcohol to oil ratio of 25%w/w and the catalyst content of 0.5%w/w, which lead to the highest methyl ester content (100%w/w). The methyl ester content of the mixture from gas chromatography analysis (GC) was compared to that of optimum point. Results, confirmed that there was no significant difference between the fatty acid methyl ester content of sunflower oil produced under the optimized condition and the experimental value (P ≥ 0.05). Furthermore, some fuel specifications of the resultant biodiesel were tested according to American standards for testing of materials (ASTM) methods. The outcome showed that the methyl ester mixture produced from the optimized condition met nearly most of the important biodiesel specifications recommended in ASTM D 6751 requirements. Thus, the sunflower oil methyl esters resulted from this study could be a suitable alternative for petrol diesels.
  6. Anarjan N, Tan CP
    Molecules, 2013 Jan 09;18(1):768-77.
    PMID: 23303336 DOI: 10.3390/molecules18010768
    The effects of selected nonionic emulsifiers on the physicochemical characteristics of astaxanthin nanodispersions produced by an emulsification/evaporation technique were studied. The emulsifiers used were polysorbates (Polysorbate 20, Polysorbate 40, Polysorbate 60 and Polysorbate 80) and sucrose esters of fatty acids (sucrose laurate, palmitate, stearate and oleate). The mean particle diameters of the nanodispersions ranged from 70 nm to 150 nm, depending on the emulsifier used. In the prepared nanodispersions, the astaxanthin particle diameter decreased with increasing emulsifier hydrophilicity and decreasing carbon number of the fatty acid in the emulsifier structure. Astaxanthin nanodispersions with the smallest particle diameters were produced with Polysorbate 20 and sucrose laurate among the polysorbates and the sucrose esters, respectively. We also found that the Polysorbate 80- and sucrose oleate-stabilized nanodispersions had the highest astaxanthin losses (i.e., the lowest astaxanthin contents in the final products) among the nanodispersions. This work demonstrated the importance of emulsifier type in determining the physicochemical characteristics of astaxanthin nano-dispersions.
  7. Zulkurnain M, Lai OM, Tan SC, Abdul Latip R, Tan CP
    J Agric Food Chem, 2013 Apr 3;61(13):3341-9.
    PMID: 23464796 DOI: 10.1021/jf4009185
    The reduction of 3-monochloropropane-1,2-diol (3-MCPD) ester formation in refined palm oil was achieved by incorporation of additional processing steps in the physical refining process to remove chloroester precursors prior to the deodorization step. The modified refining process was optimized for the least 3-MCPD ester formation and acceptable refined palm oil quality using response surface methodology (RSM) with five processing parameters: water dosage, phosphoric acid dosage, degumming temperature, activated clay dosage, and deodorization temperature. The removal of chloroester precursors was largely accomplished by increasing the water dosage, while the reduction of 3-MCPD esters was a compromise in oxidative stability and color of the refined palm oil because some factors such as acid dosage, degumming temperature, and deodorization temperature showed contradictory effects. The optimization resulted in 87.2% reduction of 3-MCPD esters from 2.9 mg/kg in the conventional refining process to 0.4 mg/kg, with color and oil stability index values of 2.4 R and 14.3 h, respectively.
  8. Thoo YY, Abas F, Lai OM, Ho CW, Yin J, Hedegaard RV, et al.
    Food Chem, 2013 Jun 1;138(2-3):1215-9.
    PMID: 23411234 DOI: 10.1016/j.foodchem.2012.11.013
    The synergistic antioxidant effects of ethanolic extracts of Centella asiatica (CE), and α-tocopherol have been studied. The types of interactions exhibited by CE and α-tocopherol combined at different ratios were measured using three assays: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical-scavenging capacity, the β-carotene bleaching system and liposome peroxidation assays. Fixed-fraction isobolographic analysis was used to detect any inducement of the antioxidant activity compared with the individual activities of CE and α-tocopherol. Of all synergistic combinations of CE and α-tocopherol, only fraction 2/3 showed the synergistic combination that fits well in three different assays and can be explained by the regeneration of α-tocopherol by CE despite the interaction effect of β-carotene present in the analytical assay. This phenomenon involved complex interactions between CE and α-tocopherol to exhibit different degrees of interactions that eventually increased antioxidant activity.
  9. Tan PY, Tan CP, Abas F, Ho CW, Mustapha WA
    Molecules, 2013 Jun 10;18(6):6792-803.
    PMID: 23752466 DOI: 10.3390/molecules18066792
    Palm sugar-like flavouring (PSLF) is a type of flavour product that is formed by heating amino acids and sugar under specific heating conditions. Unfortunately, PSLF has a salty taste and contains high amounts of acrylamide. Hence, the objective of this research was to reduce saltiness and acrylamide without negatively affecting the aroma properties of PSLF. A decrease in the sodium phosphate (NaHPO₄) buffer concentration from 0.20 to 0.02 M was found to reduce sodium to approximately 15% of the level found in original PSLF. A further decrease (~25%) in the sodium content was achieved by removing monobasic sodium phosphate (NaH₂PO₄) from the buffer system. Meanwhile, the addition of CaCl₂ at 20-40 mg/L reduced the acrylamide content in PSLF by as much as 58%. A CaCl₂ concentration of 20 mg/mL was most favourable as it most efficiently suppressed acrylamide formation while providing an acceptably high flavour yield in PSLF. In view of the high acrylamide content in PSLF, additional work is necessary to further reduce the amount of acrylamide by controlling the asparagine concentration in the precursor mixture.
  10. Thoo YY, Ho SK, Abas F, Lai OM, Ho CW, Tan CP
    Molecules, 2013 Jun 14;18(6):7004-22.
    PMID: 23771061 DOI: 10.3390/molecules18067004
    Antioxidants have been widely used in the food industry to enhance product quality by preventing oxidation of susceptible substances. This work was carried out to maximise the recovery of total phenolic content (TPC), total flavonoid content (TFC), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical-scavenging capacity and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging capacity from Morinda citrifolia fruit via modification of the ethanol concentration, extraction time and extraction temperature at minimal processing cost. The optimised conditions yielded values of 881.57 ± 17.74 mg GAE/100 g DW for TPC, 552.53 ± 34.16 mg CE/100 g DW for TFC, 799.20 ± 2.97 µmol TEAC/100 g DW for ABTS and 2,317.01 ± 18.13 µmol TEAC/100 g DW for DPPH were 75% ethanol, 40 min of time and 57 °C. The four responses did not differ significantly (p > 0.05) from predicted values, indicating that models obtained are suitable to the optimisation of extraction conditions for phenolics from M. citrifolia. The relative amounts of flavonoids were 0.784 ± 0.01 mg quercetin/g of extract and 1.021 ± 0.04 mg rutin/g of extract. On the basis of the results obtained, M. citrifolia extract can be used as a valuable bioactive source of natural antioxidants.
  11. Mediani A, Abas F, Khatib A, Tan CP
    Molecules, 2013 Aug 29;18(9):10452-64.
    PMID: 23994970 DOI: 10.3390/molecules180910452
    The aim of the study was to analyze the influence of oven thermal processing of Cosmos caudatus on the total polyphenolic content (TPC) and antioxidant capacity (DPPH) of two different solvent extracts (80% methanol, and 80% ethanol). Sonication was used to extract bioactive compounds from this herb. The results showed that the optimised conditions for the oven drying method for 80% methanol and 80% ethanol were 44.5 °C for 4 h with an IC₅₀ of 0.045 mg/mL and 43.12 °C for 4.05 h with an IC₅₀ of 0.055 mg/mL, respectively. The predicted values for TPC under the optimised conditions for 80% methanol and 80% ethanol were 16.5 and 15.8 mg GAE/100 g DW, respectively. The results obtained from this study demonstrate that Cosmos caudatus can be used as a potential source of antioxidants for food and medicinal applications.
  12. Samaram S, Mirhosseini H, Tan CP, Ghazali HM
    Molecules, 2013 Oct 10;18(10):12474-87.
    PMID: 24152670 DOI: 10.3390/molecules181012474
    The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE) for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE) and solvent extraction (SE)). In the present study, the recovery yield, fatty acid composition and triacylglycerol profile of papaya seed oil obtained from different extraction methods and conditions were compared. Results indicated that both solvent extraction (SE, 12 h/25 °C) and ultrasound-assisted extraction (UAE) methods recovered relatively high yields (79.1% and 76.1% of total oil content, respectively). Analysis of fatty acid composition revealed that the predominant fatty acids in papaya seed oil were oleic (18:1, 70.5%-74.7%), palmitic (16:0, 14.9%-17.9%), stearic (18:0, 4.50%-5.25%), and linoleic acid (18:2, 3.63%-4.6%). Moreover, the most abundant triacylglycerols of papaya seed oil were triolein (OOO), palmitoyl diolein (POO) and stearoyl oleoyl linolein (SOL). In this study, ultrasound-assisted extraction (UAE) significantly (p < 0.05) influenced the triacylglycerol profile of papaya seed oil, but no significant differences were observed in the fatty acid composition of papaya seed oil extracted by different extraction methods (SXE, SE and UAE) and conditions.
  13. Latip RA, Lee YY, Tang TK, Phuah ET, Tan CP, Lai OM
    Food Chem, 2013 Dec 15;141(4):3938-46.
    PMID: 23993569 DOI: 10.1016/j.foodchem.2013.05.114
    The stearin fraction of palm-based diacylglycerol (PDAGS) was produced from dry fractionation of palm-based diacylglycerol (PDAG). Bakery shortening blends were produced by mixing PDAGS with either palm mid fraction, PMF (PDAGS/PMF), palm olein, POL(PDAGS/POL) or sunflower oil, SFO (PDAGS/SFO) at PDAGS molar fraction of XPDAGS=0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%. The physicochemical results obtained indicated that C16:0 and C18:1 were the dominant fatty acids for PDAGS/PMF and PDAGS/POL, while C18:1 and C18:2 were dominant in the PDAGS/SFO mixtures. SMP and SFC of the PDAGS were reduced with the addition of PMF, POL and SFO. Binary mixtures of PDAGS/PMF had better structural compatibility and full miscibility with each other. PDAGS/PMF and PDAGS/SFO crystallised in β'+β polymorphs in the presence of 0.4-0.5% PDAGS while PDAGS/POL resulted in β polymorphs crystal. The results gave indication that PDAGS: PMF at 50%:50% and 60%:40% (w/w) were the most suitable fat blend to be used as bakery shortening.
  14. Anarjan N, Nehdi IA, Tan CP
    Chem Cent J, 2013;7(1):127.
    PMID: 23875816 DOI: 10.1186/1752-153X-7-127
    The emulsification-evaporation method was used to prepare astaxanthin nanodispersions using a three-component emulsifier system composed of Tween 20, sodium caseinate and gum Arabic. Using Response-surface methodology (RSM), we studied the main and interaction effects of the major emulsion components, namely, astaxanthin concentration (0.02-0.38 wt %, x1), emulsifier concentration (0.2-3.8 wt %, x2) and organic phase (dichloromethane) concentration (2-38 wt %, x3) on nanodispersion characteristics. The physicochemical properties considered as response variables were: average particle size (Y1), PDI (Y2) and astaxanthin loss (Y3).
  15. Ab Latip R, Lee YY, Tang TK, Phuah ET, Lee CM, Tan CP, et al.
    PeerJ, 2013;1:e72.
    PMID: 23682348 DOI: 10.7717/peerj.72
    Fractionation which separates the olein (liquid) and stearin (solid) fractions of oil is used to modify the physicochemical properties of fats in order to extend its applications. Studies showed that the properties of fractionated end products can be affected by fractionation processing conditions. In the present study, dry fractionation of palm-based diacylglycerol (PDAG) was performed at different: cooling rates (0.05, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0°C/min), end-crystallisation temperatures (30, 35, 40, 45 and 50°C) and agitation speeds (30, 50, 70, 90 and 110 rpm) to determine the effect of these parameters on the properties and yield of the solid and liquid portions. To determine the physicochemical properties of olein and stearin fraction: Iodine value (IV), fatty acid composition (FAC), acylglycerol composition, slip melting point (SMP), solid fat content (SFC), thermal behaviour tests were carried out. Fractionation of PDAG fat changes the chemical composition of liquid and solid fractions. In terms of FAC, the major fatty acid in olein and stearin fractions were oleic (C18:1) and palmitic (C16:0) respectively. Acylglycerol composition showed that olein and stearin fractions is concentrated with TAG and DAG respectively. Crystallization temperature, cooling rate and agitation speed does not affect the IV, SFC, melting and cooling properties of the stearin fraction. The stearin fraction was only affected by cooling rate which changes its SMP. On the other hand, olein fraction was affected by crystallization temperature and cooling rate but not agitation speed which caused changes in IV, SMP, SFC, melting and crystallization behavior. Increase in both the crystallization temperature and cooling rate caused a reduction of IV, increment of the SFC, SMP, melting and crystallization behaviour of olein fraction and vice versa. The fractionated stearin part melted above 65°C while the olein melted at 40°C. SMP in olein fraction also reduced to a range of 26 to 44°C while SMP of stearin fractions increased to (60-62°C) compared to PDAG.
  16. Lim PK, Jinap S, Sanny M, Tan CP, Khatib A
    J Food Sci, 2014 Jan;79(1):T115-21.
    PMID: 24344977 DOI: 10.1111/1750-3841.12250
    The objective of this study was to evaluate the precursors of acrylamide formation in sweet potato (SP) (Ipomoea batatas L. Lam) chips and to determine the effect of different types of vegetable oils (VOs), that is, palm olein, coconut oil, canola oil, and soya bean oil, on acrylamide formation. The reducing sugars and amino acids in the SP slices were analyzed, and the acrylamide concentrations of SP chips were measured. SP chips that were fried in a lower degree of unsaturation oils contained a lower acrylamide concentration (1443 μg/kg), whereas those fried with higher degree of unsaturated oils contained a higher acrylamide concentration (2019 μg/kg). SP roots were found to contain acrylamide precursors, that is, 4.17 mg/g glucose and 5.05 mg/g fructose, and 1.63 mg/g free asparagine. The type of VO and condition used for frying, significantly influenced acrylamide formation. This study clearly indicates that the contribution of lipids in the formation of acrylamide should not be neglected.
  17. Wong YH, Tan WY, Tan CP, Long K, Nyam KL
    Asian Pac J Trop Biomed, 2014 May;4(Suppl 1):S510-5.
    PMID: 25183141 DOI: 10.12980/APJTB.4.2014C1090
    To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines.
  18. Mediani A, Abas F, Tan CP, Khatib A
    Antioxidants (Basel), 2014 May 07;3(2):358-70.
    PMID: 26784876 DOI: 10.3390/antiox3020358
    The present study was conducted to determine the effect of air (AD), oven (OD) and freeze drying (FD) on the free radical scavenging activity and total phenolic content (TPC) of Cosmos caudatus and the effect of storage time by the comparison with a fresh sample (FS). Among the three drying methods that were used, AD resulted in the highest free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC50 = 0.0223 mg/mL) and total phenolic content (27.4 g GAE/100 g), whereas OD produced the lowest scavenging activity and TPC value. After three months of storage, the dried samples showed a high and consistent free radical scavenging activity when compared to stored fresh material. The drying methods could preserve the quality of C. caudatus during storage and the stability of its bioactive components can be maintained.
  19. Cheong KW, Mirhosseini H, Hamid NS, Osman A, Basri M, Tan CP
    Molecules, 2014 Jun 24;19(6):8691-706.
    PMID: 24962400 DOI: 10.3390/molecules19068691
    This study was conducted to investigate the effect of main emulsion components namely, modified starch, propylene glycol alginate (PGA), sucrose laurate and sucrose stearate on creaming index, cloudiness, average droplet size and conductivity of soursop beverage emulsions. Generally, the use of different emulsifiers or a mixture of emulsifiers has a significant (p < 0.05) effect on the response variables studied. The addition of PGA had a significant (p < 0.05) effect on the creaming index at 55 °C, while PGA-stabilized (PGA1) emulsions showed low creaming stability at both 25 °C and 55 °C. Conversely, the utilization of PGA either as a mixture or sole emulsifier, showed significantly (p < 0.05) higher cloudiness, as larger average droplet size will affect the refractive index of the oil and aqueous phases. Additionally, the cloudiness was directly proportional to the mean droplet size of the dispersed phase. The inclusion of PGA into the formulation could have disrupted the properties of the interfacial film, thus resulting in larger droplet size. While unadsorbed ionized PGA could have contributed to higher conductivity of emulsions prepared at low pH. Generally, emulsions prepared using sucrose monoesters or as a mixture with modified starch emulsions have significantly (p < 0.05) lower creaming index and conductivity values, but higher cloudiness and average droplet size.
  20. Khor YP, Koh SP, Long K, Long S, Ahmad SZ, Tan CP
    Molecules, 2014 Jul 01;19(7):9187-202.
    PMID: 24988188 DOI: 10.3390/molecules19079187
    Food manufacturers are interested in developing emulsion-based products into nutritional foods by using beneficial oils, such as fish oil and virgin coconut oil (VCO). In this study, the physicochemical properties of a VCO oil-in-water emulsion was investigated and compared to other commercial oil-in-water emulsion products (C1, C2, C3, and C4). C3 exhibited the smallest droplet size of 3.25 µm. The pH for the emulsion samples ranged from 2.52 to 4.38 and thus were categorised as acidic. In a texture analysis, C2 was described as the most firm, very adhesive and cohesive, as well as having high compressibility properties. From a rheological viewpoint, all the emulsion samples exhibited non-Newtonian behaviour, which manifested as a shear-thinning property. The G'G'' crossover illustrated by the VCO emulsion in the amplitude sweep graph but not the other commercial samples illustrated that the VCO emulsion had a better mouthfeel. In this context, the VCO emulsion yielded the highest zeta potential (64.86 mV), which was attributed to its strong repulsive forces, leading to a good dispersion system. C2 comprised the highest percentage of fat among all emulsion samples, followed by the VCO emulsion, with 18.44% and 6.59%, respectively.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links