Displaying publications 21 - 40 of 40 in total

Abstract:
Sort:
  1. Hanapi UF, Yong CY, Goh ZH, Alitheen NB, Yeap SK, Tan WS
    PeerJ, 2017;5:e2947.
    PMID: 28194311 DOI: 10.7717/peerj.2947
    Macrobrachium rosenbergii nodavirus (MrNv) poses a major threat to the prawn industry. Currently, no effective vaccine and treatment are available to prevent the spread of MrNv. Its infection mechanism and localisation in a host cell are also not well characterised. The MrNv capsid protein (MrNvc) produced in Escherichia coli self-assembled into virus-like particles (VLPs) resembling the native virus. Thus, fluorescein labelled MrNvc VLPs were employed as a model to study the virus entry and localisation in Spodoptera frugiperda, Sf9 cells. Through fluorescence microscopy and sub-cellular fractionation, the MrNvc was shown to enter Sf9 cells, and eventually arrived at the nucleus. The presence of MrNvc within the cytoplasm and nucleus of Sf9 cells was further confirmed by the Z-stack imaging. The presence of ammonium chloride (NH4Cl), genistein, methyl-β-cyclodextrin or chlorpromazine (CPZ) inhibited the entry of MrNvc into Sf9 cells, but cytochalasin D did not inhibit this process. This suggests that the internalisation of MrNvc VLPs is facilitated by caveolae- and clathrin-mediated endocytosis. The whole internalisation process of MrNvc VLPs into a Sf9 cell was recorded with live cell imaging. We have also identified a potential nuclear localisation signal (NLS) of MrNvc through deletion mutagenesis and verified by classical-NLS mapping. Overall, this study provides an insight into the journey of MrNvc VLPs in insect cells.
  2. Yong CY, Ong HK, Yeap SK, Ho KL, Tan WS
    Front Microbiol, 2019;10:1781.
    PMID: 31428074 DOI: 10.3389/fmicb.2019.01781
    Middle East respiratory syndrome (MERS) is a deadly viral respiratory disease caused by MERS-coronavirus (MERS-CoV) infection. To date, there is no specific treatment proven effective against this viral disease. In addition, no vaccine has been licensed to prevent MERS-CoV infection thus far. Therefore, our current review focuses on the most recent studies in search of an effective MERS vaccine. Overall, vaccine candidates against MERS-CoV are mainly based upon the viral spike (S) protein, due to its vital role in the viral infectivity, although several studies focused on other viral proteins such as the nucleocapsid (N) protein, envelope (E) protein, and non-structural protein 16 (NSP16) have also been reported. In general, the potential vaccine candidates can be classified into six types: viral vector-based vaccine, DNA vaccine, subunit vaccine, nanoparticle-based vaccine, inactivated-whole virus vaccine and live-attenuated vaccine, which are discussed in detail. Besides, the immune responses and potential antibody dependent enhancement of MERS-CoV infection are extensively reviewed. In addition, animal models used to study MERS-CoV and evaluate the vaccine candidates are discussed intensively.
  3. Chong ZX, Yong CY, Ong AHK, Yeap SK, Ho WY
    Toxicology, 2023 Aug 15;495:153596.
    PMID: 37480978 DOI: 10.1016/j.tox.2023.153596
    Aryl hydrocarbon receptor (AHR) is a ligand-dependent receptor that belongs to the superfamily of basic helix-loop-helix (bHLH) transcription factors. The activation of the canonical AHR signaling pathway is known to induce the expression of cytochrome P450 enzymes, facilitating the detoxification metabolism in the human body. Additionally, AHR could interact with various signaling pathways such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1α (HIF-1α), nuclear factor ekappa B (NF-κβ), estrogen receptor (ER), and androgen receptor (AR) signaling pathways. Over the past 30 years, several studies have reported that various chemical, physical, or biological agents, such as tobacco, hydrocarbon compounds, industrial and agricultural chemical wastes, drugs, UV, viruses, and other toxins, could affect AHR expression or activity, promoting cancer development. Thus, it is valuable to overview how these factors regulate AHR-mediated carcinogenesis. Current findings have reported that many compounds could act as AHR ligands to drive the expressions of AHR-target genes, such as CYP1A1, CYP1B1, MMPs, and AXL, and other targets that exert a pro-proliferation or anti-apoptotic effect, like XIAP. Furthermore, some other physical and chemical agents, such as UV and 3-methylcholanthrene, could promote AHR signaling activities, increasing the signaling activities of a few oncogenic pathways, such as the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. Understanding how various factors regulate AHR-mediated carcinogenesis processes helps clinicians and scientists plan personalized therapeutic strategies to improve anti-cancer treatment efficacy. As many studies that have reported the roles of AHR in regulating carcinogenesis are preclinical or observational clinical studies that did not explore the detailed mechanisms of how different chemical, physical, or biological agents promote AHR-mediated carcinogenesis processes, future studies should focus on conducting large-scale and functional studies to unravel the underlying mechanism of how AHR interacts with different factors in regulating carcinogenesis processes.
  4. Tan FH, Ng JF, Mohamed Alitheen NB, Muhamad A, Yong CY, Lee KW
    J Virol Methods, 2023 Sep;319:114771.
    PMID: 37437780 DOI: 10.1016/j.jviromet.2023.114771
    Virus-like particles (VLPs) is one of the most favourable subjects of study, especially in the field of nanobiotechnology and vaccine development because they possess good immunogenicity and self-adjuvant properties. Conventionally, VLPs can be tagged and purified using affinity chromatography or density gradient ultracentrifugation which is costly and time-consuming. Turnip yellow mosaic virus (TYMV) is a plant virus, where expression of the viral coat protein (TYMVc) in Escherichia coli (E. coli) has been shown to form VLP. In this study, we report a non-chromatographic method for VLP purification using C-terminally His-tagged TYMVc (TYMVcHis6) as a protein model. Firstly, the TYMVcHis6 was cloned and expressed in E. coli. Upon clarification of cell lysate, nickel (II) chloride [NiCl2; 15 µM or equivalent to 0.0000194% (w/v)] was added to precipitate TYMVcHis6. Following centrifugation, the pellet was resuspended in buffer containing 1 mM EDTA to chelate Ni2+, which is then removed via dialysis. A total of 50% of TYMVcHis6 was successfully recovered with purity above 0.90. Later, the purified TYMVcHis6 was analysed with sucrose density ultracentrifugation, dynamic light scattering (DLS), and transmission electron microscopy (TEM) to confirm VLP formation, which is comparable to TYMVcHis6 purified using the standard immobilized metal affinity chromatography (IMAC) column. As the current method omitted the need for IMAC column and beads while significantly reducing the time needed for column washing, nickel affinity precipitation represents a novel method for the purification of VLPs displaying poly-histidine tags (His-tags).
  5. Yong CY, Yeap SK, Goh ZH, Ho KL, Omar AR, Tan WS
    Appl Environ Microbiol, 2015 Feb;81(3):882-9.
    PMID: 25416760 DOI: 10.1128/AEM.03695-14
    Hepatitis B virus (HBV) is a deadly pathogen that has killed countless people worldwide. Saccharomyces cerevisiae-derived HBV vaccines based upon hepatitis B surface antigen (HBsAg) is highly effective. However, the emergence of vaccine escape mutants due to mutations on the HBsAg and polymerase genes has produced a continuous need for the development of new HBV vaccines. In this study, the "a" determinant within HBsAg was displayed on the recombinant capsid protein of Macrobrachium rosenbergii nodavirus (MrNV), which can be purified easily in a single step through immobilized metal affinity chromatography (IMAC). The purified protein self-assembled into virus-like particles (VLPs) when observed under a transmission electron microscope (TEM). Immunization of BALB/c mice with this chimeric protein induced specific antibodies against the "a" determinant. In addition, it induced significantly more natural killer and cytotoxic T cells, as well as an increase in interferon gamma (IFN-γ) secretion, which are vital for virus clearance. Collectively, these findings demonstrated that the MrNV capsid protein is a potential carrier for the HBV "a" determinant, which can be further extended to display other foreign epitopes. This paper is the first to report the application of MrNV VLPs as a novel platform to display foreign epitopes.
  6. Gan BK, Rullah K, Yong CY, Ho KL, Omar AR, Alitheen NB, et al.
    Sci Rep, 2020 Oct 08;10(1):16867.
    PMID: 33033330 DOI: 10.1038/s41598-020-73967-4
    Chemotherapy is widely used in cancer treatments. However, non-specific distribution of chemotherapeutic agents to healthy tissues and normal cells in the human body always leads to adverse side effects and disappointing therapeutic outcomes. Therefore, the main aim of this study was to develop a targeted drug delivery system based on the hepatitis B virus-like nanoparticle (VLNP) for specific delivery of 5-fluorouracil-1-acetic acid (5-FA) to cancer cells expressing epithelial growth factor receptor (EGFR). 5-FA was synthesized from 5-fluorouracil (5-FU), and it was found to be less toxic than the latter in cancer cells expressing different levels of EGFR. The cytotoxicity of 5-FA increased significantly after being conjugated on the VLNP. A cell penetrating peptide (CPP) of EGFR was displayed on the VLNP via the nanoglue concept, for targeted delivery of 5-FA to A431, HT29 and HeLa cells. The results showed that the VLNP displaying the CPP and harboring 5-FA internalized the cancer cells and killed them in an EGFR-dependent manner. This study demonstrated that the VLNP can be used to deliver chemically modified 5-FU derivatives to cancer cells overexpressing EGFR, expanding the applications of the VLNP in targeted delivery of chemotherapeutic agents to cancer cells overexpressing this transmembrane receptor.
  7. Tang HC, Sieo CC, Abdullah N, Chong CW, Gan HM, Mohd Asrore MS, et al.
    J Anim Physiol Anim Nutr (Berl), 2020 Jan;104(1):116-125.
    PMID: 31556187 DOI: 10.1111/jpn.13208
    Inclusion of phytase in animal feedstuff is a common practice to enhance nutrients availability. However, little is known about the effects of phytase supplementation on the microbial ecology of the gastrointestinal tract. In this study, freeze-dried Mitsuokella jalaludinii phytase (MJ) was evaluated in a feeding trial with broilers fed a low available phosphorus (aP) diet. A total of 180 male broiler chicks (day-old Cobb) were assigned into three dietary treatments: Control fed with 0.4% (w/w) of available phosphorus (aP); Group T1 fed low aP [0.2% (w/w)] supplemented with MJ; and T2 fed low aP and deactivated MJ. The source of readily available P, dicalcium phosphate (DCP), was removed from low aP diet, whereby additional limestone was provided to replace the amount of Ca normally found in DCP. For each treatment, 4 replicate pens were used, where each pen consisted of 15 animals. The animals' energy intake and caecal bacterial community were monitored weekly for up to 3 weeks. The apparent metabolizable energy (AME) and apparent digestibility of dry matter (ADDM) of broilers fed with different diets were determined. In addition, the caecal microbial diversities of broilers were assessed using high-throughput next-generation sequencing targeting the V3-V4 region of bacterial 16S rRNA. The results showed that broilers fed with T1 diet have better feed conversion ratio (FCR) when compared to the Control (p 
  8. Ninyio NN, Ho KL, Yong CY, Chee HY, Hamid M, Ong HK, et al.
    Int J Mol Sci, 2021 Feb 15;22(4).
    PMID: 33672018 DOI: 10.3390/ijms22041922
    Hepatitis B is a major global health challenge. In the absence of an effective treatment for the disease, hepatitis B vaccines provide protection against the viral infection. However, some individuals do not have positive immune responses after being vaccinated with the hepatitis B vaccines available in the market. Thus, it is important to develop a more protective vaccine. Previously, we showed that hepatitis B virus (HBV) 'a' determinant (aD) displayed on the prawn nodavirus capsid (Nc) and expressed in Spodoptera frugiperda (Sf9) cells (namely, Nc-aD-Sf9) self-assembled into virus-like particles (VLPs). Immunisation of BALB/c mice with the Nc-aD-Sf9 VLPs showed significant induction of humoral, cellular and memory B-cell immunity. In the present study, the biophysical properties of the Nc-aD-Sf9 VLPs were studied using dynamic light scattering (DLS) and circular dichroism (CD) spectroscopy. Enzyme-linked immunosorbent assay (ELISA) was used to determine the antigenicity of the Nc-aD-Sf9 VLPs, and multiplex ELISA was employed to quantify the cytokine response induced by the VLPs administered intramuscularly into BALB/c mice (n = 8). CD spectroscopy of Nc-aD-Sf9 VLPs showed that the secondary structure of the VLPs predominantly consisted of beta (β)-sheets (44.8%), and they were thermally stable up to ~52 °C. ELISA revealed that the aD epitope of the VLPs was significantly antigenic to anti-HBV surface antigen (HBsAg) antibodies. In addition, multiplex ELISA of serum samples from the vaccinated mice showed a significant induction (p < 0.001) of IFN-γ, IL-4, IL-5, IL-6, IL-10, and IL-12p70. This cytokine profile is indicative of natural killer cell, macrophage, dendritic cell and cytotoxic T-lymphocyte activities, which suggests a prophylactic innate and adaptive cellular immune response mediated by Nc-aD-Sf9 VLPs. Interestingly, Nc-aD-Sf9 induced a more robust release of the aforementioned cytokines than that of Nc-aD VLPs produced in Escherichia coli and a commercially used hepatitis B vaccine. Overall, Nc-aD-Sf9 VLPs are thermally stable and significantly antigenic, demonstrating their potential as an HBV vaccine candidate.
  9. Abd Razak N, Yeap SK, Alitheen NB, Ho WY, Yong CY, Tan SW, et al.
    Integr Cancer Ther, 2020 8 25;19:1534735420935625.
    PMID: 32830560 DOI: 10.1177/1534735420935625
    Eupatorin is a polymethoxy flavone extracted from Orthosiphon stamineus and was reported to exhibit cytotoxic effects on several cancer cell lines. However, its effect as an anti-breast cancer agent in vivo has yet to be determined. This study aims to elucidate the potential of eupatorin as an anti-breast cancer agent in vivo using 4T1 challenged BALB/c mice model. In this article, BALB/c mice (20-22 g) challenged with 4T1 cells were treated with 5 mg/kg or 20 mg/kg eupatorin, while the untreated and healthy mice were fed with olive oil (vehicle) via oral gavage. After 28 days of experiment, the mice were sacrificed and blood was collected for serum cytokine assay, while tumors were harvested to extract RNA and protein for gene expression assay and hematoxylin-eosin staining. Organs such as spleen and lung were harvested for immune suppression and clonogenic assay, respectively. Eupatorin (20 mg/kg) was effective in delaying the tumor development and reducing metastasis to the lung compared with the untreated mice. Eupatorin (20 mg/kg) also enhanced the immunity as the population of NK1.1+ and CD8+ in the splenocytes and the serum interferon-γ were increased. Concurrently, eupatorin treatment also has downregulated the expression of pro-inflammatory and metastatic related genes (IL-1β. MMP9, TNF-α, and NF-κB). Thus, this study demonstrated that eupatorin at the highest dosage of 20 mg/kg body weight was effective in delaying the 4T1-induced breast tumor growth in the animal model.
  10. Lehl HK, Ong SA, Ho LN, Wong YS, Saad FNM, Oon YL, et al.
    Int J Phytoremediation, 2017 Aug 03;19(8):725-731.
    PMID: 28448169 DOI: 10.1080/15226514.2017.1284748
    The objective of this study is to determine the reduction efficiency of Chemical Oxygen Demand (COD) as well as the removal of color and Amaranth dye metabolites by the Aerobic-anaerobic Baffled Constructed Wetland Reactor (ABCW). The ABCW reactor was planted with common reed (Phragmite australis) where the hydraulic retention time (HRT) was set to 1 day and was fed with synthetic wastewater with the addition of Amaranth dye. Supplementary aeration was supplied in designated compartments of the ABCW reactor to control the aerobic and anaerobic zones. After Amaranth dye addition the COD reduction efficiency dropped from 98 to 91% while the color removal efficiency was 100%. Degradation of azo bond in Amaranth dye is shown by the UV-Vis spectrum analysis which demonstrates partial degradation of Amaranth dye metabolites. The performance of the baffled unit is due to the longer pathway as there is the up-flow and down-flow condition sequentially, thus allowing more contact of the wastewater with the rhizomes and micro-aerobic zones.
  11. Yeap SK, Yong CY, Faruq U, Ong HK, Amin ZBM, Ho WY, et al.
    BMC Complement Med Ther, 2021 Mar 09;21(1):86.
    PMID: 33750373 DOI: 10.1186/s12906-021-03260-y
    BACKGROUND: Phyllanthus tenellus Roxb. has been traditionally used to treat inflammation and liver diseases and its medicinal property may be due to the presence of relatively high levels of hydrosable tannins. Recent report revealed that pressurized hot water extraction of P. tenellus significantly increased the concentration of hydrolysable tannins and its catabolites. Thus, this study was aimed to evaluate the in vivo toxicity and antioxidant capacity of pressurized hot water extraction of P. tenellus on healthy mice.

    METHODS: Pressurized hot water extraction P. tenellus was carried out and standardized to 7.9% hydrosable tannins. In vitro toxicity of the extract was tested on NIH 3 T3 cell by MTT assay. The cellular antioxidant level was quantified by measuring cellular level of glutathione. Oral sub-chronic toxicity (200, 1000 and 3000 mg/kg body weight) of P. tenellus extract were evaluated on healthy mice. Liver and kidney antioxidant level was quantified by measuring levels of Ferric Reducing Antioxidant Potential (FRAP), superoxide dismutase, glutathione.

    RESULTS: The P. tenellus extract did not induce cytotoxicity on murine NIH 3 T3 cells up to 200 μg/mL for 48 h. Besides, level of glutathione was higher in the extract treated NIH 3 T3 cells. P. tenellus extract did not cause mortality at all tested concentration. When treated with 1000 mg/kg of the extract, serum liver enzymes (ALP and ALT) and LDH were lower than normal control and mice treated with 200 mg/kg of extract. Moreover, SOD, FRAP and glutathione levels of liver of the mice treated with 200 and 1000 mg/kg of extract were higher than the normal control mice. On the other hand, when treated with 3000 mg/kg of extract, serum liver enzymes (ALP and ALT) and LDH were higher than normal mice without changing the liver SOD and glutathione level, which may contribute to the histological sign of ballooning hepatocyte.

    CONCLUSION: P. tenellus extract standardized with 7.9% hydrosable tannins and their catabolites increased the antioxidant levels while reducing the nitric oxide levels in both liver and kidney without causing any acute and sub-chronic toxicity in the mice.

  12. Chong ZX, Liew WPP, Ong HK, Yong CY, Shit CS, Ho WY, et al.
    Pathol Res Pract, 2021 Sep;225:153565.
    PMID: 34333398 DOI: 10.1016/j.prp.2021.153565
    Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are two common betacoronaviruses, which are still causing transmission among the human population worldwide. The major difference between the two coronaviruses is that MERS-CoV is now causing sporadic transmission worldwide, whereas SARS-CoV-2 is causing a pandemic outbreak globally. Currently, different guidelines and reports have highlighted several diagnostic methods and approaches which could be used to screen and confirm MERS-CoV and SARS-CoV-2 infections. These methods include clinical evaluation, laboratory diagnosis (nucleic acid-based test, protein-based test, or viral culture), and radiological diagnosis. With the presence of these different diagnostic approaches, it could cause a dilemma to the clinicians and diagnostic laboratories in selecting the best diagnostic strategies to confirm MERS-CoV and SARS-CoV-2 infections. Therefore, this review aims to provide an up-to-date comparison of the advantages and limitations of different diagnostic approaches in detecting MERS-CoV and SARS-CoV-2 infections. This review could provide insights for clinicians and scientists in detecting MERS-CoV and SARS-CoV-2 infections to help combat the transmission of these coronaviruses.
  13. Ma PY, Tan JE, Hee EW, Yong DWX, Heng YS, Low WX, et al.
    Cells, 2021 02 06;10(2).
    PMID: 33562108 DOI: 10.3390/cells10020345
    In the 21st century, enteric fever is still causing a significant number of mortalities, especially in high-risk regions of the world. Genetic studies involving the genome and transcriptome have revealed a broad set of candidate genetic polymorphisms associated with susceptibility to and the severity of enteric fever. This review attempted to explain and discuss the past and the most recent findings on human genetic variants affecting the progression of Salmonella typhoidal species infection, particularly toll-like receptor (TLR) 4, TLR5, interleukin (IL-) 4, natural resistance-associated macrophage protein 1 (NRAMP1), VAC14, PARK2/PACRG, cystic fibrosis transmembrane conductance regulator (CFTR), major-histocompatibility-complex (MHC) class II and class III. These polymorphisms on disease susceptibility or progression in patients could be related to multiple mechanisms in eliminating both intracellular and extracellular Salmonella typhoidal species. Here, we also highlighted the limitations in the studies reported, which led to inconclusive results in association studies. Nevertheless, the knowledge obtained through this review may shed some light on the development of risk prediction tools, novel therapies as well as strategies towards developing a personalised typhoid vaccine.
  14. Aziz MNM, Hussin Y, Che Rahim NF, Nordin N, Mohamad NE, Yeap SK, et al.
    Molecules, 2018 Jan 05;23(1).
    PMID: 29303982 DOI: 10.3390/molecules23010075
    Osteosarcoma is one of the primary malignant bone tumors that confer low survival rates for patients even with intensive regime treatments. Therefore, discovery of novel anti-osteosarcoma drugs derived from natural products that are not harmful to the normal cells remains crucial. Curcumin is one of the natural substances that have been extensively studied due to its anti-cancer properties and is pharmacologically safe considering its ubiquitous consumption for centuries. However, curcumin suffers from a poor circulating bioavailability, which has led to the development of a chemically synthesized curcuminoid analog, namely (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one (DK1). In this study, the cytotoxic effects of the curcumin analog DK1 was investigated in both U-2OS and MG-63 osteosarcoma cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell death was microscopically examined via acridine orange/propidium iodide (AO/PI) double staining. Flow cytometer analysis including Annexin V/Fluorescein isothiocyanate (FITC), cell cycle analysis and JC-1 were adapted to determine the mode of cell death. Subsequently in order to determine the mechanism of cell death, quantitative polymerase chain reaction (qPCR) and proteome profiling was carried out to measure the expression of several apoptotic-related genes and proteins. Results indicated that DK1 induced U-2 OS and MG-63 morphological changes and substantially reduced cell numbers through induction of apoptosis. Several apoptotic genes and proteins were steadily expressed after treatment with DK1; including caspase 3, caspase 9, and BAX, which indicated that apoptosis occurred through a mitochondria-dependent signaling pathway. In conclusion, DK1 could be considered as a potential candidate for an anti-osteosarcoma drug in the near future, contingent upon its ability to induce apoptosis in osteosarcoma cell lines.
  15. Shehabi Y, Chan L, Kadiman S, Alias A, Ismail WN, Tan MA, et al.
    Intensive Care Med, 2013 May;39(5):910-8.
    PMID: 23344834 DOI: 10.1007/s00134-013-2830-2
    PURPOSE: To ascertain the relationship among early (first 48 h) deep sedation, time to extubation, delirium and long-term mortality.

    METHODS: We conducted a multicentre prospective longitudinal cohort study in 11 Malaysian hospitals including medical/surgical patients (n = 259) who were sedated and ventilated ≥24 h. Patients were followed from ICU admission up to 28 days in ICU with 4-hourly sedation and daily delirium assessments and 180-day mortality. Deep sedation was defined as Richmond Agitation Sedation Score (RASS) ≤-3.

    RESULTS: The cohort had a mean (SD) age of 53.1 (15.9) years and APACHE II score of 21.3 (8.2) with hospital and 180-day mortality of 82 (31.7%) and 110/237 (46.4%). Patients were followed for 2,657 ICU days and underwent 13,836 RASS assessments. Midazolam prescription was predominant compared to propofol, given to 241 (93%) versus 72 (28%) patients (P < 0.0001) for 966 (39.6%) versus 183 (7.5%) study days respectively. Deep sedation occurred in (182/257) 71% patients at first assessment and in 159 (61%) patients and 1,658 (59%) of all RASS assessments at 48 h. Multivariable Cox proportional hazard regression analysis adjusting for a priori assigned covariates including sedative agents, diagnosis, age, APACHE II score, operative, elective, vasopressors and dialysis showed that early deep sedation was independently associated with longer time to extubation [hazard ratio (HR) 0.93, 95% confidence interval (CI) 0.89-0.97, P = 0.003], hospital death (HR 1.11, 95% CI 1.05-1.18, P < 0.001) and 180-day mortality (HR 1.09, 95% CI 1.04-1.15, P = 0.002), but not time to delirium (HR 0.98, P = 0.23). Delirium occurred in 114 (44%) of patients.

    CONCLUSION: Irrespective of sedative choice, early deep sedation was independently associated with delayed extubation and higher mortality, and thus was a potentially modifiable risk in interventional trials.

  16. Hussin Y, Aziz MNM, Che Rahim NF, Yeap SK, Mohamad NE, Masarudin MJ, et al.
    Int J Mol Sci, 2018 Apr 11;19(4).
    PMID: 29641445 DOI: 10.3390/ijms19041151
    Extensive research has been done in the search for innovative treatments against colon adenocarcinomas; however, the incidence rate of patients remains a major cause of cancer-related deaths in Malaysia. Natural bioactive compounds such as curcumin have been substantially studied as an alternative to anticancer drug therapies and have been surmised as a potent agent but, nevertheless, remain deficient due to its poor cellular uptake. Therefore, efforts now have shifted toward mimicking curcumin to synthesize novel compounds sharing similar effects. A synthetic analog, (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2-ene-1-one (DK1), was recently synthesized and reported to confer improved bioavailability and selectivity toward human breast cancer cells. This study, therefore, aims to assess the anticancer mechanism of DK1 in relation to the induction of in vitro cell death in selected human colon cancer cell lines. Using the3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay, the cytotoxicity of DK1 towards HT29 and SW620 cell lines were investigated. Acridine orange/propidium iodide (AO/PI) dual-staining assay and flow cytometry analyses (cell cycle analysis, Annexin/V-FITC and JC-1 assays) were incorporated to determine the mode of cell death. To further determine the mechanism of cell death, quantitative real-time polymerase chain reaction (qRT-PCR) and proteome profiling were conducted. Results from this study suggest that DK1 induced changes in cell morphology, leading to a decrease in cell viability and subsequent induction of apoptosis. DK1 treatment inhibited cell viability and proliferation 48 h post treatment with IC50 values of 7.5 ± 1.6 µM for HT29 cells and 14.5 ± 4.3 µM for SW620 cells, causing cell cycle arrest with increased accumulation of cell populations at the sub-G₀/G₁phaseof 74% and 23%, respectively. Flow cytometry analyses showed that DK1 treatment in cancer cells induced apoptosis, as indicated by DNA fragmentation and depolarization of the mitochondrial membrane. qRT-PCR results show significant upregulation in the expression of caspase-9 in both HT29 and SW620 cell lines, further supporting that cell death induction by DK1 is via an intrinsic pathway. These outcomes, therefore, demonstrate DK1 as a potential anticancer agent for colon adenocarcinoma due to its anti-apoptotic attributes.
  17. Sartini C, Lomivorotov V, Pieri M, Lopez-Delgado JC, Baiardo Redaelli M, Hajjar L, et al.
    J Cardiothorac Vasc Anesth, 2019 05;33(5):1430-1439.
    PMID: 30600204 DOI: 10.1053/j.jvca.2018.11.026
    The authors aimed to identify interventions documented by randomized controlled trials (RCTs) that reduce mortality in adult critically ill and perioperative patients, followed by a survey of clinicians' opinions and routine practices to understand the clinicians' response to such evidence. The authors performed a comprehensive literature review to identify all topics reported to reduce mortality in perioperative and critical care settings according to at least 2 RCTs or to a multicenter RCT or to a single-center RCT plus guidelines. The authors generated position statements that were voted on online by physicians worldwide for agreement, use, and willingness to include in international guidelines. From 262 RCT manuscripts reporting mortality differences in the perioperative and critically ill settings, the authors selected 27 drugs, techniques, and strategies (66 RCTs, most frequently published by the New England Journal of Medicine [13 papers], Lancet [7], and Journal of the American Medical Association [5]) with an agreement ≥67% from over 250 physicians (46 countries). Noninvasive ventilation was the intervention supported by the largest number of RCTs (n = 13). The concordance between agreement and use (a positive answer both to "do you agree" and "do you use") showed differences between Western and other countries and between anesthesiologists and intensive care unit physicians. The authors identified 27 clinical interventions with randomized evidence of survival benefit and strong clinician support in support of their potential life-saving properties in perioperative and critically ill patients with noninvasive ventilation having the highest level of support. However, clinician views appear affected by specialty and geographical location.
  18. Sartini C, Lomivorotov V, Pisano A, Riha H, Baiardo Redaelli M, Lopez-Delgado JC, et al.
    J Cardiothorac Vasc Anesth, 2019 Oct;33(10):2685-2694.
    PMID: 31064730 DOI: 10.1053/j.jvca.2019.03.022
    OBJECTIVE: Reducing mortality is a key target in critical care and perioperative medicine. The authors aimed to identify all nonsurgical interventions (drugs, techniques, strategies) shown by randomized trials to increase mortality in these clinical settings.

    DESIGN: A systematic review of the literature followed by a consensus-based voting process.

    SETTING: A web-based international consensus conference.

    PARTICIPANTS: Two hundred fifty-one physicians from 46 countries.

    INTERVENTIONS: The authors performed a systematic literature search and identified all randomized controlled trials (RCTs) showing a significant increase in unadjusted landmark mortality among surgical or critically ill patients. The authors reviewed such studies during a meeting by a core group of experts. Studies selected after such review advanced to web-based voting by clinicians in relation to agreement, clinical practice, and willingness to include each intervention in international guidelines.

    MEASUREMENTS AND MAIN RESULTS: The authors selected 12 RCTs dealing with 12 interventions increasing mortality: diaspirin-crosslinked hemoglobin (92% of agreement among web voters), overfeeding, nitric oxide synthase inhibitor in septic shock, human growth hormone, thyroxin in acute kidney injury, intravenous salbutamol in acute respiratory distress syndrome, plasma-derived protein C concentrate, aprotinin in high-risk cardiac surgery, cysteine prodrug, hypothermia in meningitis, methylprednisolone in traumatic brain injury, and albumin in traumatic brain injury (72% of agreement). Overall, a high consistency (ranging from 80% to 90%) between agreement and clinical practice was observed.

    CONCLUSION: The authors identified 12 clinical interventions showing increased mortality supported by randomized controlled trials with nonconflicting evidence, and wide agreement upon clinicians on a global scale.

  19. Zangrillo A, Lomivorotov VV, Pasyuga VV, Belletti A, Gazivoda G, Monaco F, et al.
    PMID: 35168907 DOI: 10.1053/j.jvca.2022.01.001
    OBJECTIVE: To investigate the effect of volatile anesthetics on the rates of postoperative myocardial infarction (MI) and cardiac death after coronary artery bypass graft (CABG).

    DESIGN: A post hoc analysis of a randomized trial.

    SETTING: Cardiac surgical operating rooms.

    PARTICIPANTS: Patients undergoing elective, isolated CABG.

    INTERVENTIONS: Patients were randomized to receive a volatile anesthetic (desflurane, isoflurane, or sevoflurane) or total intravenous anesthesia (TIVA). The primary outcome was hemodynamically relevant MI (MI requiring high-dose inotropic support or prolonged intensive care unit stay) occurring within 48 hours from surgery. The secondary outcome was 1-year death due to cardiac causes.

    MEASUREMENTS AND MAIN RESULTS: A total of 5,400 patients were enrolled between April 2014 and September 2017 (2,709 patients randomized to the volatile anesthetics group and 2,691 to TIVA). The mean age was 62 ± 8.4 years, and the median baseline ejection fraction was 57% (50-67), without differences between the 2 groups. Patients in the volatile group had a lower incidence of MI with hemodynamic complications both in the per-protocol (14 of 2,530 [0.6%] v 27 of 2,501 [1.1%] in the TIVA group; p = 0.038) and as-treated analyses (16 of 2,708 [0.6%] v 29 of 2,617 [1.1%] in the TIVA group; p = 0.039), but not in the intention-to-treat analysis (17 of 2,663 [0.6%] v 28 of 2,667 [1.0%] in the TIVA group; p = 0.10). Overall, deaths due to cardiac causes were lower in the volatile group (23 of 2,685 [0.9%] v 40 of 2,668 [1.5%] than in the TIVA group; p = 0.03).

    CONCLUSIONS: An anesthetic regimen, including volatile agents, may be associated with a lower rate of postoperative MI with hemodynamic complication in patients undergoing CABG. Furthermore, it may reduce long-term cardiac mortality.

  20. Landoni G, Lomivorotov V, Pisano A, Nigro Neto C, Benedetto U, Biondi Zoccai G, et al.
    Contemp Clin Trials, 2017 08;59:38-43.
    PMID: 28533194 DOI: 10.1016/j.cct.2017.05.011
    OBJECTIVE: There is initial evidence that the use of volatile anesthetics can reduce the postoperative release of cardiac troponin I, the need for inotropic support, and the number of patients requiring prolonged hospitalization following coronary artery bypass graft (CABG) surgery. Nevertheless, small randomized controlled trials have failed to demonstrate a survival advantage. Thus, whether volatile anesthetics improve the postoperative outcome of cardiac surgical patients remains uncertain. An adequately powered randomized controlled trial appears desirable.

    DESIGN: Single blinded, international, multicenter randomized controlled trial with 1:1 allocation ratio.

    SETTING: Tertiary and University hospitals.

    INTERVENTIONS: Patients (n=10,600) undergoing coronary artery bypass graft will be randomized to receive either volatile anesthetic as part of the anesthetic plan, or total intravenous anesthesia.

    MEASUREMENTS AND MAIN RESULTS: The primary end point of the study will be one-year mortality (any cause). Secondary endpoints will be 30-day mortality; 30-day death or non-fatal myocardial infarction (composite endpoint); cardiac mortality at 30day and at one year; incidence of hospital re-admission during the one year follow-up period and duration of intensive care unit, and hospital stay. The sample size is based on the hypothesis that volatile anesthetics will reduce 1-year unadjusted mortality from 3% to 2%, using a two-sided alpha error of 0.05, and a power of 0.9.

    CONCLUSIONS: The trial will determine whether the simple intervention of adding a volatile anesthetic, an intervention that can be implemented by all anesthesiologists, can improve one-year survival in patients undergoing coronary artery bypass graft surgery.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links