Displaying publications 21 - 37 of 37 in total

Abstract:
Sort:
  1. Muhialdin BJ, Zawawi N, Abdull Razis AF, Bakar J, Zarei M
    Food Control, 2021 Sep;127:108140.
    PMID: 33867696 DOI: 10.1016/j.foodcont.2021.108140
    The recent COVID-19, a viral outbreak calls for a high demand for non-conventional antiviral agents that can reduce the risk of infections and promote fast recovery. Fermented foods and their probiotics bacteria have recently received increasing interest due to the reported potential of high antiviral activity. Several probiotics strains demonstrated broad range of antiviral activities and different mechanisms of action. This article will review the diversity, health benefits, interaction with immune system and antiviral activity of fermented foods and their probiotics bacteria. In addition, the mechanisms of action will be reviewed to determine the broad range potential antiviral activity against the respiratory and alimentary tracts viruses. The probiotics bacteria and bioactive compounds in fermented foods demonstrated antiviral activities against respiratory and alimentary tracts viruses. The mechanism of action was reported to be due to the stimulation of the immune system function via enhancing natural killers cell toxicity, enhance the production of pro-inflammatory cytokines, and increasing the cytotoxic of T lymphocytes (CD3+, CD16+, CD56+). However, further studies are highly recommended to determine the potential antiviral activity for traditional fermented foods.
  2. Syamimi Zaini N, Karim R, Abdull Razis AF, Saulol Hamid NF, Zawawi N
    Food Res Int, 2022 Dec;162(Pt A):111988.
    PMID: 36461229 DOI: 10.1016/j.foodres.2022.111988
    Kenaf (Hibiscus cannabinus L.) seed is a non-conventional edible oilseed that can be valorized into various food products. There is a recent discovery of kenaf seed beverage (KSB) potential as a novel plant-based beverage. KSB had less crude protein than soybean (SB)but more carbohydrate, magnesium, and phosphorus contents.Levels of crude fat, phytates, oxalates, total saponins, and lipid peroxidability in KSB were lower than SB. Sugar content between KSB and SB were comparable, while antioxidant properties of KSB were superior. Ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analysis detected gluconic acid, citric acid, palmitic acid, oleic acid, and 13-hydroxyoctadecadienoic acid in both KSB and SB. Considering its novelty, acute and subacute oral toxicity assessments in male Sprague Dawley rats were conducted. The acute toxicity assessment was performed at a single dose of 9.2 ml/kg body weight of KSB. In the following subacute toxicity assessment, different groups of rats consumed different doses of KSB (3.1, 6.1, and 9.2 ml/kg body weight) daily for 28 days. Rats presented normal behavioral and physiological states in both toxicity studies. Growth, food and water intakes, organ weight, and hematological parameters were unaffected. No mortality was reported. Several alterations in serum biochemical parameters were within the normal range, and unassociated with histopathological changes. The oral lethal dose (LD50) and the no-observed-adverse-effect-level (NOAEL) of KSB in rats was greater than 9.2 ml/kg (=1533 mg/kg) body weight. Interestingly, KSB exhibited comparable effects with soybean beverage (SB) on high-density lipoprotein cholesterol and triglycerides which worth further research Follow-up toxicity assessments in animals and human trials are also recommended to ascertain its long term safety.
  3. Khan MUA, Razak SIA, Ansari MNM, Zulkifli RM, Ahmad Zawawi N, Arshad M
    Polymers (Basel), 2021 Oct 20;13(21).
    PMID: 34771168 DOI: 10.3390/polym13213611
    Several significant advancements in the field of bone regenerative medicine have been made in recent years. However, therapeutic options, such as bone grafts, have several drawbacks. There is a need to develop an adequate bone substitute. As a result, significant bone defects/injuries pose a severe challenge for orthopaedic and reconstructive bone tissue. We synthesized polymeric composite material from arabinoxylan (ARX), β-glucan (BG), nano-hydroxyapatite (nHAp), graphene oxide (GO), acrylic acid (AAc) through free radical polymerization and porous scaffold fabricated using the freeze-drying technique. These fabricated porous scaffolds were then coated with chitosan solution to enhance their biological activities. The complex structure of BG, nHAp, GO was studied through various characterization and biological assays. The structural, morphological, wetting and mechanical analyses were determined using FT-IR, XRD, XPS, SEM/EXD, water contact angle and UTM. The swelling (aqueous and PBS media) and degradation (PBS media) observed their behavior in contact with body fluid. The biological activities were conducted against mouse pre-osteoblast cell lines. The result found that BGH3 has desirable morphological, structural with optimum swelling, degradation, and mechanical behavior. It was also found to be cytocompatible against MC3T3-E1 cell lines. The obtained results confirmed that the fabricated polymeric scaffolds would be a potential bone substitute to regenerate defective bone with different loading bearing applications for bone tissue engineering.
  4. Nevara GA, Muhammad SKS, Zawawi N, Mustapha NA, Karim R
    Foods, 2021 Apr 02;10(4).
    PMID: 33918108 DOI: 10.3390/foods10040754
    Dietary fiber (DF) has wide applications, especially in the food and pharmaceutical industries due to its health-promoting effects and potential techno-functional properties in developing functional food products. There is a growing interest in studies related to DF; nevertheless, there is less focus on the fractionation and characterization of DF. The characteristics of DF fractions explain their functionality in food products and provide clues to their physiological effects in food and pharmaceutical industrial applications. The review focuses on a brief introduction to DF and methods for its fractionation. It discusses the characterization of DF in terms of structural, physicochemical and rheological properties. The potential sources of DF from selected defatted oilseeds for future studies are highlighted.
  5. Nevara GA, Muhammad SKS, Zawawi N, Mustapha NA, Karim R
    J Sci Food Agric, 2024 Apr;104(6):3216-3227.
    PMID: 38072678 DOI: 10.1002/jsfa.13208
    BACKGROUND: Kenaf seeds are underutilized kenaf plant by-products, containing essential nutrients including dietary fiber (DF), which can be potentially utilized as food ingredients. The present study aimed to evaluate the physicochemical characteristics of kenaf seed fiber fractions extracted from kenaf seed.

    RESULTS: Defatted kenaf seed powder yielded four DF fractions: alkali-soluble hemicellulose (146.4 g kg-1 ), calcium-bound pectin (10.3 g kg-1 ) and acid-soluble pectin (25.4 g kg-1 ) made up the soluble fibre fraction, whereas cellulose (202.2 g kg-1 ) comprised the insoluble fraction. All fractions were evaluated for their physicochemical properties. The DF fractions contained glucose, mannose, xylose and arabinose, and a small amount of uronic acid (1.2-2.7 g kg-1 ). The isolated pectin fractions had a low degree of esterification (14-30%). All the isolated DF fractions had high average molecular weights ranging from 0.3 to 4.3 × 106 g mol-1 . X-ray diffractogram analysis revealed that the fractions consisted mainly of an amorphous structure with a relative crystallinity ranging from 31.6% to 44.1%. The Fourier-transform infrared spectroscopy spectrum of kenaf seed and its DF fractions showed typical absorption of polysaccharides, with the presence of hydroxyl, carboxyl, acetyl and methyl groups. Scanning electron microscopy analysis demonstrated that the raw material with the rigid structure resulted in soluble and insoluble DF fractions with more fragile and fibrous appearances, respectively. The soluble DF demonstrated greater flowability and compressibility than the insoluble fractions.

    CONCLUSION: These findings provide novel information on the DF fractions of kenaf seeds, which could be used as a potential new DF for the food industry. © 2023 Society of Chemical Industry.

  6. Teoh ZH, Soh JY, Mohamad N, Zawawi N, Zakaria AD, Zakaria Z, et al.
    Ann Coloproctol, 2022 Nov 25.
    PMID: 36424815 DOI: 10.3393/ac.2022.00549.0078
    Juvenile polyps (JPs) are the most common polyps in pediatric patients. We present the case of an 18-year-old male patient with a giant solitary JP resembling solitary rectal ulcer syndrome (SRUS). The presenting history was rectal bleeding and symptoms of obstructed defecation syndrome. Colonoscopy revealed a polypoidal mass at the anorectal junction, with biopsy-confirmed SRUS. The symptoms worsened, and a protruding mass from the anus caused fecal incontinence. Pelvic magnetic resonance imaging showed a huge pedunculated mass occupying the low rectum with local compression of the urinary bladder. Transanal excision of the anal tumor was performed due to bleeding. A histopathological examination showed a JP with high-grade dysplasia. A histological examination to differentiate JPs and SRUS could be challenging based on a superficial forceps biopsy. Therefore, an excision biopsy is usually warranted with the understanding that adenomatous or malignant transformation is found in 5.6% to 12% of all JPs.
  7. Cheng MZSZ, Amin FAZ, Zawawi N, Chan KW, Ismail N, Ishak NA, et al.
    Nutrients, 2023 Jun 22;15(13).
    PMID: 37447162 DOI: 10.3390/nu15132835
    Diabetes is associated with an imbalance between oxidants and antioxidants, leading to oxidative stress. This imbalance contributes to the development and progression of diabetic complications. Similarly, renal and liver diseases are characterised by oxidative stress, where an excess of oxidants overwhelms the antioxidant defense mechanisms, causing tissue damage and dysfunction. Restoring the oxidant-antioxidant balance is essential for mitigating oxidative stress-related damage under these conditions. In this current study, the efficacy of stingless bee honey (SBH) and its phenolic-rich extract (PRE) in controlling the oxidant-antioxidant balance in high-fat diet- and streptozotocin/nicotinamide-induced diabetic rats was investigated. The administration of SBH and PRE improved systemic antioxidant defense and oxidative stress-related measures without compromising liver and renal functioning. Analyses of the liver, skeletal muscle and adipose tissues revealed differences in their capacities to scavenge free radicals and halt lipid peroxidation. Transcriptional alterations hypothesised tissue-specific control of KEAP1-NRF2 signalling by upregulation of Nrf2, Ho1 and Sod1 in a tissue-specific manner. In addition, hepatic translational studies demonstrated the stimulation of downstream antioxidant-related protein with upregulated expression of SOD-1 and HOD-1 protein. Overall, the results indicated that PRE and SBH can be exploited to restore the oxidant-antioxidant imbalance generated by diabetes via regulating the KEAP1-NRF2 signalling pathway.
  8. Seevanathan Y, Zawawi N, Salleh AB, Oslan SN, Ashaari NS, Amir Hamzah AS, et al.
    Carbohydr Res, 2024 Nov;545:109293.
    PMID: 39437465 DOI: 10.1016/j.carres.2024.109293
    The increasing concern over sugar-related health issues has sparked research interest in seeking alternatives to sucrose. Trehalulose, a beneficial structural isomer of sucrose, is a non-cariogenic sugar with a low glycemic and insulinemic index. Besides its potential as a sugar substitute, trehalulose exhibits high antioxidant properties, making it attractive for various industrial applications. Despite its numerous advantages and potential application in various sectors, the industrial adoption of trehalulose has yet to be established due to lack of studies on its characteristics and practical uses. This review aims to provide a comprehensive overview of the properties of trehalulose, emphasizing its health benefits. The industrial prospects of trehalulose as sweetener and reducing agent, particularly in food and beverages pharmaceutical, and cosmeceutical sectors, are explored. Additionally, the review delves into the sources of trehalulose and the diverse organisms capable of producing trehalulose. The biosynthesis of this sugar primarily involves an enzyme-mediated process. Thus, these enzymes' properties, mechanisms, and the heterologous expression of genes associated with trehalulose production are explored. The strategies discussed in this review can be improved and applied to establish trehalulose bio-factories for efficient synthesis of trehalulose in the future. With further research and development, trehalulose holds promise as a valuable component across various industries.
  9. Nevara GA, Giwa Ibrahim S, Syed Muhammad SK, Zawawi N, Mustapha NA, Karim R
    Crit Rev Food Sci Nutr, 2023;63(23):6330-6343.
    PMID: 35089825 DOI: 10.1080/10408398.2022.2031092
    The excellent health benefits of oil extracted from seeds have increased its application in foods, pharmaceutical and cosmetic industries. This trend leads to a growing research area on their by-products, oilseed meals, to minimize environmental and economic issues. Examples of these by-products are soybean, peanut, kenaf seed, hemp, sesame, and chia seed meals. It is well known that soybean meals have wide applications in food and non-food industries, while other seed meals are not well established. Most oilseed meals are rich in health beneficial compounds and are potential sources of plant protein, dietary fiber, and antioxidants. Many studies have reported on the valorization of these by-products into value-added food products such as bakery and meat products to increase their nutritional and functional properties. These efforts contribute to the sustainability, development of novel functional food and support the zero-waste concept for the environment. This review aims to provide information on the composition of selected oilseed meals from soybean, peanut, hemp, kenaf, sesame and chia seeds, their potential applications in the bakery, meat, beverage, pasta, and other food products, and to highlight the issues and challenges associated with the utilization of oilseed meals into various food products.
  10. Ramlan NAFM, Mohamad Azman E, Muhammad K, Jusoh AZ, Johari NA, Yusof YA, et al.
    J Sci Food Agric, 2024 Feb;104(3):1756-1767.
    PMID: 37862235 DOI: 10.1002/jsfa.13067
    BACKGROUND: The nutritional composition of stingless bee honey (SBH) can be affected by different climates and soil composition across different geographical areas. However, the range of attributes set for a honey quality standard should be inclusive. This study analysed the sugar profile's physiochemical properties, including quantifying the rare sugar trehalulose, organic acid and mineral composition of SBH collected from inland, and west and east coasts of Peninsular Malaysia. Forty-three SBH (Heterotrigona itama) samples were collected and labelled as <20 and <40 West Coast (<20WC, <40WC), <20 and <40 East Coast (<20EC, <40EC) and Inland, according to their distance from the coasts.

    RESULTS: The moisture, pH and sugar composition of all SBH samples adhered to the Malaysian Kelulut Honey Standard (MS2683:2017) but not to the International Codex Standard (CODEX) for honey. Trehalulose presence in all samples, regardless of geographical area, was predominant alongside fructose and glucose. Only hydroxymethylfurfural (HMF) content and electrical conductivity (EC) results complied with both standards. The principal component analysis biplot showed that the discrimination of SBH according to the five different areas was not feasible, indicating sample homogeneity.

    CONCLUSION: The physicochemical evaluation of SBH from Peninsular Malaysia shows mainly homogeneous attributes of samples across geographical locations. These findings demonstrated that the current MS2683:2017 is relevant and accommodates all SBH of H. itama species produced in Peninsular Malaysia. Furthermore, the trehalulose range calculated in this study can be implemented as a new benchmark for the indicator of SBH honey quality standard by national and international food standard committees. © 2023 Society of Chemical Industry.

  11. Giwa Ibrahim S, Karim R, Saari N, Wan Abdullah WZ, Zawawi N, Ab Razak AF, et al.
    J Food Sci, 2019 Aug;84(8):2015-2023.
    PMID: 31364175 DOI: 10.1111/1750-3841.14714
    Kenaf belongs to the family Malvaceae noted for their economic and horticultural importance. Kenaf seed is a valuable component of kenaf plant. For several years, it has been primarily used as a cordage crop and secondarily as a livestock feed. The potential for using kenaf seeds as a source of food-based products has not been fully exploited. Consumers are becoming more interested in naturally healthy plant-based food products. Kenaf seed, the future crop with a rich source of essential nutrients and an excellent source of phytocompounds, might serve suitable roles in the production of value-added plant-based foods. At present kenaf seed and its value-added components have not been effectively utilized for both their nutritional and functional properties as either ingredient or major constituent of food products. This review focuses on the possible food applications of kenaf seed and its value-added components based on their nutritional composition and functional properties available in literature, with the purpose of providing an overview on the possible food applications of this underutilized seed. The review focuses on a brief introduction on kenaf plant, nutritional function, lipids and proteins composition and food applications of the seed. The review elaborately discusses the seed in terms of; bioactive components, antioxidants enrichment of wheat bread, antimicrobial agents, as edible flour, as edible oil and a source of protein in food system. The review closes with discussion on other possible food applications of kenaf seed. The need for food scientists and technologists to exploit this natural agricultural product as a value-added food ingredient is of great significance and is emphasized.
  12. Zulkhairi Amin FA, Sabri S, Mohammad SM, Ismail M, Chan KW, Ismail N, et al.
    Adv Pharmacol Sci, 2018;2018:6179596.
    PMID: 30687402 DOI: 10.1155/2018/6179596
    Both honeybees (Apis spp.) and stingless bees (Trigona spp.) produce honeys with high nutritional and therapeutics value. Until recently, the information regarding potential health benefits of stingless bee honey (SBH) in medical databases is still scarce as compared to the common European bee honey (EBH) which is well known for their properties as therapeutic agents. Although there have been very few reports on SBH, empirically these products would have similar therapeutic quality as the EBH. In addition, due to the structure of the nest, few studies reported that the antimicrobial activity of SBH is a little bit stronger than EBH. Therefore, the composition of both the types of honey as well as the traditional uses and clinical applications were compared. The results of various studies on EBH and SBH from tissue culture research to randomised control clinical trials were collated in this review. Interestingly, there are many therapeutic properties that are unique to SBH. Therefore, SBH has a great potential to be developed for modern medicinal uses.
  13. Fletcher MT, Hungerford NL, Webber D, Carpinelli de Jesus M, Zhang J, Stone ISJ, et al.
    Sci Rep, 2020 07 22;10(1):12128.
    PMID: 32699353 DOI: 10.1038/s41598-020-68940-0
    Stingless bee (Meliponini) honey has long been considered a high-value functional food, but the perceived therapeutic value has lacked attribution to specific bioactive components. Examination of honey from five different stingless bee species across Neotropical and Indo-Australian regions has enabled for the first time the identification of the unusual disaccharide trehalulose as a major component representing between 13 and 44 g per 100 g of each of these honeys. Trehalulose is an isomer of sucrose with an unusual α-(1 → 1) glucose-fructose glycosidic linkage and known acariogenic and low glycemic index properties. NMR and UPLC-MS/MS analysis unambiguously confirmed the identity of trehalulose isolated from stingless bee honeys sourced across three continents, from Tetragonula carbonaria and Tetragonula hockingsi species in Australia, from Geniotrigona thoracica and Heterotrigona itama in Malaysia and from Tetragonisca angustula in Brazil. The previously unrecognised abundance of trehalulose in stingless bee honeys is concrete evidence that supports some of the reported health attributes of this product. This is the first identification of trehalulose as a major component within a food commodity. This study allows the exploration of the expanded use of stingless bee honey in foods and identifies a bioactive marker for authentication of this honey in associated food standards.
  14. Zulkhairi Amin FA, Sabri S, Ismail M, Chan KW, Ismail N, Mohd Esa N, et al.
    PMID: 31906055 DOI: 10.3390/ijerph17010278
    This study aimed to isolate, identify, and evaluate the probiotic properties of Bacillus species from honey of the stingless bee Heterotrigona itama. Bacillus spp. were isolated from five different H. itama meliponicultures, and the isolates were characterized through Gram-staining and a catalase test. Tolerance to acidic conditions and bile salt (0.3%), hydrophobicity, and autoaggregation tests were performed to assess the probiotic properties of the selected isolates, B. amyloliquefaciens HTI-19 and B. subtilis HTI-23. Both Bacillus isolates exhibited excellent antimicrobial activity against both Gram-positive and Gram-negative bacteria and possessed significantly high survival rates in 0.3% bile solution for 3 h. Their survival rates in acidic conditions were also comparable to a commercial probiotic strain, Lactobacillus rhamnosus GG. Interestingly, the hydrophobicity and autoaggregation percentage showed no significant difference from L. rhamnosus GG, a commercial probiotic strain. The results from this study suggest that B. amyloliquefaciens HTI-19 and B. subtilis HTI-23 isolated from stingless bee honey have considerably good probiotic properties. Therefore, more studies should be done to investigate the effects of these bacteria cultures on gastrointestinal health.
  15. Zawawi N, Zhang J, Hungerford NL, Yates HSA, Webber DC, Farrell M, et al.
    Food Chem, 2022 Mar 30;373(Pt B):131566.
    PMID: 34823933 DOI: 10.1016/j.foodchem.2021.131566
    Stingless bee honey (SBH) of four stingless bee species (Heterotrigona itama, Geniotrigona thoracica, Tetragonula carbonaria, and Tetragonula hockingsi) from two geographic regions (Malaysia and Australia, n = 36) were studied for their physicochemical parameters, including total phenolic and multi-elemental contents. Sugar analysis confirmed the prominent presence of trehalulose in all samples. All SBH failed to meet the CODEX Standard for honey moisture, free acidity, and total fructose plus glucose levels. One-way ANOVA, principal component analysis (PCA) and hierarchical component analysis (HCA) confirm distinctive differences between Australian and Malaysian SBH with Australian SBH having significantly (P 
  16. Salihu R, Ansari MNM, Abd Razak SI, Ahmad Zawawi N, Shahir S, Sani MH, et al.
    Polymers (Basel), 2021 Aug 31;13(17).
    PMID: 34503006 DOI: 10.3390/polym13172966
    Bacterial cellulose (BC) has gained attention among researchers in materials science and bio-medicine due to its fascinating properties. However, BC's fibre collapse phenomenon (i.e., its inability to reabsorb water after dehydration) is one of the drawbacks that limit its potential. To overcome this, a catalyst-free thermal crosslinking reaction was employed to modify BC using citric acid (CA) without compromising its biocompatibility. FTIR, XRD, SEM/EDX, TGA, and tensile analysis were carried out to evaluate the properties of the modified BC (MBC). The results confirm the fibre crosslinking phenomenon and the improvement of some properties that could be advantageous for various applications. The modified nanofibre displayed an improved crystallinity and thermal stability with increased water absorption/swelling and tensile modulus. The MBC reported here can be used for wound dressings and tissue scaffolding.
  17. Kankia MU, Baloo L, Danlami N, Samahani WN, Mohammed BS, Haruna S, et al.
    Materials (Basel), 2021 Oct 22;14(21).
    PMID: 34771834 DOI: 10.3390/ma14216308
    In the industries of petroleum extraction, a large volume of oily sludge is being generated. This waste is usually considered difficult to dispose of, causing environmental and economic issues. This study presented the novel experimental method of manufacturing mortar used in civil construction by cement and oily sludge ash (OSA). The defined method was described with a logical experimental study conducted to examine a feasible manufacturing method for casting cement-based mortars by partially replacing cement with OSA. Replacement concentrations for OSA ranged from 0 to 20 percent by cement weight, while the water-to-cement (w/c) ratio was varied from 0.4 to 0.8, and the amount of sand was kept constant. The strengths and absorption rate of the mortar were monitored for 28 days. The OSA contains a crystalline structure with packs of angular grains. Because of OSA in the cement-based mortar mixtures and water-to-cement ratios, the mechanical strength was improved significantly. However, the water absorption trend increased linearly. Using variance analysis, the influence of OSA and w/c ratio on the behavior of mortar was acquired. The developed models were significant for all p-value reactions of <5%. Numerical optimization results showed that the best mixture can be obtained by replacing 8.19 percent cement with OSA and 0.52 as a ratio of w/c.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links