Displaying publications 21 - 40 of 58 in total

Abstract:
Sort:
  1. Agatonovic-Kustrin S, Kustrin E, Morton DW
    Neural Regen Res, 2019 Mar;14(3):441-445.
    PMID: 30539810 DOI: 10.4103/1673-5374.245467
    As total life expectancy increases, the prevalence of age-related diseases such as diabetes and Alzheimer's disease is also increasing. Many hypotheses about Alzheimer's disease have been developed, including cholinergic neuron damage, oxidative stress, and inflammation. Acetylcholine is a major neurotransmitter in the brain and cholinergic deficits leads to cognitive dysfunction and decline. Recent studies have linked diabetes as a risk factor in developing Alzheimer's disease and other types of dementia. The incidence of patients with type II diabetes and increased levels and activity of α-amylase is higher in patients with dementia. It has been shown that aromatherapy with essential oils from the mint family can improve cognitive performance in Alzheimer's disease patients. Selected monoterpenoids from these essential oils are reported to inhibit acetylcholinesterase, both in vitro and in vivo. Terpenoids are small, fat-soluble organic molecules that can transfer across nasal mucosa if inhaled, or penetrate through the skin after topical application, enter into the blood and cross the blood-brain barrier. Recent evidence supports the idea that the common constituents of essential oils also inhibit α-amylase, a starch digestive enzyme that plays an important role in the control of diabetes. The mint family is a fragrant plant family that contains most of the culinary herbs found in the Mediterranean diet. The Mediterranean diet is considered to be one of the healthiest diets in the world, and is found to be beneficial not only for the heart but also for the brain. Herbs used in this diet are rich in antioxidants that can prevent oxidative damage caused by free radicals. However, our study shows that they also contain biologically active compounds with potent α-amylase and acetylcholinesterase inhibitory activities. Consumption of fresh herbs can help boost memory and reduce sugar levels in the body. The use of herbs as a functional food could lead to significant improvements in health. Cognitive stimulation with medical food and medical herbs could delay development of cognitive decline, and improve the quality of life of Alzheimer's disease patients. This effect can be enhanced if combined with aromatherapy, topically or by inhalation, and/or by ingestion. Terpenes and terpenoids, the primary constituents of these essential oils are small, lipid soluble organic molecules that can be absorbed through the skin or across nasal mucosa into the systemic blood circulation. Many terpenes can also cross the blood-brain barrier. Therefore, topical application or inhalation of essential oils will also produce a systemic effect.
    Matched MeSH terms: Acetylcholine; Acetylcholinesterase
  2. Akyuz E, Doganyigit Z, Paudel YN, Koklu B, Kaymak E, Villa C, et al.
    Life (Basel), 2021 Mar 26;11(4).
    PMID: 33810231 DOI: 10.3390/life11040276
    Epilepsy is characterized by an imbalance in neurotransmitter activity; an increased excitatory to an inhibitory activity. Acetylcholine (ACh), serotonin, and norepinephrine (NE) may modulate neural activity via several mechanisms, mainly through its receptors/transporter activity and alterations in the extracellular potassium (K+) concentration via K+ ion channels. Seizures may disrupt the regulation of inwardly rectifying K+ (Kir) channels and alter the receptor/transporter activity. However, there are limited data present on the immunoreactivity pattern of these neurotransmitter receptors/transporters and K+ channels in chronic models of epilepsy, which therefore was the aim of this study. Changes in the immunoreactivity of epileptogenesis-related neurotransmitter receptors/transporters (M2, 5-HT2B, and NE transporter) as well as Kir channels (Kir3.1 and Kir6.2) were determined in the cortex, hippocampus and medulla of adult Wistar rats by utilizing a Pentylenetetrazol (PTZ)-kindling chronic epilepsy model. Increased immunoreactivity of the NE transporter, M2, and 5-HT2B receptors was witnessed in the cortex and medulla. While the immunoreactivity of the 5-HT2B receptor was found increased in the cortex and medulla, it was decreased in the hippocampus, with no changes observed in the M2 receptor in this region. Kir3.1 and Kir6.2 staining showed increase immunoreactivity in the cerebral cortex, but channel contrasting findings in the hippocampus and medulla. Our results suggest that seizure kindling may result in significant changes in the neurotransmitter system which may contribute or propagate to future epileptogenesis, brain damage and potentially towards sudden unexpected death in epilepsy (SUDEP). Further studies on the pathogenic role of these changes in neurotransmitter receptors/transporters and K+ channel immunoreactivity may identify newer possible targets to treat seizures or prevent epilepsy-related comorbidities.
    Matched MeSH terms: Acetylcholine
  3. Muthuraman A, Ramesh M, Mustaffa F, Nadeem A, Nishat S, Paramakrishnan N, et al.
    Molecules, 2023 May 26;28(11).
    PMID: 37298835 DOI: 10.3390/molecules28114358
    Molecular docking is widely used in the assessment of the therapeutic potential of pharmaceutical agents. The binding properties of beta-carotene (BC) to acetylcholine esterase (AChE) proteins were characterized using the molecular docking method. The mechanism of AChE inhibition was assessed by an experimental in vitro kinetic study. In addition, the role of BC action was tested by the zebrafish embryo toxicity test (ZFET). The results of the docking ability of BC to AChE showed significant ligand binding mode. The kinetic parameter, i.e., the low AICc value shown as the compound was the competitive type of inhibition of AChE. Further, BC also showed mild toxicity at a higher dose (2200 mg/L) in ZFET assessment with changes in biomarkers. The LC50 value of BC is 1811.94 mg/L. Acetylcholine esterase (AChE) plays a pivotal role in the hydrolysis of acetylcholine, which leads to the development of cognitive dysfunction. BC possesses the regulation of acetylcholine esterase (AChE) and acid phosphatase (AP) activity to prevent neurovascular dysfunction. Therefore, the characterization of BC could be used as a pharmaceutical agent for the treatment of cholinergic neurotoxicity-associated neurovascular disorders such as developmental toxicity, vascular dementia, and Alzheimer's disease due to its AChE and AP inhibitory actions.
    Matched MeSH terms: Acetylcholine; Acetylcholinesterase/metabolism
  4. Vijayapandi P, Annabathina V, SivaNagaSrikanth B, Manjunath V, Boggavarapu P, Mohammed P AK, et al.
    PMID: 24082330
    The present investigation was aimed at determining the effects of hexane, acetone, methanol and aqueous extracts of Acorus calamus leaves (ACHE, ACAE, ACME and ACAQE) on cholinergic and histaminic system using isolated frog rectus abdominis muscle and guinea pig ileum. A dose dependent potentiation of Ach response (anticholinesterase like effect) was found with ACAE and ACME at 0.25, 0.5, 0.75 and 1 mg/ml, but at higher dose of ACAE, ACME, ACAQE and ACHE (5, 20 mg/ml) inhibit the Ach response (antinicotinic effect). These results revealed biphasic effect of Acorus calamus leaves extracts on acetylcholine induced contractile response in isolated frog rectus abdominis muscle preparation (i.e. potentiation effect at lower dose and inhibitory effect at higher dose). Studies on isolated guinea pig ileum demonstrated antihistaminic effect in a dose dependent manner (100-1000 µg/ml) with ACAE, ACME and ACAQE. In addition, the dose dependent inhibition of Ach response (antimuscarinic effect) was observed with ACAE and ACME. In conclusion, Acorus calamus leaves extracts exerts antinicotinic, anticholinesterase like activities in isolated frog rectus abdominis muscle and antihistaminic, antimuscarinic effect in guinea pig ileum. It has been suggested that these observed activities can be further studied for therapeutic potential of Acorus calamus leaves in the treatment of cognitive disorders and asthma.
    Matched MeSH terms: Acetylcholine/metabolism; Acetylcholine/pharmacology; Acetylcholinesterase/metabolism
  5. Akbar A, Sharma JN
    Pharmacol Res, 1992 Apr;25(3):279-86.
    PMID: 1518772
    We have investigated the effect of indomethacin on histamine- and acetylcholine (ACh)-induced responses in the intact and denuded epithelium of guinea pig isolated tracheal smooth muscle. Epithelium removal resulted in increased responsiveness to ACh and histamine. Indomethacin (2.8 microM) enhanced the sensitivity of both intact and denuded preparations to histamine and ACh. These findings suggest that the tracheal epithelium of guinea pig plays a protective role against bronchoconstrictors, such as ACh and histamine. Furthermore, indomethacin-mediated hyperresponsiveness caused by these agonists in epithelium denuded preparations might be a reflection of removal of prostaglandin (PG) biosynthesis. A similar process of interaction in indomethacin-treated asthmatic patients (with damaged airway epithelium) might take place. The significance of these findings is discussed.
    Matched MeSH terms: Acetylcholine/pharmacology*
  6. David SR, Lai PPN, Chellian J, Chakravarthi S, Rajabalaya R
    Sci Rep, 2023 Aug 01;13(1):12423.
    PMID: 37528147 DOI: 10.1038/s41598-023-39442-6
    The present work examined the effect of oral administration of rutin and its combination with metformin, an antidiabetic drug on blood glucose, total cholesterol and triglycerides level and vascular function in streptozotocin (STZ) -induced diabetic rats. Male Sprague Dawley rats were rendered diabetic by a single intraperitoneal injection of STZ (50 mg/kg). Rutin and metformin were orally administered to diabetic rats at a dose of 100 mg/kg and 300 mg/kg body weight/day, respectively, for 4 weeks. Plasma analysis was conducted to determine changes in the plasma glucose and lipid levels. Rat aortic ring reactivity in response to endothelium-dependent (acetylcholine, ACh) and endothelium-independent (sodium nitroprusside, SNP) relaxants, and to the α1-adrenergic agonist phenylephrine (PE) were recorded. Histology of pancreas, liver and kidney were evaluated. In results, rutin and metformin alone and in combination has led to significant improvements in blood glucose, cholesterol and triglyceride levels compared to diabetic group. Diabetic aortic rings showed significantly greater contraction in response to PE, and less relaxation in response to ACh and SNP. Treatment with rutin and metformin in combination significantly reduced PE-induced contraction and increased ACh-induced and SNP-induced relaxation in diabetes when compared to rutin or metformin alone. Significant histological improvements were seen with combination therapy. In conclusion, rutin and metformin combination therapy has the most potentiality for restoring blood glucose and lipid level as well as vascular function.
    Matched MeSH terms: Acetylcholine/pharmacology
  7. Lutterodt GD
    J Ethnopharmacol, 1989 May;25(3):235-47.
    PMID: 2747259
    The electrically stimulated guinea-pig ileum and spontaneously contracting guinea-pig ileum preparations were employed in studies on the effects of an alcoholic extract and two flavonoid compounds, quercetin and quercetin-3-arabinoside, extracted from the leaves of Psidium guajava. The extract showed a morphine-like inhibition of acetylcholine release in the coaxially stimulated ileum, together with an initial increase in muscular tone, followed by a gradual decrease. The morphine-like inhibition was found to be due to quercetin, starting at concentrations of 1.6 micrograms/ml. The glycoside did not show any such action at concentrations of up to 1.28 mg/ml. The extract inhibited spontaneous contractions in the unstimulated ileum with a concentration-response relationship.
    Matched MeSH terms: Acetylcholine/metabolism
  8. Leong XF, Najib MN, Das S, Mustafa MR, Jaarin K
    Tohoku J. Exp. Med., 2009 Sep;219(1):71-8.
    PMID: 19713687
    Oxidization of dietary cooking oil increases the risk of cardiovascular diseases such as hypertension by increasing the formation oxidative oxygen radicals. The aim of study was to investigate the effects of repeatedly heated palm oil on blood pressure, plasma nitrites, and vascular reactivity. Nitrites were measured, as an indirect marker for nitric oxide production. Male Sprague-Dawley rats were divided into four groups: control group fed with basal diet and other three groups fortified with 15% weight/weight fresh palm oil (FPO), palm oil heated five times (5HPO) or palm oil heated ten times (10HPO) for 24 weeks. The oil was heated to 180 degrees C for 10 min. Blood pressure was measured at baseline and at intervals of four weeks for 24 weeks using non-invasive tail-cuff method. Following 24 weeks, the rats were sacrificed and thoracic aortas were dissected for measurement of vascular reactivity. Blood pressure was elevated significantly (p < 0.05) in 5HPO and 10HPO groups, with the 10HPO group showing higher values. Aortic rings from animals fed with heated oil showed diminished relaxation in response to acetylcholine or sodium nitroprusside, and greater contraction to phenylephrine. Acetylcholine and sodium nitroprusside cause endothelium-dependent and endothelium-independent relaxation, respectively. Relaxation responses remained unaltered in the FPO group, with the attenuated contractile response to phenylephrine, compared to control group. FPO increased plasma nitrites by 28%, whereas 5HPO and 10HPO reduced them by 25% and 33%, respectively. Intake of repeatedly heated palm oil causes an increase in blood pressure, which may be accounted for by the attenuated endothelium-dependent vasorelaxant response.
    Matched MeSH terms: Acetylcholine/pharmacology
  9. Lutterodt GD
    Pharmacol Res, 1995 Jul-Aug;32(1-2):89-94.
    PMID: 8668653 DOI: 10.1016/S1043-6618(95)80014-X
    Sidaverin, a crystalline compound extracted from a polar fraction of Sida veronicaefolia (Lam), elicited oxytocin-like contractions in the non-gravid rat isolated uterus preparation with a concentration-response relationship. Equipotent concentrations of oxytocin and sidaverin, using matched responses, were approximately 0.16 U and 0.4 micrograms ml-1, respectively. Sidaverin-induced contractile response was atropine reversible. The concentration-response curves for sidaverin and oxytocin were parallel, and both responses were inhibited by the specific oxytocin antagonist, Atosiban, indicating possible involvement of oxytocin receptors in the action of sidaverin. There were potentiation of action of one drug to that of the other, irrespective of the order of administration and even after washing off the first before introducing the second drug. In the gravid uterus, sidaverin produced contractions in preparations from day 1 to day 6 or 7, caused relaxation in days 7-11, and elicited contractions in day 11 through term, the sensitivity of the preparations increasing exponentially toward term with strong sustained contractions. With the exception of days 7-11, when sidaverin antagonized oxytocin action, it potentiated action of oxytocin on the gravid uterus.
    Matched MeSH terms: Acetylcholine/pharmacology
  10. Ajay M, Chai HJ, Mustafa AM, Gilani AH, Mustafa MR
    J Ethnopharmacol, 2007 Feb 12;109(3):388-93.
    PMID: 16973321
    Previous studies have demonstrated the anti-hypertensive effects of Hibiscus sabdariffa L. (HS) in both humans and experimental animals. To explore the mechanisms of the anti-hypertensive effect of the HS, we examined the effects of a crude methanolic extract of the calyces of HS (HSE) on vascular reactivity in isolated aortas from spontaneously hypertensive rats. HSE relaxed, concentration-dependently, KCl (high K(+), 80 mM)- and phenylephrine (PE, 1 microM)-pre-contracted aortic rings, with a greater potency against the alpha(1)-adrenergic receptor agonist. The relaxant effect of HSE was partly dependent on the presence of a functional endothelium as the action was significantly reduced in endothelium-denuded aortic rings. Pretreatment with atropine (1 microM), L-NAME (10 microM) or methylene blue (10 microM), but not indomethacin (10 microM), significantly blocked the relaxant effects of HSE. Endothelium-dependent and -independent relaxations induced by acetylcholine and sodium nitroprusside, respectively, were significantly enhanced in aortic rings pretreated with HSE when compared to those observed in control aortic rings. The present results demonstrated that HSE has a vasodilator effect in the isolated aortic rings of hypertensive rats. These effects are probably mediated through the endothelium-derived nitric oxide-cGMP-relaxant pathway and inhibition of calcium (Ca(2+))-influx into vascular smooth muscle cells. The present data further supports previous in vivo findings and the traditional use of HS as an anti-hypertensive agent.
    Matched MeSH terms: Acetylcholine/pharmacology
  11. Aloysius UI, Achike FI, Mustafa MR
    Vascul. Pharmacol., 2012 Sep-Oct;57(2-4):81-90.
    PMID: 22172524 DOI: 10.1016/j.vph.2011.11.009
    The female gender reduces the risk, but succumbs more to cardiovascular disease. The hypothesis that short-term (8weeks) Streptozotocin-induced diabetes could produce greater female than male vascular tissue reactivity and the mechanistic basis were explored. Aortic ring responses to Phenylephrine were examined in age- and sex-matched normoglycaemic/diabetic rats. The normoglycaemic male tissue contracted significantly more than the normoglycaemic female and the male/female diabetic tissues. Endothelial-denudation, l-NAME or MB reversed these differences suggesting an EDNO-cGMP dependence. 17β-oestradiol exerted relaxant effect on all endothelium-denuded (and normoglycaemic endothelium-intact male) tissues, but not endothelium-intact normoglycaemic female. The greater male tissue contraction is attributable to absent 17β-oestradiol-modulated relaxation. Indomethacin blockade of COX attenuated male normoglycaemic and female diabetic tissue contraction (both reversed by l-NAME), but augmented diabetic male tissue contraction. These data are consistent with the raised contractile TXA(2) and PGE(2) in normoglycaemic male and diabetic female tissues, and the relaxant PGI(2) in diabetic male (and female). The higher levels of PGI(2) in the normoglycaemic and diabetic female perhaps explain their greater relaxant response to Acetylcholine compared to the respective male. In conclusion, there is an endothelium-dependent gender difference in the effect of short term diabetes on vascular tissue reactivity which is COX mediated.
    Matched MeSH terms: Acetylcholine/pharmacology
  12. Chung CH, Bretherton B, Zainalabidin S, Deuchars SA, Deuchars J, Mahadi MK
    Front Neurosci, 2020;14:906.
    PMID: 33013299 DOI: 10.3389/fnins.2020.00906
    Background: Myocardial infarction (MI) reperfusion therapy causes paradoxical cardiac complications. Following restoration of blood flow to infarcted regions, a multitude of inflammatory cells are recruited to the site of injury for tissue repair. Continual progression of cardiac inflammatory responses does, however, lead to adverse cardiac remodeling, inevitably causing heart failure.

    Main Body: Increasing evidence of the cardioprotective effects of both invasive and non-invasive vagal nerve stimulation (VNS) suggests that these may be feasible methods to treat myocardial ischemia/reperfusion injury via anti-inflammatory regulation. The mechanisms through which auricular VNS controls inflammation are yet to be explored. In this review, we discuss the potential of autonomic nervous system modulation, particularly via the parasympathetic branch, in ameliorating MI. Novel insights are provided about the activation of the cholinergic anti-inflammatory pathway on cardiac macrophages. Acetylcholine binding to the α7 nicotinic acetylcholine receptor (α7nAChR) expressed on macrophages polarizes the pro-inflammatory into anti-inflammatory subtypes. Activation of the α7nAChR stimulates the signal transducer and activator of transcription 3 (STAT3) signaling pathway. This inhibits the secretion of pro-inflammatory cytokines, limiting ischemic injury in the myocardium and initiating efficient reparative mechanisms. We highlight recent developments in the controversial auricular vagal neuro-circuitry and how they may relate to activation of the cholinergic anti-inflammatory pathway.

    Conclusion: Emerging published data suggest that auricular VNS is an inexpensive healthcare modality, mediating the dynamic balance between pro- and anti-inflammatory responses in cardiac macrophages and ameliorating cardiac ischemia/reperfusion injury.

    Matched MeSH terms: Acetylcholine; alpha7 Nicotinic Acetylcholine Receptor
  13. Belqes Abdullah, A. T., Yvonne, T. G. B., Ahmad, S. H., Abdul Aziz, A. S. I., Aida, H. G. R.
    MyJurnal
    Introduction: Iontophoresis of vasoactive substances such as acetylcholine (ACh) and sodium nitroprusside (SNP) combined with Laser Doppler fluximetry (LDF) is a non-invasive tool used to determine microvascular endothelial function. This study aims to test the effect of sodium chloride on
    non-specific vasodilatation when used as a vehicle in the process of iontophoresis. This study also aims to define the number of current pulses needed to get the maximum effect during iontophoresis with ACh and SNP using low current strength. Methods: The experiment was conducted in five healthy females. Baseline skin perfusion was taken before administration of seven current pulses. Current strength of 0.007 mA and current density of 0.01 mA/cm2 were used. Acetylcholine was used to assess endothelial dependent vasodilatation, while SNP was used to assess endothelial independent vasodilatation. The mean skin perfusion (AU) responses to the iontophoresis of ACh at the anodal and SNP at the cathode leads were recorded. Sodium chloride (0.9%) was used as a vehicle to obtain concentration of 1% for both ACh and SNP. Iontophoresis of pure vehicle (NaCl) was conducted on a separate day to observe the effect of vehicle only on the iontophoresis process at both anode and cathode. Results: Iontophoresis of NaCl showed no significant increase in perfusion compared to baseline at both anode and cathode. Significant increases in skin perfusion were observed with SNP and ACh; a plateau of ACh was reached from the 3rd pulse onwards; while the plateau of SNP was reached from the 4th pulse onwards. Conclusion: NaCl could be used as a vehicle for Ach and SNP during iontophoresis as it did not cause non-specific vasodilatation. Using five current pulses are adequate for iontophoresis of ACh and SNP to assess microvascular endothelial function.
    Matched MeSH terms: Acetylcholine
  14. Mudassar Imran Bukhari S, Yew KK, Thambiraja R, Sulong S, Ghulam Rasool AH, Ahmad Tajudin LS
    Ther Adv Ophthalmol, 2019 08 22;11:2515841419868100.
    PMID: 31489400 DOI: 10.1177/2515841419868100
    Purpose: To determine the role of microvascular endothelial dysfunction as risk factor for primary open angle glaucoma.

    Methods: A cross-sectional study was conducted involving 114 Malay patients with POAG seen at the eye clinic of Hospital Universiti Sains Malaysia. Patients aged between 40 and 80 years who were diagnosed with other types of glaucoma, previous glaucoma filtering surgery or other surgeries except uncomplicated cataract surgery and pterygium surgery were excluded. A total of 101 patients who were followed up for dry eyes, age-related cataracts or post cataracts extraction surgery were recruited as control subjects. Those with family history of glaucoma or glaucoma suspect were excluded. Microvascular endothelial function was assessed using laser Doppler fluximetry and the process of iontophoresis. Iontophoresis with acetylcholine (ACh) and sodium nitroprusside (SNP) was used to measure microvascular endothelium-dependent and endothelium-independent vasodilatations, respectively.

    Results: In general, POAG patients demonstrated lower ACh% and AChmax values compared with controls. There was significant difference in microvascular endothelial function [ACh%: mean, 95% confidence interval = 503.1 (378.0, 628.3), and AChmax: mean, 95% confidence interval = 36.8 (30.2, 43.5)] between primary open angle glaucoma cases (p 

    Matched MeSH terms: Acetylcholine
  15. Kiyooka T, Ohanyan V, Yin L, Pung YF, Chen YR, Chen CL, et al.
    Basic Res Cardiol, 2022 Jan 17;117(1):3.
    PMID: 35039940 DOI: 10.1007/s00395-021-00908-1
    Endothelial dysfunction in diabetes is generally attributed to oxidative stress, but this view is challenged by observations showing antioxidants do not eliminate diabetic vasculopathy. As an alternative to oxidative stress-induced dysfunction, we interrogated if impaired mitochondrial function in endothelial cells is central to endothelial dysfunction in the metabolic syndrome. We observed reduced coronary arteriolar vasodilation to the endothelium-dependent dilator, acetylcholine (Ach), in Zucker Obese Fatty rats (ZOF, 34 ± 15% [mean ± standard deviation] 10-3 M) compared to Zucker Lean rats (ZLN, 98 ± 11%). This reduction in dilation occurred concomitantly with mitochondrial DNA (mtDNA) strand lesions and reduced mitochondrial complex activities in the endothelium of ZOF versus ZLN. To demonstrate endothelial dysfunction is linked to impaired mitochondrial function, administration of a cell-permeable, mitochondria-directed endonuclease (mt-tat-EndoIII), to repair oxidatively modified DNA in ZOF, restored mitochondrial function and vasodilation to Ach (94 ± 13%). Conversely, administration of a cell-permeable, mitochondria-directed exonuclease (mt-tat-ExoIII) produced mtDNA strand breaks in ZLN, reduced mitochondrial complex activities and vasodilation to Ach in ZLN (42 ± 16%). To demonstrate that mitochondrial function is central to endothelium-dependent vasodilation, we introduced (via electroporation) liver mitochondria (from ZLN) into the endothelium of a mesenteric vessel from ZOF and restored endothelium-dependent dilation to vasoactive intestinal peptide (VIP at 10-5 M, 4 ± 3% vasodilation before mitochondrial transfer and 48 ± 36% after transfer). Finally, to demonstrate mitochondrial function is key to endothelium-dependent dilation, we administered oligomycin (mitochondrial ATP synthase inhibitor) and observed a reduction in endothelium-dependent dilation. We conclude that mitochondrial function is critical for endothelium-dependent vasodilation.
    Matched MeSH terms: Acetylcholine/metabolism; Acetylcholine/pharmacology
  16. Ajay M, Achike FI, Mustafa MR
    Pharmacol Res, 2007 May;55(5):385-91.
    PMID: 17317209
    In this study, we report the effects of a non-antioxidant flavonoid flavone on vascular reactivity in Wistar-Kyoto (WKY) rat isolated aortae. Whether flavone directly modulates vascular reactivity in spontaneously hypertensive rat (SHR) and streptozotocin-induced diabetic-WKY rat isolated aortae was also determined. Thoracic aortic rings were mounted in organ chambers and exposed to various drug treatments in the presence of flavone (10 microM) or its vehicle (DMSO), which served as control. Pretreatment with flavone enhanced relaxant effects to endothelium-dependent vasodilator acetylcholine (ACh) and attenuated contractile effects to alpha(1)-receptor agonist phenylephrine (PE) in WKY aortae compared to those observed in control aortic rings. Flavone had no effect on relaxations to ACh in WKY aortae incubated with either L-NAME or methylene blue, but enhanced relaxations to ACh in WKY aortae incubated with indomethacin or partially depolarized with KCl. Relaxations to ACh are totally abolished in both control or flavone pretreated endothelium-denuded WKY aortae. Flavone attenuated the inhibition by beta-NADH of ACh-induced relaxation in WKY aortae, but it had no significant effect on the transient contractions induced by beta-NADH nor the pyrogallol-induced abolishment of ACh-induced relaxation in WKY aortae. Flavone enhanced endothelium-independent relaxation to sodium nitroprusside (SNP) in both endothelium-intact and -denuded WKY aortae. Flavone enhanced relaxation to ACh and SNP as well as attenuated contractile effects to PE in SHR and diabetic aortae, a finding similar to that observed in normal WKY aortae. From these results, we conclude that flavone modulates vascular reactivity in normal as well as hypertensive and diabetic aortae. These effects of flavone results probably through enhanced bioactivity of nitric oxide released from the endothelium.
    Matched MeSH terms: Acetylcholine/pharmacology
  17. Khan A, Ab Ghani S
    Biosens Bioelectron, 2012 Jan 15;31(1):433-8.
    PMID: 22154168 DOI: 10.1016/j.bios.2011.11.007
    The electrochemical biosensors based on poly(o-phenylenediamine) (PoPD) and acetylcholinesterase (AChE) and choline oxidase (ChO) enzymes were fabricated on carbon fibre (CF) substrate. The electropolymerized PoPD was used to reduce the interfering substances. The electrode assembly was completed by depositing functionalized carbon nano tubes (FCNTs) and Nafion (Naf). Amperometric detection of acetylcholine (ACh) and choline (Ch) were realized at an applied potential of +750 mV vs Ag/AgCl (saturated KCl). At pH 7.4, the final assembly, Naf-FCNTs/AChE-ChO((10:1))/PoPD/CF(Elip), was observed to have high sensitivity towards Ch (6.3±0.3 μA mM(-1)) and ACh (5.8±0.3 μA mM(-1)), linear range for Ch (K(M)=0.52±0.03 mM) and ACh (K(M)=0.59±0.07 mM), and for Ch the highest ascorbic acid blocking capacity (97.2±2 1mM AA). It had a response time of <5s and with 0.045 μM limit of detection. Studies on different ratio (ACh/Ch) revealed that 10:1, gave best overall response.
    Matched MeSH terms: Acetylcholine/analysis*; Acetylcholine/chemistry; Acetylcholinesterase/chemistry*
  18. Silva A, Kuruppu S, Othman I, Goode RJ, Hodgson WC, Isbister GK
    Neurotox Res, 2017 01;31(1):11-19.
    PMID: 27401825 DOI: 10.1007/s12640-016-9650-4
    Russell's vipers are snakes of major medical importance in Asia. Russell's viper (Daboia russelii) envenoming in Sri Lanka and South India leads to a unique, mild neuromuscular paralysis, not seen in other parts of the world where the snake is found. This study aimed to identify and pharmacologically characterise the major neurotoxic components of Sri Lankan Russell's viper venom. Venom was fractionated using size exclusion chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC). In vitro neurotoxicities of the venoms, fractions and isolated toxins were measured using chick biventer and rat hemidiaphragm preparations. A phospholipase A2 (PLA2) toxin, U1-viperitoxin-Dr1a (13.6 kDa), which constitutes 19.2 % of the crude venom, was isolated and purified using HPLC. U1-viperitoxin-Dr1a produced concentration-dependent in vitro neurotoxicity abolishing indirect twitches in the chick biventer nerve-muscle preparation, with a t 90 of 55 ± 7 min only at 1 μM. The toxin did not abolish responses to acetylcholine and carbachol indicating pre-synaptic neurotoxicity. Venom, in the absence of U1-viperitoxin-Dr1a, did not induce in vitro neurotoxicity. Indian polyvalent antivenom, at the recommended concentration, only partially prevented the neurotoxic effects of U1-viperitoxin-Dr1a. Liquid chromatography mass spectrometry analysis confirmed that U1-viperitoxin-Dr1a was the basic S-type PLA2 toxin previously identified from this venom (NCBI-GI: 298351762; SwissProt: P86368). The present study demonstrates that neurotoxicity following Sri Lankan Russell's viper envenoming is primarily due to the pre-synaptic neurotoxin U1-viperitoxin-Dr1a. Mild neurotoxicity observed in severely envenomed Sri Lankan Russell's viper bites is most likely due to the low potency of U1-viperitoxin-Dr1a, despite its high relative abundance in the venom.
    Matched MeSH terms: Acetylcholine/pharmacology
  19. Muharis SP, Top AG, Murugan D, Mustafa MR
    Nutr Res, 2010 Mar;30(3):209-16.
    PMID: 20417882 DOI: 10.1016/j.nutres.2010.03.005
    Diabetes and hypertension are closely associated with impaired endothelial function. Studies have demonstrated that regular consumption of edible palm oil may reverse endothelial dysfunction. The present study investigates the effect of palm oil fractions: tocotrienol rich fraction (TRF), alpha-tocopherol and refined palm olein (vitamin E-free fraction) on the vascular relaxation responses in the aortic rings of streptozotocin-induced diabetic and spontaneously hypertensive rats (SHR). We hypothesize that the TRF and alpha-tocopherol fractions are able to improve endothelial function in both diabetic and hypertensive rat aortic tissue. A 1,1-diphenyl picryl hydrazyl assay was performed on the various palm oil fractions to evaluate their antioxidant activities. Endothelium-dependent (acetylcholine) and endothelium-independent (sodium nitroprusside) relaxations were examined on streptozotocin-induced diabetic and SHR rat aorta following preincubation with the different fractions. In 1-diphenyl picryl hydrazyl antioxidant assay, TRF and alpha-tocopherol fractions exhibited a similar degree of activity while palm olein exhibited poor activity. TRF and alpha-tocopherol significantly improved acetylcholine-induced relaxations in both diabetic (TRF, 88.5% +/- 4.5%; alpha-tocopherol, 87.4% +/- 3.4%; vehicle, 65.0 +/- 1.6%) and SHR aorta (TRF, 72.1% +/- 7.9%; alpha-tocopherol, 69.8% +/- 4.0%, vehicle, 51.1% +/- 4.7%), while palm olein exhibited no observable effect. These results suggest that TRF and alpha-tocopherol fractions possess potent antioxidant activities and provide further support to the cardiovascular protective effects of palm oil vitamin E. TRF and alpha-tocopherol may potentially improve vascular endothelial function in diabetes and hypertension by their sparing effect on endothelium derived nitric oxide bioavailability.
    Matched MeSH terms: Acetylcholine/pharmacology
  20. Muthukumaravel K, Kanagavalli V, Pradhoshini KP, Vasanthi N, Santhanabharathi B, Alam L, et al.
    PMID: 36283648 DOI: 10.1016/j.cbpc.2022.109492
    In this modern industrialized era of large-scale production of agrochemicals, various emerging contaminants form the main components of waste water and sludge in most of the developing countries of the world. In this concern, phenol- an inevitable and alarming chemical pollutant in aquatic ecosystem, gains a speedy access into the water bodies as an industrial by-product. Though the detrimental effects of phenol have been studied in various aspects of aquatic life, current study is an initiative to unravel the toxic effects of phenol at molecular level in Cirrhinus mrigala. Plasma cortisol level and acetylcholine esterase activity in fish was estimated by Chemiluminescent immunoassay technique and Ellman assay respectively. Scanning electron microscopic studies were carried out to unravel the gill histopathological alterations in exposed fish. It was observed that phenol (22.32 mg/l) inhibits 50 % of acetylcholine esterase activity in brain thereby affecting the locomotion of the targeted carp. Cortisol elevated during the 7th day in exposed fish, but declined progressively on the forthcoming 21st and 28th days. Manifestations in gill encompass curling, fusion, aberrations, sloughing of gill epithelium, wider inter filamentary space and mucus coating in the primary gill filament. It concludes that the discernable deviations produced in both biochemical parameters and key organ gill can be used as a biomarker and bio-indicator respectively for assessing the existence of emerging toxicants in aquatic ecosystem.
    Matched MeSH terms: Acetylcholine/pharmacology; Acetylcholinesterase
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links