Displaying publications 21 - 40 of 58 in total

Abstract:
Sort:
  1. Hafid SR, Radhakrishnan AK, Nesaretnam K
    BMC Cancer, 2010;10:5.
    PMID: 20051142 DOI: 10.1186/1471-2407-10-5
    Dendritic cells (DCs) have the potential for cancer immunotherapy due to their ability to process and present antigens to T-cells and also in stimulating immune responses. However, DC-based vaccines have only exhibited minimal effectiveness against established tumours in mice and humans. The use of appropriate adjuvant enhances the efficacy of DC based cancer vaccines in treating tumours.
    Matched MeSH terms: Adjuvants, Immunologic
  2. Hambali IU, Bhutto KR, Jesse FFA, Lawan A, Odhah MN, Wahid AH, et al.
    Microb Pathog, 2018 Nov;124:101-105.
    PMID: 30114463 DOI: 10.1016/j.micpath.2018.08.017
    Mastitis is an inflammatory condition of the udder that occurs as a result of the release of leucocytes into the udder in a response to bacterial invasion. The major causes of mastitis are an array of gram positive and negative bacteria, however, algae, virus, fungi, mechanical or thermal injury to the gland have also been identified as possible causes. Mastitis vaccines are yet to be developed using Malaysian local isolate of bacteria. The objective of the present experimental trial was to develop a monovalent vaccine against mastitis using S. aureus of Malaysian isolate and to evaluate the clinical responses such as temperature, respiratory rates and heart rates in vaccinated cows. S. aureus is a major causative bacteria in clinical and subclinical types of mastitis in cows. Four concentrations of the bacterin (106, 107, 108 and 109 cfu/ml of the local isolate of S. aureus) were prepared using Aluminium potassium sulfate adjuvant. Thirty cows were grouped into four treatment groups (B, C, D and E) with a fifth group as control (A). These groups were vaccinated intramuscularly(IM) with the prepared monovalent vaccine and its influence on the vital signs were intermittently measured. The mean of rectal temperature was significantly different (p˂ 0.05) at 0hr Post Vaccination [1]" in groups D and E (39.5 ± 0.15 °C and 39.4 ± 0.15 °C respectively) and at 3 h PV in groups C, D and E (39.8 ± 0.14 °C, 39.9 ± 0.14 °C and 40.3 ± 0.14 °C respectively) compared to the control group. This indicated a sharp increased rectal temperatures between 0hr and 3 h PV in groups C, D and E which later declined at 24 h PV. The mean of rectal temperature of group E was significantly different (p˂ 0.05) at weeks 1 and 2 PV (39.87 ± 0.19 °C and 39.80 ± 0.18 °C respectively) compared to the control group. The mean of heart rate was significantly different (p˂ 0.05) at week 1 PV in groups D and E (83.0 ± 3.8 beats/minute and 80.0 ± 3.8 °C respectively) compared to control. A trending decrease was however observed in heart rates of group E from weeks through 4 PV and in group D from weeks 1 through 3 PV. The mean of respiratory rates was significantly different (p˂ 0.05) at week 3 PV in group B and D (31.0 ± 1.2 breaths/minute and 28.0 ± 1.2 breaths/minute) compared to control. In conclusion, this study highlights responses of these vital signs due to vaccination against S. aureus causing mastitis in cows. To the best of our knowledge the findings of this study adds value to the shallow literature on vital signs alterations in cows vaccinated against mastitis as elevated levels of temperature and heart rates of group D and E indicated obvious response.
    Matched MeSH terms: Adjuvants, Immunologic/administration & dosage
  3. Heng WT, Lim HX, Tan KO, Poh CL
    Pharm Res, 2023 Aug;40(8):1999-2025.
    PMID: 37344603 DOI: 10.1007/s11095-023-03540-x
    BACKGROUND: Influenza is a highly contagious respiratory disease which poses a serious threat to public health globally, causing severe diseases in 3-5 million humans and resulting in 650,000 deaths annually. The current licensed seasonal influenza vaccines lacked cross-reactivity against novel emerging influenza strains as they conferred limited neutralising capabilities. To address the issue, we designed a multi-epitope peptide-based vaccine delivered by the self-adjuvanting PLGA nanoparticles against influenza infections.

    METHODS: A total of six conserved peptides representing B- and T-cell epitopes of Influenza A were identified and they were formulated in either incomplete Freund's adjuvant containing CpG ODN 1826 or being encapsulated in PLGA nanoparticles for the evaluation of immunogenicity in BALB/c mice.

    RESULTS: The self-adjuvanting PLGA nanoparticles encapsulating the six conserved peptides were capable of eliciting the highest levels of IgG and IFN- γ producing cells. In addition, the immunogenicity of the six peptides encapsulated in PLGA nanoparticles showed greater humoral and cellular mediated immune responses elicited by the mixture of six naked peptides formulated in incomplete Freund's adjuvant containing CpG ODN 1826 in the immunized mice. Peptide 3 from the mixture of six peptides was found to exert necrotic effect on CD3+ T-cells and this finding indicated that peptide 3 should be removed from the nanovaccine formulation.

    CONCLUSION: The study demonstrated the self-adjuvanting properties of the PLGA nanoparticles as a delivery system without the need for incorporation of toxic and costly conventional adjuvants in multi-epitope peptide-based vaccines.

    Matched MeSH terms: Adjuvants, Immunologic/chemistry
  4. Hussein WM, Mukaida S, Azmi F, Bartlett S, Olivier C, Batzloff MR, et al.
    ACS Med Chem Lett, 2017 Feb 09;8(2):227-232.
    PMID: 28197317 DOI: 10.1021/acsmedchemlett.6b00453
    Safe immunostimulants (adjuvants) are essential for the development of highly potent peptide-based vaccines. This study examined for the first time whether fluorinated lipids could stimulate humoral immunity in vivo when conjugated to peptide antigen. The impact of fluorination on humoral immunity was tested using a library of peptide-based vaccine candidates against the group A streptococcus (GAS). The fluorinated constructs stimulated similar mouse IgG titers to those elicited by complete Freund's adjuvant (CFA) and were higher than those produced in mice that received the nonfluorinated constructs.
    Matched MeSH terms: Adjuvants, Immunologic
  5. Israf DA, Lajis NH, Somchit MN, Sulaiman MR
    Life Sci, 2004 Jun 11;75(4):397-406.
    PMID: 15147827
    An experiment was conducted with the objective to enhance mucosal immunity against ovalbumin (OVA) by co-administration of OVA with an aqueous extract from the fruit of Solanum torvum (STE). Five groups of female ICR mice aged approximately 8 weeks at the commencement of the experiment were caged in groups of eight and received various treatments. The treatments included OVA alone, OVA with cholera toxin (CT), and OVA with various doses of STE. Mice were primed intraperitoneally with 500 microg of OVA alone or co-administered with 0.1 microg CT, or with 1 microg STE. All mice were boosted orally via gastric intubation 14 days after priming with 10 mg OVA alone, or co-administered with 10 microg CT or with 10 mg, 1 mg or 0.1 mg STE. One week later all mice were killed and organs obtained for analysis of the immune response. Intestinal, faecal and pulmonary OVA-specific sIgA concentration was significantly increased (p<0.05) in mice that received booster combinations of OVA/CT and OVA with all extract doses (p<0.05). Specific serum IgG titres did not differ significantly between groups. It is concluded that STE can significantly enhance secretory immunity in the intestine to OVA with mucosal homing to the lungs. The adjuvant effect of STE is comparable to that of CT.
    Matched MeSH terms: Adjuvants, Immunologic/administration & dosage; Adjuvants, Immunologic/pharmacology*
  6. Jantan I, Ahmad W, Bukhari SN
    Front Plant Sci, 2015;6:655.
    PMID: 26379683 DOI: 10.3389/fpls.2015.00655
    The phagocyte-microbe interactions in the immune system is a defense mechanism but when excessively or inappropriately deployed can harm host tissues and participate in the development of different non-immune and immune chronic inflammatory diseases such as autoimmune problems, allergies, some rheumatoid disorders, cancers and others. Immunodrugs include organic synthetics, biological agents such as cytokines and antibodies acting on single targets or pathways have been used to treat immune-related diseases but with limited success. Most of immunostimulants and immunosuppressants in clinical use are the cytotoxic drugs which possess serious side effects. There is a growing interest to use herbal medicines as multi-component agents to modulate the complex immune system in the prevention of infections rather than treating the immune-related diseases. Many therapeutic effects of plant extracts have been suggested to be due to their wide array of immunomodulatory effects and influence on the immune system of the human body. Phytochemicals such as flavonoids, polysaccharides, lactones, alkaloids, diterpenoids and glycosides, present in several plants, have been reported to be responsible for the plants immunomodulating properties. Thus the search for natural products of plant origin as new leads for development of potent and safe immunosuppressant and immunostimulant agents is gaining much major research interest. The present review will give an overview of widely investigated plant-derived compounds (curcumin, resveratrol, epigallocatechol-3-gallate, quercetin, colchicine, capsaicin, andrographolide, and genistein) which have exhibited potent effects on cellular and humoral immune functions in pre-clinical investigations and will highlight their clinical potential.
    Matched MeSH terms: Adjuvants, Immunologic
  7. Jasmine YS, Lee SL, Kan FK
    Med J Malaysia, 2017 02;72(1):62-64.
    PMID: 28255145
    Haemophagocytic lymphohistiocytosis (HLH) is a potentially fatal disorder resulting from uncontrolled hyperinflammatory response. There had been increase in cases of one of the secondary form of HLH, i.e., infectionassociated haemophagocytic syndrome (IAHS) in severe dengue in recent years. However, the condition remains under diagnosed due to lack of awareness compounded by the lack of validated diagnostic criteria. Severe hepatitis with prolonged cytopenias, severe hyperferritinemia, hypofibrinogenemia and persistent fever were evident in all four cases reported. All the subjects survived with supportive care and adjuvant steroid therapy. Prospective controlled studies are needed to develop diagnostic criteria and management protocol for IAHS in severe dengue.
    Matched MeSH terms: Adjuvants, Immunologic
  8. Khairuddin N, Blake SJ, Firdaus F, Steptoe RJ, Behlke MA, Hertzog PJ, et al.
    Immunol Cell Biol, 2014 Feb;92(2):156-63.
    PMID: 24217808 DOI: 10.1038/icb.2013.75
    Small interfering RNAs (siRNAs) to inhibit oncogene expression and also to activate innate immune responses via Toll-like receptor (TLR) recognition have been shown to be beneficial as anti-cancer therapy in certain cancer models. In this study, we investigated the effects of local versus systemic delivery of such immune-stimulating Dicer-substrate siRNAs (IS-DsiRNAs) on a human papillomavirus (HPV)-driven tumour model. Localized siRNA delivery using intratumour injection of siRNA was able to increase siRNA delivery to the tumour compared with intravenous (IV) delivery and potently activated innate immune responses. However, IV injection remained the more effective delivery route for reducing tumour growth. Although IS-DsiRNAs activated innate immune cells and required interferon-α (IFNα) for full effect on tumour growth, we found that potent silencing siRNA acting independently of IFNα were overall more effective at inhibiting TC-1 tumour growth. Other published work utilising IS-siRNAs have been carried out on tumour models with low levels of major histocompatibility complex (MHC)-class 1, a target of natural killer cells that are potently activated by IS-siRNA. As TC-1 cells used in our study express high levels of MHC-class I, the addition of the immunostimulatory motifs may not be as beneficial in this particular tumour model. Our data suggest that selection of siRNA profile and delivery method based on tumour environment is crucial to developing siRNA-based therapies.
    Matched MeSH terms: Adjuvants, Immunologic/pharmacology*
  9. Khalaj-Hedayati A, Chua CLL, Smooker P, Lee KW
    Influenza Other Respir Viruses, 2020 Jan;14(1):92-101.
    PMID: 31774251 DOI: 10.1111/irv.12697
    The threat of novel influenza infections has sparked research efforts to develop subunit vaccines that can induce a more broadly protective immunity by targeting selected regions of the virus. In general, subunit vaccines are safer but may be less immunogenic than whole cell inactivated or live attenuated vaccines. Hence, novel adjuvants that boost immunogenicity are increasingly needed as we move toward the era of modern vaccines. In addition, targeting, delivery, and display of the selected antigens on the surface of professional antigen-presenting cells are also important in vaccine design and development. The use of nanosized particles can be one of the strategies to enhance immunogenicity as they can be efficiently recognized by antigen-presenting cells. They can act as both immunopotentiators and delivery system for the selected antigens. This review will discuss on the applications, advantages, limitations, and types of nanoparticles (NPs) used in the preparation of influenza subunit vaccine candidates to enhance humoral and cellular immune responses.
    Matched MeSH terms: Adjuvants, Immunologic/administration & dosage*; Adjuvants, Immunologic/chemistry
  10. Kong NC, Beran J, Kee SA, Miguel JL, Sánchez C, Bayas JM, et al.
    Kidney Int, 2008 Apr;73(7):856-62.
    PMID: 18160963
    Prehemodialysis and hemodialysis patients are at an increased risk of hepatitis B infection and have an impaired immune response to hepatitis B vaccines. We evaluated the immune response to the new adjuvant of hepatitis B vaccine AS04 (HBV-AS04) in this population. We measured antibody persistence for up to 42 months, and the anamnestic response and safety of booster doses in patients who were no longer seroprotected. The primary vaccination study showed that HBV-AS04 elicited an earlier antibody response and higher antibody titers than four double doses of standard hepatitis B vaccine. Seroprotection rates were significantly higher in HBV-AS04 recipients throughout the study. The decline in seroprotection over time was significantly less in the HBV-AS04 group with significantly fewer primed patients requiring a booster dose over the follow-up period. Solicited/unsolicited adverse events were rare following booster administration. Fifty-seven patients experienced a serious adverse event during the follow-up; none of which was vaccine related. When HBV-AS04 was used as the priming immunogen, the need for a booster dose occurred at a longer time compared to double doses of standard hepatitis B vaccine. Hence, in this population, the HBV-AS04 was immunogenic, safe, and well-tolerated both as a booster dose after HBV-AS04 or standard hepatitis B vaccine priming.
    Matched MeSH terms: Adjuvants, Immunologic
  11. Lawan A, Jesse FFA, Idris UH, Odhah MN, Arsalan M, Muhammad NA, et al.
    Microb Pathog, 2018 Apr;117:175-183.
    PMID: 29471137 DOI: 10.1016/j.micpath.2018.02.039
    Innumerable Escherichia coli of animal origin are identified, which are of economic significance, likewise, cattle, sheep and goats are the carrier of enterohaemorrhagic E. coli, which are less pathogenic, and can spread to people by way of direct contact and through the contamination of foodstuff or portable drinking water, causing serious illness. The immunization of ruminants has been carried out for ages and is largely acknowledged as the most economical and maintainable process of monitoring E. coli infection in ruminants. Yet, only a limited number of E. coli vaccines are obtainable. Mucosal surfaces are the most important ingress for E. coli and thus mucosal immune responses function as the primary means of fortification. Largely contemporary vaccination processes are done by parenteral administration and merely limited number of E. coli vaccines are inoculated via mucosal itinerary, due to its decreased efficacy. Nevertheless, aiming at maximal mucosal partitions to stimulate defensive immunity at both mucosal compartments and systemic site epitomises a prodigious task. Enormous determinations are involved in order to improve on novel mucosal E. coli vaccines candidate by choosing apposite antigens with potent immunogenicity, manipulating novel mucosal itineraries of inoculation and choosing immune-inducing adjuvants. The target of E. coli mucosal vaccines is to stimulate a comprehensive, effective and defensive immunity by specifically counteracting the antibodies at mucosal linings and by the stimulation of cellular immunity. Furthermore, effective E. coli mucosal vaccine would make vaccination measures stress-free and appropriate for large number of inoculation. On account of contemporary advancement in proteomics, metagenomics, metabolomics and transcriptomics research, a comprehensive appraisal of the immeasurable genes and proteins that were divulged by a bacterium is now in easy reach. Moreover, there exist marvellous prospects in this bourgeoning technologies in comprehending the host bacteria affiliation. Accordingly, the flourishing knowledge could massively guarantee to the progression of immunogenic vaccines against E. coli infections in both humans and animals. This review highlight and expounds on the current prominence of mucosal and systemic immunogenic vaccines for the prevention of E. coli infections in ruminants.
    Matched MeSH terms: Adjuvants, Immunologic
  12. Lee PT, Yamamoto FY, Low CF, Loh JY, Chong CM
    Front Immunol, 2021;12:773193.
    PMID: 34975860 DOI: 10.3389/fimmu.2021.773193
    The gastrointestinal immune system plays an important role in immune homeostasis regulation. It regulates the symbiotic host-microbiome interactions by training and developing the host's innate and adaptive immunity. This interaction plays a vital role in host defence mechanisms and at the same time, balancing the endogenous perturbations of the host immune homeostasis. The fish gastrointestinal immune system is armed with intricate diffused gut-associated lymphoid tissues (GALTs) that establish tolerance toward the enormous commensal gut microbiome while preserving immune responses against the intrusion of enteric pathogens. A comprehensive understanding of the intestinal immune system is a prerequisite for developing an oral vaccine and immunostimulants in aquaculture, particularly in cultured fish species. In this review, we outline the remarkable features of gut immunity and the essential components of gut-associated lymphoid tissue. The mechanistic principles underlying the antigen absorption and uptake through the intestinal epithelial, and the subsequent immune activation through a series of molecular events are reviewed. The emphasis is on the significance of gut immunity in oral administration of immunoprophylactics, and the different potential adjuvants that circumvent intestinal immune tolerance. Comprehension of the intestinal immune system is pivotal for developing effective fish vaccines that can be delivered orally, which is less labour-intensive and could improve fish health and facilitate disease management in the aquaculture industry.
    Matched MeSH terms: Adjuvants, Immunologic/therapeutic use*
  13. Leow CY, Willis C, Chuah C, Leow CH, Jones M
    Parasite Immunol., 2020 03;42(3):e12693.
    PMID: 31880816 DOI: 10.1111/pim.12693
    AIMS: Schistosomes infect approximately 250 million people worldwide. To date, there is no effective vaccine available for the prevention of schistosome infection in endemic regions. There remains a need to develop means to confer long-term protection of individuals against reinfection. In this study, an annexin, namely annexin B30, which is highly expressed in the tegument of Schistosoma mansoni was selected to evaluate its immunogenicity and protective efficacy in a mouse model.

    METHODS AND RESULTS: Bioinformatics analysis showed that there were three potential linear B-cell epitopes and four conformational B-cell epitopes predicted from annexin B30, respectively. Full-length annexin B30 was cloned and expressed in Escherichia coli BL21(DE3). In the presence of adjuvants, the soluble recombinant protein was evaluated for its protective efficacy in two independent vaccine trials. Immunization of CBA mice with recombinant annexin B30 formulated either in alum only or alum/CpG induced a mixed Th1/Th2 cytokine profile but no significant protection against schistosome infection was detected.

    CONCLUSION: Recombinant annexin B30 did not confer significant protection against the parasite. The molecule may not be suitable for vaccine development. However, it could be an ideal biomarker recommended for immunodiagnostics development.

    Matched MeSH terms: Adjuvants, Immunologic
  14. Lim KL, Jazayeri SD, Yeap SK, Mohamed Alitheen NB, Bejo MH, Ideris A, et al.
    Res Vet Sci, 2013 Dec;95(3):1224-34.
    PMID: 23948357 DOI: 10.1016/j.rvsc.2013.07.013
    We had examined the immunogenicity of a series of plasmid DNAs which include neuraminidase (NA) and nucleoprotein (NP) genes from avian influenza virus (AIV). The interleukin-15 (IL-15) and interleukin-18 (IL-18) as genetic adjuvants were used for immunization in combination with the N1 and NP AIV genes. In the first trial, 8 groups of chickens were established with 10 specific-pathogen-free (SPF) chickens per group while, in the second trial 7 SPF chickens per group were used. The overall N1 enzyme-linked immunosorbent assay (ELISA) titer in chickens immunized with the pDis/N1+pDis/IL-15 was higher compared to the chickens immunized with the pDis/N1 and this suggesting that chicken IL-15 could play a role in enhancing the humoral immune response. Besides that, the chickens that were immunized at 14-day-old (Trial 2) showed a higher N1 antibody titer compared to the chickens that were immunized at 1-day-old (Trial 1). Despite the delayed in NP antibody responses, the chickens co-administrated with IL-15 were able to induce earlier and higher antibody response compared to the pDis/NP and pDis/NP+pDis/IL-18 inoculated groups. The pDis/N1+pDis/IL-15 inoculated chickens also induced higher CD8+ T cells increase than the pDis/N1 group in both trials (P<0.05). The flow cytometry results from both trials demonstrated that the pDis/N1+pDis/IL-18 groups were able to induce CD4+ T cells higher than the pDis/N1 group (P<0.05). Meanwhile, pDis/N1+pDis/IL-18 group was able to induce CD8+ T cells higher than the pDis/N1 group (P<0.05) in Trial 2 only. In the present study, pDis/NP was not significant (P>0.05) in inducing CD4+ and CD8+ T cells when co-administered with the pDis/IL-18 in both trials in comparison to the pDis/NP. Our data suggest that the pDis/N1+pDis/IL-15 combination has the potential to be used as a DNA vaccine against AIV in chickens.
    Matched MeSH terms: Adjuvants, Immunologic/pharmacology*
  15. Mahalingam D, Radhakrishnan AK, Amom Z, Ibrahim N, Nesaretnam K
    Eur J Clin Nutr, 2011 Jan;65(1):63-9.
    PMID: 20859299 DOI: 10.1038/ejcn.2010.184
    Vitamin E is an essential fat-soluble vitamin that has been shown to induce favorable effects on animal and human immune systems. The objective of this study was to assess the effects of tocotrienol-rich fraction (TRF) supplementation on immune response following tetanus toxoid (TT) vaccine challenge in healthy female volunteers.
    Matched MeSH terms: Adjuvants, Immunologic/therapeutic use*
  16. Mohamed SIA, Jantan I, Haque MA
    Int Immunopharmacol, 2017 Sep;50:291-304.
    PMID: 28734166 DOI: 10.1016/j.intimp.2017.07.010
    Natural products with immunomodulatory activity are widely used in treatment of many diseases including autoimmune diseases, inflammatory disorders in addition to cancer. They gained a great interest in the last decades as therapeutic agents since they provide inexpensive and less toxic products than the synthetic chemotherapeutic agents. Immunomodulators are the agents that have the ability to boost or suppress the host defense response that can be used as a prophylaxis as well as in combination with other therapeutic modalities. The anticancer activity of these immunomodulators is due to their anti-inflammatory, antioxidant, and induction of apoptosis, anti-angiogenesis, and anti-metastasis effect. These natural immunomodulators such as genistein, curcumin, and resveratrol can be used as prophylaxis against the initiation of cancer besides the inhibition of tumor growth and proliferation. Whereas, immunostimulants can elicit and activate humoral and cell-mediated immune responses against the tumor that facilitate the recognition and destruction of the already existing tumor. This review represents the recent studies on various natural immunomodulators with antitumor effects. We have focused on the relationship between their anticancer activity and immunomodulatory mechanisms. The mechanisms of action of various immunomodulators such as polyphenolic compounds, flavonoids, organosulfur compounds, capsaicin, vinca alkaloids, bromelain, betulinic acid and zerumbone, the affected cancerous cell lines in addition to the targeted molecules and transcriptional pathways have been review and critically analyzed.
    Matched MeSH terms: Adjuvants, Immunologic
  17. Mohamud R, Azlan M, Yero D, Alvarez N, Sarmiento ME, Acosta A, et al.
    BMC Immunol, 2013;14 Suppl 1:S5.
    PMID: 23458635 DOI: 10.1186/1471-2172-14-S1-S5
    Recombinant Mycobacterium bovis bacille Calmette-Guèrin (rBCG) expressing three T cell epitopes of Mycobacterium tuberculosis (MTB) Ag85B antigen (P1, P2, P3) fused to the Mtb8.4 protein (rBCG018) or a combination of these antigens fused to B cell epitopes from ESAT-6, CFP-10 and MTP40 proteins (rBCG032) were used to immunize Balb/c mice. Total IgG responses were determined against Mtb8.4 antigen and ESAT-6 and CFP-10 B cell epitopes after immunization with rBCG032. Mice immunized with rBCG032 showed a significant increase in IgG1 and IgG2a antibodies against ESAT-6 and MTP40 (P1) B cell epitopes and IgG3 against both P1 and P2 B cell epitopes of MPT40. Splenocytes from mice immunized with rBCG018 proliferated against Ag85B P2 and P3 T cell epitopes and Mtb8.4 protein whereas those from mice-immunized with rBCG032 responded against all Ag85B epitopes and the ESAT-6 B cell epitope. CD4⁺ and CD8⁺ lymphocytes from mice immunized with rBCG018 produced primarily Th1 type cytokines in response to the T cell epitopes. Similar pattern of recognition against the T cell epitopes were obtained with rBCG032 with the additional recognition of ESAT-6, CFP-10 and one of the MTP40 B cell epitopes with the same pattern of cytokines. This study demonstrates that rBCG constructs expressing either T or T and B cell epitopes of MTB induced appropriate immunogenicity against MTB.
    Matched MeSH terms: Adjuvants, Immunologic
  18. Nagendrakumar SB, Hong NT, Geoffrey FT, Jacqueline MM, Andrew D, Michelle G, et al.
    Vaccine, 2015 Aug 26;33(36):4513-9.
    PMID: 26192355 DOI: 10.1016/j.vaccine.2015.07.014
    Pigs play a significant role during outbreaks of foot-and-mouth disease (FMD) due to their ability to amplify the virus. It is therefore essential to determine what role vaccination could play to prevent clinical disease and lower virus excretion into the environment. In this study we investigated the efficacy of the double oil emulsion A Malaysia 97 vaccine (>6PD50/dose) against heterologous challenge with an isolate belonging to the A SEA-97 lineage at 4 and 7 days post vaccination (dpv). In addition, we determined whether physical separation of pigs in the same room could prevent virus transmission. Statistically there was no difference in the level of protection offered by 4 and 7 dpv. However, no clinical disease or viral RNA was detected in the blood of pigs challenged 4 dpv, although three of the pigs had antibodies to the non-structural proteins (NSPs), indicating viral replication. Viral RNA was also detected in nasal and saliva swabs, but on very few occasions. Two of the pigs vaccinated seven days prior to challenge had vesicles distal from the injection site, but on the inoculated foot, and two pigs had viral RNA detected in the blood. One pig sero-converted to the NSPs. In contrast, all unvaccinated and inoculated pigs had evidence of infection. No infection occurred in any of the susceptible pigs in the same room, but separated from the infected pigs, indicating that strict biosecurity measures were sufficient under these experimental conditions to prevent virus transmission. However, viral RNA was detected in the nasal swabs of one group of pigs, but apparently not at sufficient levels to cause clinical disease. Vaccination led to a significant decrease in viral RNA in vaccinated pigs compared to unvaccinated and infected pigs, even with this heterologous challenge, and could therefore be considered as a control option during outbreaks.
    Matched MeSH terms: Adjuvants, Immunologic/administration & dosage
  19. Naguib AM, Apparoo Y, Xiong C, Phan CW
    Int J Med Mushrooms, 2023;25(2):11-22.
    PMID: 36749053 DOI: 10.1615/IntJMedMushrooms.2022046849
    Neurodegeneration is one of the most common manifestations in an aging population. The occurrence of oxidative stress and neuroinflammation are the main contributors to the phenomenon. Neurologic conditions such as Alzheimer's disease (AD) and Parkinson's disease (PD) are challenging to treat due to their irreversible manner as well as the lack of effective treatment. Grifola frondosa (Dicks.: Fr.) S.F. Gray, or maitake mushroom, is believed to be a potential choice as a therapeutic agent for neurodegenerative diseases. G. frondosa is known to be a functional food that has a wide variety of medicinal purposes. Thus, this review emphasizes the neuroprotective effects and the chemical composition of G. frondosa. Various studies have described that G. frondosa can protect and proliferate neuronal cells through neurogenesis, antioxidative, anti-inflammatory, and anti-β-amyloid activities. The mechanism of action behind these therapeutic findings in various in vitro and in vivo models has also been intensively studied. In this mini review, we also summarized the chemical composition of G. frondosa to provide a better understanding of the presence of nutritional compounds in G. frondosa.
    Matched MeSH terms: Adjuvants, Immunologic
  20. Ong HK, Yong CY, Tan WS, Yeap SK, Omar AR, Razak MA, et al.
    Vaccines (Basel), 2019 08 19;7(3).
    PMID: 31430965 DOI: 10.3390/vaccines7030091
    Current seasonal influenza A virus (IAV) vaccines are strain-specific and require annual reconstitution to accommodate the viral mutations. Mismatches between the vaccines and circulating strains often lead to high morbidity. Hence, development of a universal influenza A vaccine targeting all IAV strains is urgently needed. In the present study, the protective efficacy and immune responses induced by the extracellular domain of Matrix 2 protein (M2e) displayed on the virus-like particles of Macrobrachium rosenbergii nodavirus (NvC-M2ex3) were investigated in BALB/c mice. NvC-M2ex3 was demonstrated to be highly immunogenic even in the absence of adjuvants. Higher anti-M2e antibody titers corresponded well with increased survival, reduced immunopathology, and morbidity of the infected BALB/c mice. The mice immunized with NvC-M2ex3 exhibited lower H1N1 and H3N2 virus replication in the respiratory tract and the vaccine activated the production of different antiviral cytokines when they were challenged with H1N1 and H3N2. Collectively, these results suggest that NvC-M2ex3 could be a potential universal influenza A vaccine.
    Matched MeSH terms: Adjuvants, Immunologic
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links