Displaying publications 21 - 40 of 122 in total

Abstract:
Sort:
  1. Guo X, Sun C, Lin R, Xia A, Huang Y, Zhu X, et al.
    J Hazard Mater, 2020 11 15;399:122830.
    PMID: 32937692 DOI: 10.1016/j.jhazmat.2020.122830
    Stimulating direct interspecies electron transfer with conductive materials is a promising strategy to overcome the limitation of electron transfer efficiency in syntrophic methanogenesis of industrial wastewater. This paper assessed the impact of conductive foam nickel (FN) supplementation on syntrophic methanogenesis and found that addition of 2.45 g/L FN in anaerobic digestion increased the maximum methane production rate by 27.4 % (on day 3) while decreasing the peak production time by 33 % as compared to the control with no FN. Cumulative methane production from day 2 to 6 was 14.5 % higher with addition of 2.45 g/L FN than in the control. Levels of FN in excess of 2.45 g/L did not show benefits. Cyclic voltammetry results indicated that the biofilm formed on the FN could generate electrons. The dominant bacterial genera in suspended sludge were Dechlorobacter and Rikenellaceae DMER64, whereas that in the FN biofilm was Clostridium sensu stricto 11. The dominant archaea Methanosaeta in the FN biofilm was enriched by 14.1 % as compared to the control.
    Matched MeSH terms: Anaerobiosis
  2. Kumari K, Suresh S, Arisutha S, Sudhakar K
    Waste Manag, 2018 Jul;77:545-554.
    PMID: 29778405 DOI: 10.1016/j.wasman.2018.05.007
    Anaerobic co-digestion has made a greater impact on the biogas production from mixing different type of waste. In this research, sewage sludge (SS) and cow manure (CM), was used as a primary waste along with kitchen waste (KW), yard waste (YW), floral waste (FW) and dairy wastewater (DWW) as co-substrate for anaerobic digestion. Mixtures with a ratio of 1:2 ratio is fed into a single stage up-flow anaerobic sludge blanket (UASB) reactor. Digestion was carried out in a mesophilic temperature range for 20 days. pH and VFA were measured and ranged from 5 to 7.5 and 3500-500 mg/L, respectively, for all the mixtures throughout the digestion period. Percentage of COD removal efficiency after 20 days was found to be in the range of 76-86%. The maximum biogas production rate was found to be 4500 mL/day. Characterization of the final residue from each of the digesters was carried out by Scanning Electron microscope, Energy dispersive, thermogravimetric, FTIR Spectra, and Atomic microscope. Thermal analysis reveals that spent sludge can be potential waste energy sources.
    Matched MeSH terms: Anaerobiosis
  3. Fan YV, Klemeš JJ, Lee CT, Perry S
    J Environ Manage, 2018 Oct 01;223:888-897.
    PMID: 29996113 DOI: 10.1016/j.jenvman.2018.07.005
    Anaerobic digestion (AD) serves as a promising alternative for waste treatment and a potential solution to improve the energy supply security. The feasibility of AD has been proven in some of the technologically and agriculturally advanced countries. However, development is still needed for worldwide implementation, especially for AD process dealing with municipal solid waste (MSW). This paper reviews various approaches and stages in the AD of MSW, which used to optimise the biogas production and quality. The assessed stages include pre-treatment, digestion process, post-treatment as well as the waste collection and transportation. The latest approaches and integrated system to improve the AD process are also presented. The stages were assessed in a relatively quantitative manner. The range of energy requirement, carbon emission footprint and the percentage of enhancement are summarised. Thermal hydrolysis pre-treatment is identified to be less suitable for MSW (-5% to +15.4% enhancement), unless conducted in the two-phase AD system. Microwave pre-treatment shows consistent performance in elevating the biogas production of MSW, but the energy consumption (114.24-8,040 kWeh t-1) and carbon emission footprint (59.93-4,217.78 kg CO2 t-1 waste) are relatively high. Chemical (∼0.43 kWeh m-3) and membrane-based (∼0.45 kWeh m-3) post-treatments are suggested to be a lower energy consumption approach for upgrading the biogas. The feasibility in terms of cost (scale up) and other environmental impacts (non-CO2 footprint) needs to be further assessed. This study provides an overview to facilitate further development and extended implementation of AD.
    Matched MeSH terms: Anaerobiosis
  4. Fan YV, Klemeš JJ, Perry S, Lee CT
    J Environ Manage, 2019 Feb 01;231:352-363.
    PMID: 30366314 DOI: 10.1016/j.jenvman.2018.10.020
    Lignocellulosic waste (LW) is abundant in availability and is one of the suitable substrates for anaerobic digestion (AD). However, it is a complex solid substrate matrix that hinders the hydrolysis stage of anaerobic digestion. This study assessed various pre-treatment and post-treatments of lignocellulosic waste for anaerobic digestion benefiting from advanced P-graph and GaBi software (Thinkstep, Germany) from the perspective of cost and environmental performances (global warming potential, human toxicity, ozone depletion potential, particulate matter, photochemical oxidant creation, acidification and eutrophication potential). CaO pre-treatment (P4), H2S removal with membrane separation post-treatment (HSR MS) and without the composting of digestate is identified as the cost-optimal pathway. The biological (P7- Enzyme, P8- Microbial Consortium) and physical (P1- Grinding, P2- Steam Explosion, P3- Water Vapour) pre-treatments alternatives have lower environmental impacts than chemical pre-treatments (P4- CaO, P5- NaOH, P6- H2SO4) however they are not part of the near cost optimal solutions. For post-treatment, the near cost optimal alternatives are H2S removal with organic physical scrubbing (HSR OPS) and H2S removal with amine scrubbing (HSR AS). HSR AS has a better performance in the overall environmental impacts followed by HSR MS and HSR OPS. In general, the suggested cost-optimal solution is still having relatively lower environmental impacts and feasible for implementation (cost effective). There is very complicated to find a universal AD solution. Different scenarios (the type of substrate, the scale, product demand, policies) have different constraints and consequently solutions. The trade-offs between cost and environment performances should be a future extension of this work.
    Matched MeSH terms: Anaerobiosis
  5. Hassan SR, Zaman NQ, Dahlan I
    Prep Biochem Biotechnol, 2020;50(3):234-239.
    PMID: 31762367 DOI: 10.1080/10826068.2019.1692214
    Recycled paper mill effluent (RPME) consists of various organic and inorganic compounds. In this study, modified anaerobic hybrid baffled (MAHB) bioreactor has been successfully used to anaerobically digest RPME. The anaerobic digestion was investigated in relation to methane production rate, lignin removal, and chemical oxygen demand (COD) removal, with respect to organic loading rate (OLR) and hydraulic retention time (HRT). The analysis using kinetic study was carried out under mesophilic conditions (37 ± 2 °C) and influent COD concentrations (1000-4000 mg L-1), to prove its practicability towards RPME treatment. First-order kinetic model was used to clarify the behavior of RPME anaerobic digestion under different OLRs (0.14-4.00 g COD L-1 d-1) and HRT (1-7 d). The result shows that the highest COD removal efficiency and methane production rate were recorded to be 98.07% and 2.2223 L CH4 d-1, respectively. This result was further validated by evaluating the biokinetic coefficients (reaction rate constant (k) and maximum biogas production (ym)), which gave values of k = 0.57 d-1 and ym = 0.331 L d-1. This kinetic data concludes that MAHB presented satisfactory performance towards COD removal with relatively high methane production, which can be further utilized as on-site energy supply.
    Matched MeSH terms: Anaerobiosis
  6. Khadaroo SNBA, Grassia P, Gouwanda D, Poh PE
    J Environ Manage, 2020 Mar 01;257:109996.
    PMID: 31868647 DOI: 10.1016/j.jenvman.2019.109996
    An alternative method was proposed to optimize the treatment process of palm oil mill effluent (POME) in an effort to address the poor removal efficiencies in terms of the chemical and biological oxygen demand (COD and BOD), total suspended solids (TSS) as well as oil and grease (O&G) content in treated POME along with many environmental issues associated with the existing POME treatment process. The elimination of the cooling ponds and the insertion of a dewatering device in the treatment process were recommended. The dewatering device should enhance the anaerobic digestion process by conferring a means of control on the digesters' load. The objective of this study is to identify the optimum solid: liquid ratio (total solids (TS) content) that would generate the maximum amount of biogas with better methane purity consistently throughout the anaerobic digestion of POME, all while improving the treated effluent quality. It was established that a 40S:60L (4.02% TS) was the best performing solid loading in terms of biogas production and methane yield as well as COD, BOD, TSS, and O&G removal efficiencies. Meanwhile, at higher solid loadings, the biogas production is inhibited due to poor transport and mass transfer. It is also speculated that sulfate-reducing bacteria tended to inhibit the biogas production based on the significantly elevated H2S concentration recorded for the 75S:25L and the 100S loadings.
    Matched MeSH terms: Anaerobiosis
  7. Zaied BK, Nasrullah M, Siddique MNI, Zularisam AW, Singh L, Krishnan S
    Sci Total Environ, 2020 Mar 01;706:136095.
    PMID: 31862587 DOI: 10.1016/j.scitotenv.2019.136095
    Lack of sufficient nitrogenous substrate and buffering potential have been acknowledged as impediments to the treatment of palm oil mill effluent through co-digestion processes. In this study, ammonium bicarbonate was used to provide the nitrogenous substrate and buffering potential. To regulate the impact of ammonium bicarbonate toxicity on the anaerobic co-digestion system, dosages from 0 to 40 mg/L were supplemented. The biogas yield was used to indicate the effects of NH4+ toxicity. In a solar-assisted bioreactor, solar radiation was first collected by a solar panel and converted into electricity, which was then used to heat a mixture of palm oil mill effluent and cattle manure to maintain the reactor in the mesophilic temperature range. This co-digestion operation was performed semi-continuously and was analyzed at a 50:50 mixing ratio of palm oil mill effluent and cattle manure. The results indicate that the additional dosing of ammonium bicarbonate can significantly enhance biogas production. Maximum cumulative biogas and methane productions of 2034.00 mL and 1430.51 mL, respectively, were obtained with the optimum addition of 10 mg/L ammonium bicarbonate; these values are 29.80% and 42.30% higher, respectively, than that obtained in the control co-digestion operation without addition of ammonium bicarbonate. Utilization of a mathematical equation (G = Gmk/t) to describe a kinetic analysis of the biogas yield also indicated that the optimum ammonium bicarbonate dose was 10 mg/L. The results of this study suggest that supplementation with ammonium bicarbonate doses of up to 40 mg/L can be used to provide nitrogenous substrates and buffering potential in anaerobic co-digestion processes. The determination of the optimal dose provides an alternative and efficient option for enhanced biogas production, which will have obvious economic advantages for feasible industrial applications.
    Matched MeSH terms: Anaerobiosis
  8. Isa MH, Wong LP, Bashir MJK, Shafiq N, Kutty SRM, Farooqi IH, et al.
    Sci Total Environ, 2020 Jun 20;722:137833.
    PMID: 32199372 DOI: 10.1016/j.scitotenv.2020.137833
    Palm oil mill effluent (POME) is a highly polluted wastewater that consists of a high organic content of 4-5% total solids; a potential renewable energy source. A waste to energy study was conducted to improve biogas production using POME as substrate by ultrasonication pretreatment at mesophilic temperatures. The effect of temperature on the specific growth rate of anaerobes and methanogenic activity was investigated. Five sets of assays were carried out at operating temperatures between 25 °C and 45 °C. Each set consisted of two experiments using identical anaerobic sequencing batch reactors (AnSBR); fed with raw POME (control) and sonicated POME, respectively. The ultrasonication was set at 16.2 min ultrasonication time and 0.88 W mL-1 ultrasonication density with substrate total solids concentration of 6% (w/v). At 25 °C, biogas production rate and organic matter removal exhibited lowest values for both reactors. The maximum organic degradation was 96% from AnSBR operated at 30 °C fed with sonicated POME and 91% from AnSBR operated at 35 °C fed with unsonicated POME. In addition, the methane yield from AnSBR operated at 30 °C was enhanced by 21.5% after ultrasonication pretreatment. A few normality tests and a t-test were carried out. Both tests indicated that the residuals of the experimental data were normality distributed with mean equals to zero. The results demonstrated that ultrasonication treatment was a promising pretreatment to positively affect the organic degradation and biogas production rates at 30-35 °C.
    Matched MeSH terms: Anaerobiosis
  9. Nor Faekah I, Fatihah S, Mohamed ZS
    Heliyon, 2020 Mar;6(3):e03594.
    PMID: 32258460 DOI: 10.1016/j.heliyon.2020.e03594
    A bench-scale model of a partially packed upflow anaerobic fixed film (UAF) reactor was set up and operated at five different hydraulic retention times (HRTs) of (17, 14, 10, 8, and 5) days. The reactor was fed with synthetic rubber wastewater consisting of a chemical oxygen demand (COD) concentration of 6355-6735 mg/L. The results were analyzed using the Monod model, the Modified Stover-Kincannon models, and the Grau Second-Order Model. The Grau Second-Order model was found to best fit the experimental data. The biokinetic constant values, namely the growth yield coefficient (Y) and the endogenous coefficient (Kd) were 0.027 g VSS/g COD and 0.1705 d-1, respectively. The half-saturation constant (Ks) and maximum substrate utilization rate (K) returned values of 84.1 mg/L and 0.371 d-1, respectively, whereas the maximum specific growth rate of the microorganism (μmax) was 0.011 d-1. The constants, Umax and KB, of the Stover-Kincannon model produced values of 6.57 g/L/d and 6.31 g/L/d, respectively. Meanwhile, the average second-order substrate removal rate, ks(2), was 105 d-1. These models gave high correlation coefficients with the value of R2 = 80-99% and these indicated that these models can be used in designing UAF reactor consequently predicting the behaviour of the reactor.
    Matched MeSH terms: Anaerobiosis
  10. Liew CS, Raksasat R, Rawindran H, Kiatkittipong W, Lim JW, Leong WH, et al.
    Chemosphere, 2022 Apr;292:133478.
    PMID: 34979202 DOI: 10.1016/j.chemosphere.2021.133478
    Low temperature thermal pre-treatment is a low-cost method to break down the structure of extracellular polymeric substances in waste activated sludge (WAS) while improving the sludge biodegradability. However, previous models on low temperature thermal pre-treatment did not adequately elucidate the behaviour of sludge hydrolysis process for the duration ranging from 5 to 9 h. Therefore, this work had developed an inclusive functional model to describe the kinetics of sludge hydrolysis for a wide range of treatment conditions (30 °C-90 °C within 0 and 16 h). As compared with treatment duration, the treatment temperature played a greater impact in solubilizing WAS. Accordingly, the 90 °C treatment had consistently produced WAS with the highest degree of solubility. Nonetheless, the mediocre discrepancies between 90 °C and 75 °C may challenge the practicality of increasing the treatment temperatures beyond 75 °C. The effects of treatment duration on soluble chemical oxygen demand, soluble carbohydrate and soluble protein were only significant during the first 4 h, except for humic substances release that continued to increase with treatment duration. Finally, a good fit with R2 > 0.95 was achieved using an inclusive multivariate non-linear model, substantiating the functionality to predict the kinetics of sludge hydrolysis at arbitrary treatment conditions.
    Matched MeSH terms: Anaerobiosis
  11. Tan SP, Kong HF, Bashir MJK, Lo PK, Ho CD, Ng CA
    Bioresour Technol, 2017 Dec;245(Pt A):916-924.
    PMID: 28931208 DOI: 10.1016/j.biortech.2017.08.202
    It was found that the operational temperature and the incorporation of microbial fuel cell (MFC) into anaerobic membrane bioreactor (AnMBR) have significant effect on AnMBRs' filtration performance. This paper addresses two issues (i) effect of temperature on AnMBR; and (ii) effect of MFC on AnMBRs' performance. The highest COD removal efficiency was observed in mesophilic condition (45°C). It was observed that the bioreactors operated at 45°C had the highest filtration resistance compared to others, albeit the excellent performance in removing the organic pollutant. Next, MFC was combined with AnMBR where the MFC acted as a pre-treatment unit prior to AnMBR and it was fed directly with palm oil mill effluent (POME). The supernatant from MFC was further treated by AnMBR. Noticeable improvement in filtration performance was observed in the combined system. Decrease in polysaccharide amount was observed in combined system which in turn suggested that the better filtration performance.
    Matched MeSH terms: Anaerobiosis
  12. Zaheer M, Ali MS, Huang N, Ashraf MA
    Chemosphere, 2023 Nov;341:140080.
    PMID: 37678602 DOI: 10.1016/j.chemosphere.2023.140080
    The flow of unprocessed sewage through municipal sewers is a great source of water contamination. This study aims to observe the pollutants removal efficiencies of walnut shells as an efficient low-cost adsorbent material compared to gravel materials as an anaerobic filter medium. Two models of the De-Centralized Wastewater Treatment System (DEWATS) were constructed. The wastewater flowing from toilets and handwashing places was connected to anaerobic filters filled with walnut shells and gravel. The efficiency of both filter media in the removal of biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), nitrate (NO3), and phosphate (PO43), pH and temperature were observed at the influent of the settler tank and then at the effluent of the collection tank (CT). Temperature and pH were within the acceptable limit of wastewater discharge. The results also indicated that the walnut shells filter media was more efficient at removing organic pollutants (TSS 94%, BOD5 88%, COD 85%, Nitrate 57%, phosphate 46%, and TDS 29%) than the gravel (TSS 81%, BOD5 82%, COD 84%, Nitrate 35%, phosphate 38%, and TDS 26%) at the successive stages. The average removal efficiency of the walnut shell was 88% while in the gravel case, it was 83%. The removal efficiency of walnut shell filters was extensively better over the complete experiment compared to gravel filters for the removal of pollutants, representing the high sorption capability of the walnut shell material. The results of this study show that the walnut shells may be a very useful substitute for other conventional fillers for anaerobic treatment in the anaerobic filter of DEWATS.
    Matched MeSH terms: Anaerobiosis
  13. Tan W, Wazir N, Chiu C, Ko M
    Malays Orthop J, 2012 Nov;6(3):40-1.
    PMID: 25279055 MyJurnal DOI: 10.5704/MOJ.1207.003
    We report a case of a human bite that was initially inadequately treated and progressed to chronic osteomyelitis, finally resulting in digital amputation. Human bites are seemingly innocuous, but if neglected, may lead to subsequent infection and morbidity. Persistence of symptoms should alert the practitioner to the possibility of infection extending to the soft tissue or bone. Bacteriological studies commonly yield mixed aerobic and anaerobic flora. Early debridement and antibiotic treatment may prevent development of severe soft tissue or bone infection.
    Matched MeSH terms: Anaerobiosis
  14. Yuzir A, Chelliapan S, Sallis PJ
    Bioresour Technol, 2011 Oct;102(20):9456-61.
    PMID: 21862323 DOI: 10.1016/j.biortech.2011.07.083
    The effects of different hydraulic retention time (HRT) on (RS)-MCPP utilisation was investigated by decreasing the feed flow rate in an anaerobic membrane bioreactor (AnMBR). Results showed an average COD removal efficiency of 91.4%, 96.9% and 94.4% when the reactor was operated at HRT 3, 7 and 17 d, respectively. However, when the HRT was reduced to 1d, the COD removal efficiency declined to just only 60%, confirming the AnMBR is stable to a large transient hydraulic shock loads. The (RS)-MCPP removal efficiency fluctuated from 6% to 39% at HRT 3 d, however when it was increased to 7 and 17 d, the removal efficiency increased to an average of 60% and 74.5%. In addition, (RS)-MCPP specific utilisation rates (SUR) were dependent on the HRT and gradually improved from 18 to 43 μg mg VSS(-1) d(-1) as flow rate increased.
    Matched MeSH terms: Anaerobiosis
  15. Hosen, MD Sabuj, Mariatul Fadzillah Mansor, Alam, MD Zahangir
    MyJurnal
    Biogas is an economical and environmentally friendly renewable energy which can be produced by anaerobic digestion (AD). This biochemical method converts organic compounds (mainly from wastes) into a sustainable source of energy. Anaerobic co-digestion (AcoD) is a method combining more than one substrate to resolve the difficulties faced in a single substrate AD system. Solid wastes increases as the population increase so do the urbanization and industrial industries. Food waste and sewage sludge are examples of one of the solid wastes. Co-digesting of both substrates may improve process stabilization to increase biogas production and overcome the nutrients imbalance. Thus, anaerobic co-digestion has been recognized as a technology that could provide a clean renewable energy source and helps reduce the landfill problem. The objective of this paper is to investigate the recent achievements and perspectives on the interaction of co-digestion between food waste and sewage sludge to improve biogas production. This may provide valuable information on the optimization of combinations of substrates: food waste and sewage sludge and prediction of bioreactor performance.
    Matched MeSH terms: Anaerobiosis
  16. Hosen, Md Sabuj, Mariatul Fadzillah Mansor, Ainoor Mariana Mohd Ali, Alam, Md. Zahangir
    MyJurnal
    Increasing population, urbanization and industrial activities have increased the amount of solid waste worldwide. Food waste (FW) and sewage sludge (SS) are some of the solid wastes. Co-digesting of both substrates may improve process stabilization to increase biogas production and overcome the nutrients imbalance. Thus, anaerobic co-digestion has been recognized as a technology that could provide a clean renewable energy source and help reducing the landfill problem. In this study, the interaction between FW and SS as co-substrates in anaerobic digestion was studied under mesophilic temperature 36C (± 0.5). The experiments were conducted using five batch reactors with different ratios of substrates. There are four different analyses used to identify the characteristics of FW and SS, which are pH, reducing sugar (RS), total solid (TS), and total carbohydrate (TC). Water displacement method was used to record biogas yield. The experimental results showed that the highest biogas yield was from the composition of 50:50 (FW: SS) with a biogas volume of 1150.14 mL, while the least was the composition of 0:100 (FW: SS) with 170.47 mL biogas produced. The results for substrate degradation showed that the composition of 100:0 (FW: SS) has the highest percentage degradation for reducing sugar with the percentage of 56%, while the minimum was 0:100 (FW: SS) with a percentage of 35%. Besides, for TC, the highest percentage of degradation was the composition 50:50 (FW: SS) with 84%, and the least was 0:100 (FW: SS) with 44%. This study proves that using FW and SS enhanced biogas production as well as reducing the current issues of waste disposal.
    Matched MeSH terms: Anaerobiosis
  17. Lin CY, Lay CH, Chew KW, Nomanbhay S, Gu RL, Chang SH, et al.
    Chemosphere, 2021 Feb;264(Pt 2):128564.
    PMID: 33065325 DOI: 10.1016/j.chemosphere.2020.128564
    Recently, the production of renewable biogas such as biohydrogen and biomethane from wastewaters through anaerobic fermentation has gained worldwide attention. In the present study, a mobile bioenergy generation station had been constructed based on a high-efficiency hydrogenesis & methanogenesis technology (HyMeTek) developed by Feng Chia University, Taiwan. The substrate was a beverage wastewater having chemical oxygen demand (COD) concentration of 1200 mg/L. This bioenergy station had a feedstock tank (3.8 m3), a nutrient tank (0.8 m3), an acidogenesis tank (AT, 2 m3), two methanogenesis tanks (MT, 4 m3 for each), a membrane bioreactor and a control room. Biogas production rate, methane concentration, COD removal efficiencies, energy efficiency and economical interest of the plant were assessed. The peak total methane production rates for AT (at hydraulic retention time, HRT, 4 h) and MT (at HRT 8 h) were 430 and 7 mL/L·d, respectively. A strategy of shortening HRT was a promising method to enhance biogas quality and energy efficiency. This mobile bioenergy system has commercial potential because it could bring good economic benefit of initial rate of return (58.84%) and payback time (2.68 y).
    Matched MeSH terms: Anaerobiosis
  18. Chen H, Zeng X, Zhou Y, Yang X, Lam SS, Wang D
    J Hazard Mater, 2020 07 15;394:122570.
    PMID: 32244145 DOI: 10.1016/j.jhazmat.2020.122570
    The removal of antibiotics and resistance genes in wastewater treatment plants has attracted widespread attention, but the potential role of residual antibiotics in the disposal of waste activated sludge (WAS) has not been clearly understood. In this study, the effect of roxithromycin (ROX) on volatile fatty acid (VFA) recovery from WAS anaerobic fermentation was investigated. The experimental results showed that ROX made a positive contribution to the production of VFAs. With the increase of ROX dosages from 0 to 100 mg/kg TSS, the maximum accumulation of VFAs increased from 295 to 610 mg COD/L. Mechanism studies revealed that ROX promoted the solubilization of WAS by facilitating the disruption of extracellular polymeric substances. In addition, ROX enhanced the activity of acetate kinase and inhibited the activities of α-glucosidase and coenzyme F420, and showed a stronger inhibitory effect on methane production than the hydrolysis process, thus resulting in an increase in VFA accumulation. These findings provide a new insight for the role of antibiotics in anaerobic fermentation of WAS.
    Matched MeSH terms: Anaerobiosis
  19. Yong ZJ, Bashir MJK, Hassan MS
    Sci Total Environ, 2021 Jul 01;776:145961.
    PMID: 33640552 DOI: 10.1016/j.scitotenv.2021.145961
    Waste management in Malaysia remains a persistent economic and environmental challenge. Up to date, more than 80% of Malaysian solid waste disposed at landfills and dumpsites. Therefore, Malaysia is facing an urgent need to move towards a sustainable solid waste management and thus resource recovery from organic solid waste. Hence, this study aims to investigate the feasibility of energy and bio fertilizer recovery from organic fraction municipal solid waste (OFMSW) via anaerobic digestion. The economic and environmental benefit analysis was investigated. Approximate and elementary analysis of OFMSW samples were carried out to estimate the potential production of biogas and bio fertilizer. It was found that organic waste contributes about 45% of the total MSW generated in Malaysia. Anaerobic digestion of 50% of organic waste is expected to produce 3941 MWh/day of electrical energy and 2500 t/day of bio fertilizer. In terms of environmental impacts, 2735 t/day of Carbon dioxide (CO2) emission, 1128 m2/day of landfilling area and 481 m3/day of leachate can be avoided. A net revenue of 3300 million RM (1 US Dollar ≈ 4.15 RM) can be generated by the sales of electricity via Feed-in-Tariff (FiT), sales of biofertilizer to local agricultural industries and inclusive of the saving generated from the reduction of OFMSW landfilling operations and leachate treatment at landfills. Economic development can go hand-in-hand with environmental sound practices in the field of waste management.
    Matched MeSH terms: Anaerobiosis
  20. Muda K, Aris A, Salim MR, Ibrahim Z, van Loosdrecht MC, Ahmad A, et al.
    Water Res, 2011 Oct 15;45(16):4711-21.
    PMID: 21714982 DOI: 10.1016/j.watres.2011.05.012
    The physical characteristics, microbial activities and kinetic properties of the granular sludge biomass were investigated under the influence of different hydraulic retention times (HRT) along with the performance of the system in removal of color and COD of synthetic textile wastewater. The study was conducted in a column reactor operated according to a sequential batch reactor with a sequence of anaerobic and aerobic reaction phases. Six stages of different HRTs and different anaerobic and aerobic reaction time were evaluated. It was observed that the increase in HRT resulted in the reduction of organic loading rate (OLR). This has caused a decrease in biomass concentration (MLSS), reduction in mean size of the granules, lowered the settling ability of the granules and reduction of oxygen uptake rate (OUR), overall specific biomass growth rate (ìoverall), endogeneous decay rate (kd) and biomass yield (Yobs, Y). When the OLR was increased by adding carbon sources (glucose, sodium acetate and ethanol), there was a slight increase in the MLSS, the granules mean size, ìoverall, and biomass yield. Under high HRT, increasing the anaerobic to aerobic reaction time ratio caused an increase in the concentration of MLSS, mean size of granules and lowered the SVI value and biomass yield. The ìoverall and biomass yield increased with the reduction in anaerobic/aerobic time ratio. The HRT of 24 h with anaerobic and aerobic reaction time of 17.8 and 5.8 h respectively appear to be the best cycle operation of SBR. Under these conditions, not only the physical properties of the biogranules have improved, the highest removal of color (i.e. 94.1±0.6%) and organics (i.e. 86.5±0.5%) of the synthetic textile dyeing wastewater have been achieved.
    Matched MeSH terms: Anaerobiosis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links