Displaying publications 21 - 40 of 16712 in total

Abstract:
Sort:
  1. Jilnai MT, Wen WP, Cheong LY, ur Rehman MZ
    Sensors (Basel), 2016;16(1).
    PMID: 26805828 DOI: 10.3390/s16010052
    The assessment of moisture loss from meat during the aging period is a critical issue for the meat industry. In this article, a non-invasive microwave ring-resonator sensor is presented to evaluate the moisture content, or more precisely water holding capacity (WHC) of broiler meat over a four-week period. The developed sensor has shown significant changes in its resonance frequency and return loss due to reduction in WHC in the studied duration. The obtained results are also confirmed by physical measurements. Further, these results are evaluated using the Fricke model, which provides a good fit for electric circuit components in biological tissue. Significant changes were observed in membrane integrity, where the corresponding capacitance decreases 30% in the early aging (0D-7D) period. Similarly, the losses associated with intracellular and extracellular fluids exhibit changed up to 42% and 53%, respectively. Ultimately, empirical polynomial models are developed to predict the electrical component values for a better understanding of aging effects. The measured and calculated values are found to be in good agreement.
    Matched MeSH terms: Animals
  2. Shimelis H, Mesman RLS, Von Nicolai C, Ehlen A, Guidugli L, Martin C, et al.
    Cancer Res, 2017 Jun 01;77(11):2789-2799.
    PMID: 28283652 DOI: 10.1158/0008-5472.CAN-16-2568
    Breast cancer risks conferred by many germline missense variants in the BRCA1 and BRCA2 genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk were investigated through a breast cancer case-control study using genotyping data from 38 studies of predominantly European ancestry (41,890 cases and 41,607 controls) and nine studies of Asian ancestry (6,269 cases and 6,624 controls). The BRCA2 c.9104A>C, p.Tyr3035Ser (OR = 2.52; P = 0.04), and BRCA1 c.5096G>A, p.Arg1699Gln (OR = 4.29; P = 0.009) variant were associated with moderately increased risks of breast cancer among Europeans, whereas BRCA2 c.7522G>A, p.Gly2508Ser (OR = 2.68; P = 0.004), and c.8187G>T, p.Lys2729Asn (OR = 1.4; P = 0.004) were associated with moderate and low risks of breast cancer among Asians. Functional characterization of the BRCA2 variants using four quantitative assays showed reduced BRCA2 activity for p.Tyr3035Ser compared with wild-type. Overall, our results show how BRCA2 missense variants that influence protein function can confer clinically relevant, moderately increased risks of breast cancer, with potential implications for risk management guidelines in women with these specific variants. Cancer Res; 77(11); 2789-99. ©2017 AACR.
    Matched MeSH terms: Animals
  3. Zhang Y, Yan W, Collins MA, Bednar F, Rakshit S, Zetter BR, et al.
    Cancer Res, 2013 Oct 15;73(20):6359-74.
    PMID: 24097820 DOI: 10.1158/0008-5472.CAN-13-1558-T
    Pancreatic cancer, one of the deadliest human malignancies, is almost invariably associated with the presence of an oncogenic form of Kras. Mice expressing oncogenic Kras in the pancreas recapitulate the stepwise progression of the human disease. The inflammatory cytokine interleukin (IL)-6 is often expressed by multiple cell types within the tumor microenvironment. Here, we show that IL-6 is required for the maintenance and progression of pancreatic cancer precursor lesions. In fact, the lack of IL-6 completely ablates cancer progression even in presence of oncogenic Kras. Mechanistically, we show that IL-6 synergizes with oncogenic Kras to activate the reactive oxygen species detoxification program downstream of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling cascade. In addition, IL-6 regulates the inflammatory microenvironment of pancreatic cancer throughout its progression, providing several signals that are essential for carcinogenesis. Thus, IL-6 emerges as a key player at all stages of pancreatic carcinogenesis and a potential therapeutic target.
    Matched MeSH terms: Animals
  4. Mazuecos L, Contreras M, Kasaija PD, Manandhar P, Grąźlewska W, Guisantes-Batan E, et al.
    Exp Appl Acarol, 2023 Jun;90(1-2):83-98.
    PMID: 37285111 DOI: 10.1007/s10493-023-00804-4
    Ticks attaching to ear canals of humans and animals are the cause of otoacariasis, common in rural areas of Nepal. The plant Clerodendrum viscosum is used in multiple indigenous systems of medicine by ethnic communities in the Indo-Nepali-Malaysian region. Visiting the Chitwan National Park, we learned that in indigenous medicine, flower extract of C. viscosum is utilized to treat digestive disorders and extracts from leaves as tick repellent to prevent ticks from invading or to remove them from the ear canal. The objective of our study was to provide support to indigenous medicine by characterizing the in vivo effect of leave extracts on ticks under laboratory conditions and its phytochemical composition. We collected plant parts of C. viscosum (leaves and flowers) and mango (Mangifera indica) leaves at the Chitwan National Park, previously associated with repellent activity to characterize their effect on Ixodes ricinus ticks by in vivo bioassays. A Q-ToF high-resolution analysis (HPLC-ESI-QToF) was conducted to elucidate phenolic compounds with potential repellent activity. Clerodendrum viscosum and M. indica leaf extracts had the highest tick repellent efficacy (%E = 80-100%) with significant differences when compared to C. viscosum flowers extracts (%E = 20-60%) and phosphate-buffered saline. Phytochemicals with tick repellent function as caffeic acid, fumaric acid and p-coumaric acid glucoside were identified in C. viscosum leaf extracts by HPLC-ESI-QToF, but not in non-repellent flower extracts. These results support the Nepali indigenous medicine application of C. viscosum leaf extracts to repel ticks. Additional research is needed for the development of natural and green repellent formulations to reduce the risks associated with ticks resistant to acaricides.
    Matched MeSH terms: Animals
  5. de Zulueta J
    Parassitologia, 2000 Jun;42(1-2):87-90.
    PMID: 11234335
    Dealing with malaria in the last 60 years is seen by the author in the perspective of his own experience. His malaria work, which began in 1941, covered the study of the habits of the mosquitoes dwelling in the savanna country of Eastern Colombia and the effect on malaria transmission of the newly introduced DDT residual spraying. The success of the campaign he later directed in Sarawak and Brunei contributed to the launching by WHO of its global malaria eradication campaign. Further successful work in Uganda showed the possibility of effective control and even eradication in highland country but left unsolved the problem of how to interrupt transmission of holoendemic malaria in Africa. The author's work with WHO in the Middle East showed to what extent social and economic conditions could influence the course of a malaria campaign. This was also the experience in America, both in Colombia in the author's early work and later in Mexico during an evaluation of the national malaria programme. Development of insecticide resistance was also encountered in his career and the refractoriness of the European vectors was also observed in his work as a malariologist.
    Matched MeSH terms: Animals
  6. Troell M, Naylor RL, Metian M, Beveridge M, Tyedmers PH, Folke C, et al.
    Proc Natl Acad Sci U S A, 2014 Sep 16;111(37):13257-63.
    PMID: 25136111 DOI: 10.1073/pnas.1404067111
    Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture's reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection.
    Matched MeSH terms: Animals
  7. Baseler L, Scott DP, Saturday G, Horne E, Rosenke R, Thomas T, et al.
    PLoS Negl Trop Dis, 2016 Nov;10(11):e0005120.
    PMID: 27812087 DOI: 10.1371/journal.pntd.0005120
    BACKGROUND: Nipah virus causes respiratory and neurologic disease with case fatality rates up to 100% in individual outbreaks. End stage lesions have been described in the respiratory and nervous systems, vasculature and often lymphoid organs in fatal human cases; however, the initial target organs of Nipah virus infection have not been identified. Here, we detected the initial target tissues and cells of Nipah virus and tracked virus dissemination during the early phase of infection in Syrian hamsters inoculated with a Nipah virus isolate from Malaysia (NiV-M) or Bangladesh (NiV-B).

    METHODOLOGY/PRINCIPAL FINDINGS: Syrian hamsters were euthanized between 4 and 48 hours post intranasal inoculation and tissues were collected and analyzed for the presence of viral RNA, viral antigen and infectious virus. Virus replication was first detected at 8 hours post inoculation (hpi). Nipah virus initially targeted type I pneumocytes, bronchiolar respiratory epithelium and alveolar macrophages in the lung and respiratory and olfactory epithelium lining the nasal turbinates. By 16 hpi, virus disseminated to epithelial cells lining the larynx and trachea. Although the pattern of viral dissemination was similar for both virus isolates, the rate of spread was slower for NiV-B. Infectious virus was not detected in the nervous system or blood and widespread vascular infection and lesions within lymphoid organs were not observed, even at 48 hpi.

    CONCLUSIONS/SIGNIFICANCE: Nipah virus initially targets the respiratory system. Virus replication in the brain and infection of blood vessels in non-respiratory tissues does not occur during the early phase of infection. However, virus replicates early in olfactory epithelium and may serve as the first step towards nervous system dissemination, suggesting that development of vaccines that block virus dissemination or treatments that can access the brain and spinal cord and directly inhibit virus replication may be necessary for preventing central nervous system pathology.

    Matched MeSH terms: Animals
  8. Rodde C, Vandeputte M, Trinh TQ, Douchet V, Canonne M, Benzie JAH, et al.
    Front Genet, 2020;11:596521.
    PMID: 33519898 DOI: 10.3389/fgene.2020.596521
    Accurately measuring the phenotype at the individual level is critical to the success of selective breeding programs. Feed efficiency is a key sustainability trait and is typically approached through feed conversion ratio (FCR). This requires measurements of body weight gain (BWG) and feed intake (FI), the latter being technically challenging in fish. We assessed two of the principal methods for measuring feed intake in fish over consecutive days: (1) group rearing 10 fish per group and video recording the meals and (2) rearing fish individually on a restricted ration. Juvenile Nile tilapia (Oreochromis niloticus) from the Genetically Improved Farmed Tilapia (GIFT) strain and the Cirad strain were entered into the study (128 GIFT and 109 Cirad). The GIFT strain were reared over three consecutive periods of 7 days each under different feeding, recording, and rearing scenarios (i) in groups fed an optimal ration (g100) or (ii) fed a 50% restricted ration (g50) both with video records of all meals and (iii) reared in isolation and fed a 50% restrictive ration. The Cirad strain were tested similarly but only for scenarios (i) and (iii). All fish were fed twice daily with a calculated ration. Correlations showed the same trends for the GIFT and the Cirad strains. For the GIFT strain, correlations were positive and significant for BWG and FI measured in scenarios (i) and (ii), 0.49 and 0.63, respectively, and FI measured in scenarios (i) and (iii) (0.50) but not for BWG measured in scenarios (i) and (iii) (0.29, NS). The phenotypic correlation estimated for FCR between scenarios (i) and (ii) with fish fed an optimal or a 50% restricted ration was low and not significant (0.22). Feed Conversion Ratio for GIFT fish reared in groups or in isolation and fed with a restricted ration [scenarios (ii) and (iii)] were not significantly correlated either. Social interactions between fish, potentially impacting their efficiency, may explain the results. Therefore, selective breeding programs seeking to improve feed efficiency will need to carefully plan the feeding rate and the rearing system used to estimate FCR in order to optimize selection for the targeted production system.
    Matched MeSH terms: Animals
  9. Lenz M, Kard B, Creffield JW, Evans TA, Brown KS, Freytag ED, et al.
    J Econ Entomol, 2013 Jun;106(3):1395-403.
    PMID: 23865207
    A comparative field study was conducted to evaluate the ability of subterranean termites to damage a set of four different plastic materials (cable sheathings) exposed below- and above-ground. Eight pest species from six countries were included, viz., Coptotermes formosanus (Shiraki) in China, Japan, and the United States; Coptotermes gestroi (Wasmann) in Thailand and Malaysia; Coptotermes curvignathus (Holmgren) and Coptotermes kalshoveni (Kemner) in Malaysia; Coptotermes acinaciformis (Froggatt) with two forms of the species complex and Mastotermes darwiniensis (Froggatt) in Australia; and Reticulitermes flavipes (Kollar) in the United States. Termite species were separated into four tiers relative to decreasing ability to damage plastics. The first tier, most damaging, included C. acinaciformis, mound-building form, and M. darwiniensis, both from tropical Australia. The second tier included C. acinaciformis, tree-nesting form, from temperate Australia and C. kalshoveni from Southeast Asia. The third tier included C. curcignathus and C. gestroi from Southeast Asia and C. formosanus from China, Japan, and the United States, whereas the fourth tier included only R. flavipes, which caused no damage. A consequence of these results is that plastics considered resistant to termite damage in some locations will not be so in others because of differences in the termite fauna, for example, resistant plastics from the United States and Japan will require further testing in Southeast Asia and Australia. However, plastics considered resistant in Australia will be resistant in all other locations.
    Matched MeSH terms: Animals
  10. Wang S, Loreau M, Arnoldi JF, Fang J, Rahman KA, Tao S, et al.
    Nat Commun, 2017 May 19;8:15211.
    PMID: 28524860 DOI: 10.1038/ncomms15211
    The spatial scaling of stability is key to understanding ecological sustainability across scales and the sensitivity of ecosystems to habitat destruction. Here we propose the invariability-area relationship (IAR) as a novel approach to investigate the spatial scaling of stability. The shape and slope of IAR are largely determined by patterns of spatial synchrony across scales. When synchrony decays exponentially with distance, IARs exhibit three phases, characterized by steeper increases in invariability at both small and large scales. Such triphasic IARs are observed for primary productivity from plot to continental scales. When synchrony decays as a power law with distance, IARs are quasilinear on a log-log scale. Such quasilinear IARs are observed for North American bird biomass at both species and community levels. The IAR provides a quantitative tool to predict the effects of habitat loss on population and ecosystem stability and to detect regime shifts in spatial ecological systems, which are goals of relevance to conservation and policy.
    Matched MeSH terms: Animals
  11. Hussain Z, Khan S, Imran M, Sohail M, Shah SWA, de Matas M
    Drug Deliv Transl Res, 2019 06;9(3):721-734.
    PMID: 30895453 DOI: 10.1007/s13346-019-00631-4
    On account of heterogeneity, intrinsic ability of drug resistance, and the potential to invade to other parts of the body (malignancy), the development of a rational anticancer regimen is dynamically challenging. Chemotherapy is considered the gold standard for eradication of malignancy and mitigation of its reoccurrence; nevertheless, it has also been associated with detrimental effects to normal tissues owing to its nonselectivity and nominal penetration into the tumor tissues. In recent decades, nanotechnology-guided interventions have been well-acclaimed due to their ability to facilitate target-specific delivery of drugs, avoidance of nontarget distribution, alleviated systemic toxicity, and maximized drug internalization into cancer cells. Despite their numerous biomedical advantages, clinical translation of nanotechnology-mediated regimens is challenging due to their short plasma half-life and early clearance. PEGylation of nanomedicines has been adapted as an efficient strategy to extend plasma half-life and diminished early plasma clearance via alleviating the opsonization (uptake by monocytes and macrophages) of drug nanocarriers. PEGylation provides "stealth" properties to nanocarrier's surfaces which diminished their recognition or uptake by cellular immune system, leading to longer circulation time, reduced dosage and frequency, and superior site-selective delivery of drugs. Therefore, this review aims to present a comprehensive overview of the pharmaceutical advantages and therapeutic feasibility of PEGylation of nanocarriers in improving tumor-specific targetability, reversing drug resistance, and improving pharmacokinetic profile of drugs and anticancer efficacy. Challenges to PEGylated cancer nanomedicines, possible adaptations to resolve those challenges, and pivotal requirement for interdisciplinary research for development of rational anticancer regimen have also been pondered.
    Matched MeSH terms: Animals
  12. de Lisle MO
    Rev. Suisse Zool., 1977 Jun;84(2):491-500.
    PMID: 897546
    Matched MeSH terms: Animals
  13. Beck SV, Carvalho GR, Barlow A, Rüber L, Hui Tan H, Nugroho E, et al.
    PLoS One, 2017;12(7):e0179557.
    PMID: 28742862 DOI: 10.1371/journal.pone.0179557
    The complex climatic and geological history of Southeast Asia has shaped this region's high biodiversity. In particular, sea level fluctuations associated with repeated glacial cycles during the Pleistocene both facilitated, and limited, connectivity between populations. In this study, we used data from two mitochondrial and three anonymous nuclear markers to determine whether a fresh/brackish water killifish, Aplocheilus panchax, Hamilton, 1822, could be used to further understand how climatic oscillations and associated sea level fluctuations have shaped the distribution of biota within this region, and whether such patterns show evidence of isolation within palaeodrainage basins. Our analyses revealed three major mitochondrial clades within A. panchax. The basal divergence of A. panchax mitochondrial lineages was approximately 3.5 Ma, whilst the subsequent divergence timings of these clades occurred early Pleistocene (~2.6 Ma), proceeding through the Pleistocene. Continuous phylogeographic analysis showed a clear west-east dispersal followed by rapid radiation across Southeast Asia. Individuals from Krabi, just north of the Isthmus of Kra, were more closely related to the Indian lineages, providing further evidence for a freshwater faunal disjunction at the Isthmus of Kra biogeographic barrier. Our results suggest that Sulawesi, across the Wallace Line, was colonised relatively recently (~30 ka). Nuclear DNA is less geographically structured, although Mantel tests indicated that nuclear genetic distances were correlated with geographic proximity. Overall, these results imply that recent gene flow, as opposed to historical isolation, has been the key factor determining patterns of nuclear genetic variation in A. panchax, however, some evidence of historical isolation is retained within the mitochondrial genome. Our study further validates the existence of a major biogeographic boundary at the Kra Isthmus, and also demonstrates the use of widely distributed fresh/brackishwater species in phylogeographic studies, and their ability to disperse across major marine barriers in relatively recent time periods.
    Matched MeSH terms: Animals
  14. Coene KL, Roepman R, Doherty D, Afroze B, Kroes HY, Letteboer SJ, et al.
    Am J Hum Genet, 2009 Oct;85(4):465-81.
    PMID: 19800048 DOI: 10.1016/j.ajhg.2009.09.002
    We ascertained a multi-generation Malaysian family with Joubert syndrome (JS). The presence of asymptomatic obligate carrier females suggested an X-linked recessive inheritance pattern. Affected males presented with mental retardation accompanied by postaxial polydactyly and retinitis pigmentosa. Brain MRIs showed the presence of a "molar tooth sign," which classifies this syndrome as classic JS with retinal involvement. Linkage analysis showed linkage to Xpter-Xp22.2 and a maximum LOD score of 2.06 for marker DXS8022. Mutation analysis revealed a frameshift mutation, p.K948NfsX8, in exon 21 of OFD1. In an isolated male with JS, a second frameshift mutation, p.E923KfsX3, in the same exon was identified. OFD1 has previously been associated with oral-facial-digital type 1 (OFD1) syndrome, a male-lethal X-linked dominant condition, and with X-linked recessive Simpson-Golabi-Behmel syndrome type 2 (SGBS2). In a yeast two-hybrid screen of a retinal cDNA library, we identified OFD1 as an interacting partner of the LCA5-encoded ciliary protein lebercilin. We show that X-linked recessive mutations in OFD1 reduce, but do not eliminate, the interaction with lebercilin, whereas X-linked dominant OFD1 mutations completely abolish binding to lebercilin. In addition, recessive mutations in OFD1 did not affect the pericentriolar localization of the recombinant protein in hTERT-RPE1 cells, whereas this localization was lost for dominant mutations. These findings offer a molecular explanation for the phenotypic spectrum observed for OFD1 mutations; this spectrum now includes OFD1 syndrome, SGBS2, and JS.
    Matched MeSH terms: Animals
  15. Nicolas L, Charles JF, de Barjac H
    FEMS Microbiol Lett, 1993 Oct 01;113(1):23-8.
    PMID: 8243978
    The toxicity of Clostridium bifermentans serovar malaysia to mosquito larvae is due to protein toxins, belonging to a novel class of insecticidal toxins. Toxic extracts contains three major proteins of 66, 18 and 16 kDa. The 18-kDa and 16-kDa proteins are probably involved in toxicity. They are synthesised during sporulation, concomitant with activity. They are absent from non-toxic strains of C. bifermentans and are present at very low levels in non-toxic C. bifermentans serovar malaysia cultures produced at 42 degrees C. The 66-kDa protein is present throughout the growth phases of C. bifermentans serovar malaysia, and an immunologically related 66-kDa protein is present in non-toxic C. bifermentans strains.
    Matched MeSH terms: Animals
  16. Charles JF, Nicolas L, Sebald M, de Barjac H
    Res. Microbiol., 1990 7 1;141(6):721-33.
    PMID: 1980958
    Sporulation of Clostridium bifermentans serovar malaysia, which has a larvicidal activity towards mosquitoes, was examined by electron microscopy. Parasporal inclusion bodies lacking a crystalline structure were first detected at t5 (5 h after the end of exponentional growth). Also, the presence of "brush-bottle"-like appendages appearing first at t5 was noted; these remained attached to the spores when released after sporangium lysis. Larvicidal activity assayed on Anopheles stephensi larvae appeared at t0 and increased rapidly to a maximum between t5 and t8. However, a decrease in bacterial toxicity occurred with sporangium lysis.
    Matched MeSH terms: Animals
  17. Thiery I, Hamon S, Dumanoir VC, de Barjac H
    J Econ Entomol, 1992 Oct;85(5):1618-23.
    PMID: 1401480
    The safety of bacterial cells of Clostridium bifermentans serovar malaysia, which is highly toxic to mosquito larvae, was tested on mice, guinea pigs, rabbits, and goldfish. Inoculations of at least 1 x 10(8) cells per animal by routes recommended by World Health Organization (subcutaneous, percutaneous, inhalation, force-feeding, intraperitoneal, intravenous) and tests of subacute toxicity, anaphylactic shock, persistence in heart blood, and virulence by successive passages, were performed on mice, guinea pigs, or both. Growth was monitored for 1 mo before necropsy. Ocular irritation and skin scarification were tested with rabbits. C. bifermentans serovar malaysia did not induce any mortality or abnormal reactions in mammals at a dose 1,000 times higher than the level established by W.H.O. for the demonstration of safety. Bacterial cells are not toxic to goldfish at a dose 1,000 times higher than the LD50 for the target-mosquito larvae. We conclude that C. bifermentans serovar malaysia bacterial cells are safe for laboratory mammals and goldfish.
    Matched MeSH terms: Animals
  18. da Silva Voorham JM
    Ned Tijdschr Geneeskd, 2014;158:A7946.
    PMID: 25227888
    Sylvatic dengue viruses are both evolutionarily and ecologically distinguishable from the human dengue virus (DENV). Sporadic episodes of sylvatic human infections in West Africa and Southeast Asia suggest that sylvatic DENV regularly come into contact with human beings. Following a study on the sylvatic transmission cycle in Malaysia in 2007, researchers announced that a new DENV serotype, DENV-5, had been discovered. Scientists are still sceptical about these new findings, and indicate that more data is necessary to determine whether this 'new' virus really is a different serotype or whether it is a variant of one of the four DENV serotypes already known. The good news is that this new variant has not yet established itself in the human transmission cycle. However, if it really is a new serotype this will have implications for the long-term control of dengue using vaccines currently under development.
    Matched MeSH terms: Animals
  19. Ponniah J, Muhammad K, Abdullah S, Ganapathy KK, bt Sheikh Abdul Hamid N
    PMID: 15691160
    Three ELISA test kits, the Randox ELISA beta-agonist test kit, Euro-Diagnostica test kit, and Ridascreen beta-agonist test kit, were evaluated for screening of meat and liver for beta-agonist residues in fortified and field-incurred samples. It was found that the Randox beta-agonist test kit was more suitable as a screening tool due to its accuracy, ease of use, and lower cost. The tests were able to detect beta-agonist residues at the minimum level of detection, as claimed by the suppliers. The performance of the method as assessed through recovery rates of beta-agonists in fortified samples was satisfactory with a low coefficient of variation (1-3%). Repeatability, as measured through the coefficient of correlation was also satisfactory. For field-incurred positive samples, the test kit showed a sensitivity of 100% and a low rate of false positives for goat and cow tissues. However, a high rate of apparent false positives was obtained for tissues of swine.
    Matched MeSH terms: Animals
  20. Hani H, Ibrahim TA, Othman AM, Lila MA, bt Allaudin ZN
    Xenotransplantation, 2010 12 17;17(6):469-80.
    PMID: 21158948 DOI: 10.1111/j.1399-3089.2010.00616.x
    BACKGROUND: Insufficient availability of human donors makes the search for alternative source of islet cells mandatory for future developments in pancreatic transplantation. The present study investigates the potential of caprine as an alternative source of pancreatic islets. The objectives of the study were to optimize techniques for caprine islet isolation and purification for culture establishment, and to subsequently assess their viable and functional potential.

    METHODS: Caprine pancreatic tissues were collected from a local slaughterhouse and prior transported to the laboratory by maintaining the cold chain. Islets were obtained by a collagenase-based digestion and optimized isolation technique. Islet cell purity and viability were determined by dithizone and trypan blue staining, respectively. Islet clusters of different sizes were positively identified by staining methods and demonstrated 90% viability in the culture system. Following static incubation, an in vitro insulin secretion assay was carried out and analyzed by ELISA.

    RESULTS: The islets remained satisfactorily viable for 5 days in the culture system following regular media changes. The current study has successfully optimized the isolation, purification and culture maintenance of caprine islets.

    CONCLUSION: The successful yield, viability and functionality of islets isolated from the optimized protocol provide promising potential as an alternative source of islets for diabetes and transplantation researches.

    Matched MeSH terms: Animals
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links