Displaying publications 21 - 40 of 171 in total

Abstract:
Sort:
  1. Villabona-Arenas CJ, Zanotto PM
    Infect Genet Evol, 2011 Jul;11(5):878-85.
    PMID: 21335103 DOI: 10.1016/j.meegid.2011.02.007
    Dengue virus type 4 (DENV-4) circulates in tropical and subtropical countries from Asia and the Americas. Despite the importance of dengue virus distribution, little is known about the worldwide viral spread. Following a Bayesian phylogenetic approach we inferred the evolutionary history of 310 isolates sampled from 37 countries during the time period 1956-2008 and the spreading dynamics for genotypes I and II. The region (tropical rainforest biome) comprised by Malaysia-Thailand was the most likely ancestral area from which the serotype has originated and spread. Interestingly, cross-correlation analysis on demographic time series with the Asian sequences showed a statistically significant negative correlation that could be suggestive of competition among genotypes within the same serotype.
    Matched MeSH terms: Biological Evolution*
  2. Tnah LH, Lee SL, Ng KK, Lee CT, Bhassu S, Othman RY
    J Hered, 2013 Jan-Feb;104(1):115-26.
    PMID: 23132907 DOI: 10.1093/jhered/ess076
    Tectonic movements, climatic oscillations, and marine transgressions during the Cenozoic have had a dramatic effect on the biota of the tropical rain forest. This study aims to reveal the phylogeography and evolutionary history of a Peninsular Malaysian endemic tropical timber species, Neobalanocarpus heimii (Dipterocarpaceae). A total of 32 natural populations of N. heimii, with 8 samples from each population were investigated. Fifteen haplotypes were identified from five noncoding chloroplast DNA (cpDNA) regions. Overall, two major genealogical cpDNA lineages of N. heimii were elucidated: a widespread southern and a northern region. The species is predicted to have survived in multiple refugia during climatic oscillations: the northwestern region (R1), the northeastern region (R2), and the southern region (R3). These putative glacial refugia exhibited higher levels of genetic diversity, population differentiation, and the presence of unique haplotypes. Recolonization of refugia R1 and R2 could have first expanded into the northern region and migrated both northeastwards and northwestwards. Meanwhile, recolonization of N. heimii throughout the southern region could have commenced from refugia R3 and migrated toward the northeast and northwest, respectively. The populations of Tersang, Pasir Raja, and Rotan Tunggal exhibited remarkably high haplotype diversity, which could have been the contact zones that have received an admixture of gene pools from the northerly and also southerly regions. As a whole, the populations of N. heimii derived from glacial refugia and contact zones should be considered in the conservation strategies in order to safeguard the long-term survival of the species.
    Matched MeSH terms: Biological Evolution*
  3. Teoh SB
    Theor Appl Genet, 1982 Mar;61(1):91-5.
    PMID: 24271380 DOI: 10.1007/BF00261517
    Four out of 10 diploid orchid species showed "complement fractionation" a complex cytological phenomenon, hitherto reported only in polyploid plants. The manifestation of this phenomenon during meiosis is the formation of chromosome subgroups resulting eventually in cells with more than the usual four sporads; five or six being the optimum number in the investigated orchid species. No implications whatsoever can be deduced as to the genetic or genomic constitution of the end products. The presence of the phenomenon in these orchid species could perhaps indicate a polyploid ancestry or concealed hybridity. The operation of "complement fractionation", however, could be interpreted as an alternative evolutionary pathway opposed to polyploidy.
    Matched MeSH terms: Biological Evolution
  4. Teo J, Abbass HA
    Evol Comput, 2004;12(3):355-94.
    PMID: 15355605
    In this paper, we investigate the use of a self-adaptive Pareto evolutionary multi-objective optimization (EMO) approach for evolving the controllers of virtual embodied organisms. The objective of this paper is to demonstrate the trade-off between quality of solutions and computational cost. We show empirically that evolving controllers using the proposed algorithm incurs significantly less computational cost when compared to a self-adaptive weighted sum EMO algorithm, a self-adaptive single-objective evolutionary algorithm (EA) and a hand-tuned Pareto EMO algorithm. The main contribution of the self-adaptive Pareto EMO approach is its ability to produce sufficiently good controllers with different locomotion capabilities in a single run, thereby reducing the evolutionary computational cost and allowing the designer to explore the space of good solutions simultaneously. Our results also show that self-adaptation was found to be highly beneficial in reducing redundancy when compared against the other algorithms. Moreover, it was also shown that genetic diversity was being maintained naturally by virtue of the system's inherent multi-objectivity.
    Matched MeSH terms: Biological Evolution*
  5. Taylor ML, Cooper RL, Schneider EL, Osborn JM
    Am J Bot, 2015 Oct;102(10):1685-702.
    PMID: 26419810 DOI: 10.3732/ajb.1500249
    A knowledge of pollen characters in early-diverging angiosperm lineages is essential for understanding pollen evolution and the role of pollen in angiosperm diversification. In this paper, we report and synthesize data on mature pollen and pollen ontogeny from all genera of Nymphaeales within a comparative, phylogenetic context and consider pollen evolution in this early-diverging angiosperm lineage. We describe mature pollen characters for Euryale, Barclaya, and Nymphaea ondinea, taxa for which little to no structural data exist.
    Matched MeSH terms: Biological Evolution
  6. Tan MH, Gan HM, Schultz MB, Austin CM
    Mol Phylogenet Evol, 2015 Apr;85:180-8.
    PMID: 25721538 DOI: 10.1016/j.ympev.2015.02.009
    The increased rate at which complete mitogenomes are being sequenced and their increasing use for phylogenetic studies have resulted in a bioinformatic bottleneck in preparing and utilising such data for phylogenetic analysis. Hence, we present MitoPhAST, an automated tool that (1) identifies annotated protein-coding gene features and generates a standardised, concatenated and partitioned amino acid alignment directly from complete/partial GenBank/EMBL-format mitogenome flat files, (2) generates a maximum likelihood phylogenetic tree using optimised protein models and (3) reports various mitochondrial genes and sequence information in a table format. To demonstrate the capacity of MitoPhAST in handling a large dataset, we used 81 publicly available decapod mitogenomes, together with eight new complete mitogenomes of Australian freshwater crayfishes, including the first for the genus Gramastacus, to undertake an updated test of the monophyly of the major groups of the order Decapoda and their phylogenetic relationships. The recovered phylogenetic trees using both Bayesian and ML methods support the results of studies using fragments of mtDNA and nuclear markers and other smaller-scale studies using whole mitogenomes. In comparison to the fragment-based phylogenies, nodal support values are generally higher despite reduced taxon sampling suggesting there is value in utilising more fully mitogenomic data. Additionally, the simple table output from MitoPhAST provides an efficient summary and statistical overview of the mitogenomes under study at the gene level, allowing the identification of missing or duplicated genes and gene rearrangements. The finding of new mtDNA gene rearrangements in several genera of Australian freshwater crayfishes indicates that this group has undergone an unusually high rate of evolutionary change for this organelle compared to other major families of decapod crustaceans. As a result, freshwater crayfishes are likely to be a useful model for studies designed to understand the evolution of mtDNA rearrangements. We anticipate that our bioinformatics pipeline will substantially help mitogenome-based studies increase the speed, accuracy and efficiency of phylogenetic studies utilising mitogenome information. MitoPhAST is available for download at https://github.com/mht85/MitoPhAST.
    Matched MeSH terms: Biological Evolution
  7. Tan CH, Wong KY, Tan KY, Tan NH
    J Proteomics, 2017 08 23;166:48-58.
    PMID: 28688916 DOI: 10.1016/j.jprot.2017.07.002
    The venom proteome of Laticauda colubrina (Bali, Indonesia) was elucidated by nano-ESI-LCMS/MS of the venom reverse-phase HPLC fractions. Altogether 31 distinct forms of proteins were identified and clustered into three toxin families: three-finger toxin (3FTX, 66.12% of total venom proteins), phospholipase A2 (PLA2, 33.26%) and cysteine-rich secretory protein (CRiSP, 0.05%). The 3FTX were α-neurotoxins (five long neurotoxins, LNTX, 48.87%; two short neurotoxins, SNTX, 16.94%) and a trace amount of two cytotoxins (CTX, 0.31%). PLA2 were present with a large diversity of homologues (≥20 forms), however none was annotated to the lethal proteoform reported previously. The venom is highly lethal in mice (LD50=0.10μg/g) and this is driven primarily by the SNTX and LNTX (LD50=0.05-0.13μg/g), since the PLA2 proteins were non-lethal up to 2μg/g (20-time the venom LD50). The SNTX and LNTX were effectively cross-neutralized by the heterologous Sea Snake Antivenom (SSAV, Australian product) (potency=0.27mg toxin per ml antivenom, and 0.40mg/ml, respectively), corroborating the cross-neutralization of the whole venom (potency=1.09mg/ml) and its antigenic immunoreactivity toward SSAV. Furthermore, compared with earlier studies, the present work reveals geographical variation of venom composition for L. colubrina which may have implication for the evolution and conservation of the species.

    BIOLOGICAL SIGNIFICANCE: Laticauda colubrina (yellow-lipped sea krait) is a widely distributed, semi-aquatic venomous snake species. The venom proteome at the level of protein family is unsophisticated and consistent with its restricted prey selection. Nonetheless, the subproteomic findings revealed geographical variability of the venom for this widely distributed species. In contrast to two previous reports, the results for the Balinese L. colubrina venom showed that LNTX Neurotoxin a and Neurotoxin b were co-existent while the PLA2 lethal subtype (PLA-II) was undetected by means of LCMS/MS and by in vivo assay. This is an observable trait of L. colubrina considered divergent from specimens previously studied for the Philippines and the Solomon Islands. The stark geographical variation might be reflective of trophic adaptation following evolutionary arms race between the snake and the prey (eels) in different localities. The preferred trait would likely propagate and remain significant within the geographical population, since the strong behaviour of site fidelity in the species would have minimized gene flow between distant populations. Meanwhile, the in vivo neutralization study verified that the efficacy of the heterologous Sea Snake Antivenom (Australian product) is attributable to the cross-neutralization of SNTX and LNTX, two principal lethal toxins that made up the bulk of L. colubrina venom proteins. The findings also implied that L. colubrina, though could be evolutionarily more related to the terrestrial elapids, has evolved a much streamlined, neurotoxin- and PLA2-predominated venom arsenal, with major antigenicity shared among the true sea snakes and the Australo-Papuan elapids. The findings enrich our current understanding of the complexity of L. colubrina venom and the neutralizing spectrum of antivenom against the principal toxins from this unique elapid lineage.

    Matched MeSH terms: Biological Evolution
  8. Sánchez-Barreiro F, De Cahsan B, Westbury MV, Sun X, Margaryan A, Fontsere C, et al.
    Mol Biol Evol, 2023 Sep 01;40(9).
    PMID: 37561011 DOI: 10.1093/molbev/msad180
    The black rhinoceros (Diceros bicornis L.) is a critically endangered species historically distributed across sub-Saharan Africa. Hunting and habitat disturbance have diminished both its numbers and distribution since the 19th century, but a poaching crisis in the late 20th century drove them to the brink of extinction. Genetic and genomic assessments can greatly increase our knowledge of the species and inform management strategies. However, when a species has been severely reduced, with the extirpation and artificial admixture of several populations, it is extremely challenging to obtain an accurate understanding of historic population structure and evolutionary history from extant samples. Therefore, we generated and analyzed whole genomes from 63 black rhinoceros museum specimens collected between 1775 and 1981. Results showed that the black rhinoceros could be genetically structured into six major historic populations (Central Africa, East Africa, Northwestern Africa, Northeastern Africa, Ruvuma, and Southern Africa) within which were nested four further subpopulations (Maasailand, southwestern, eastern rift, and northern rift), largely mirroring geography, with a punctuated north-south cline. However, we detected varying degrees of admixture among groups and found that several geographical barriers, most prominently the Zambezi River, drove population discontinuities. Genomic diversity was high in the middle of the range and decayed toward the periphery. This comprehensive historic portrait also allowed us to ascertain the ancestry of 20 resequenced genomes from extant populations. Lastly, using insights gained from this unique temporal data set, we suggest management strategies, some of which require urgent implementation, for the conservation of the remaining black rhinoceros diversity.
    Matched MeSH terms: Biological Evolution*
  9. Strijk JS, Binh HT, Ngoc NV, Pereira JT, Slik JWF, Sukri RS, et al.
    PLoS One, 2020;15(5):e0232936.
    PMID: 32442164 DOI: 10.1371/journal.pone.0232936
    Natural history collections and tropical tree diversity are both treasure troves of biological and evolutionary information, but their accessibility for scientific study is impeded by a number of properties. DNA in historical specimens is generally highly fragmented, complicating the recovery of high-grade genetic material. Furthermore, our understanding of hyperdiverse, wide-spread tree assemblages is obstructed by extensive species ranges, fragmented knowledge of tropical tree diversity and phenology, and a widespread lack of species-level diagnostic characters, prohibiting the collecting of readily identifiable specimens which can be used to build, revise or strengthen taxonomic frameworks. This, in turn, delays the application of downstream conservation action. A sizable component of botanical collections are sterile-thus eluding identification and are slowing down progress in systematic treatments of tropical biodiversity. With rapid advances in genomics and bioinformatic approaches to biodiversity research, museomics is emerging as a new field breathing life into natural collections that have been built up over centuries. Using MIGseq (multiplexed ISSR genotyping by sequencing), we generated 10,000s of short loci, for both freshly collected materials and museum specimens (aged >100 years) of Lithocarpus-a widespread tropical tree genus endemic to the Asian tropics. Loci recovery from historical and recently collected samples was not affected by sample age and preservation history of the study material, underscoring the reliability and flexibility of the MIGseq approach. Phylogenomic inference and biogeographic reconstruction across insular Asia, highlights repeated migration and diversification patterns between continental regions and islands. Results indicate that co-occurring insular species at the extremity of the distribution range are not monophyletic, raising the possibility of multiple independent dispersals along the outer edge of Wallacea. This suggests that dispersal of large seeded tree genera throughout Malesia and across Wallacea may have been less affected by large geographic distances and the presence of marine barriers than generally assumed. We demonstrate the utility of MIGseq in museomic studies using non-model taxa, presenting the first range-wide genomic assessment of Lithocarpus and tropical Fagaceae as a proof-of-concept. Our study shows the potential for developing innovative genomic approaches to improve the capture of novel evolutionary signals using valuable natural history collections of hyperdiverse taxa.
    Matched MeSH terms: Biological Evolution
  10. Soo TCC, Bhassu S
    PLoS One, 2023;18(1):e0280250.
    PMID: 36634148 DOI: 10.1371/journal.pone.0280250
    In recent years, shrimp aquaculture industry had grown significantly to become the major source of global shrimp production. Despite that, shrimp aquaculture production was impeded by various shrimp diseases over the past decades. Interestingly, different shrimp species demonstrated variable levels of immune strength and survival (immune-survival) ability towards different diseases, especially the much stronger immune-survival ability shown by the ancient shrimp species, Macrobrachium rosenbergii compared to other shrimp species. In this study, two important shrimp species, M. rosenbergii and Penaeus monodon (disease tolerant strain) (uninfected control and VpAHPND-infected) were compared to uncover the potential underlying genetic factors. The shrimp species were sampled, followed by RNA extraction and cDNA conversion. Five important immune-survival genes (C-type Lectin, HMGB, STAT, ALF3, and ATPase 8/6) were selected for PCR, sequencing, and subsequent genetics analysis. The overall genetic analyses conducted, including Analysis of Molecular Variance (AMOVA) and population differentiation, showed significant genetic differentiation (p<0.05) between different genes of M. rosenbergii and P. monodon. There was greater genetic divergence identified between HMGB subgroups of P. monodon (uninfected control and VpAHPND-infected) compared to other genes. Besides that, based on neutrality tests conducted, purifying selection was determined to be the main evolutionary driving force of M. rosenbergii and P. monodon with stronger purifying selection exhibited in M. rosenbergii genes. Potential balancing selection was identified for VpAHPND-infected HMGB subgroup whereas directional selection was detected for HMGB (both species) and ATPase 8/6 (only P. monodon) genes. The divergence times between M. rosenbergii and P. monodon genes were estimated through Bayesian molecular clock analysis, which were 438.6 mya (C-type Lectin), 1885.4 mya (HMGB), 432.6 mya (STAT), 448.1 mya (ALF3), and 426.4 mya (ATPase 8/6) respectively. In conclusion, important selection forces and evolutionary divergence information of immune-survival genes between M. rosenbergii and P. monodon were successfully identified.
    Matched MeSH terms: Biological Evolution*
  11. Sobani Din, Fadzilah Ismail, Teh, Carren Sui Lin, Raudha Ezaty Ruslan, Shiraz Qamil Muhammad Abdul Kadar, Azuin Izzati Arshad
    MyJurnal
    The current COVID-19 pandemic has forced many clinical disciplines to evolve to function safely and still provide the necessary care. Otorhinolaryngology (ORL) is a field that has been greatly affected by this highly transmissible viral pathogen. Aerosolizing procedures, proximity examination and other common procedures must be revamped to suit current time. The usual norm ORL procedures need also be altered to incorporate safeguards to protect both patient and healthcare workers. This recommendation for current practices aims to give a practical approach to modify current practices to maintain safety during the pandemic. These recommendations are the consensus amongst ORL practitioners in Hospital Sungai Buloh which is the designated COVID-19 centre for Malaysia’s central region and is currently being practised.
    Matched MeSH terms: Biological Evolution
  12. Segar ST, Fayle TM, Srivastava DS, Lewinsohn TM, Lewis OT, Novotny V, et al.
    Trends Ecol Evol, 2020 05;35(5):454-466.
    PMID: 32294426 DOI: 10.1016/j.tree.2020.01.004
    The structure of ecological networks reflects the evolutionary history of their biotic components, and their dynamics are strongly driven by ecoevolutionary processes. Here, we present an appraisal of recent relevant research, in which the pervasive role of evolution within ecological networks is manifest. Although evolutionary processes are most evident at macroevolutionary scales, they are also important drivers of local network structure and dynamics. We propose components of a blueprint for further research, emphasising process-based models, experimental evolution, and phenotypic variation, across a range of distinct spatial and temporal scales. Evolutionary dimensions are required to advance our understanding of foundational properties of community assembly and to enhance our capability of predicting how networks will respond to impending changes.
    Matched MeSH terms: Biological Evolution*
  13. Schwallier R, Gravendeel B, de Boer H, Nylinder S, van Heuven BJ, Sieder A, et al.
    Ann Bot, 2017 05 01;119(7):1179-1193.
    PMID: 28387789 DOI: 10.1093/aob/mcx010
    Background and Aims: Nepenthes attracts wide attention with its spectacularly shaped carnivorous pitchers, cultural value and horticultural curiosity. Despite the plant's iconic fascination, surprisingly little anatomical detail is known about the genus beyond its modified leaf tip traps. Here, the wood anatomical diversity of Nepenthes is explored. This diversity is further assessed with a phylogenetic framework to investigate whether the wood characters within the genus are relevant from an evolutionary or ecological perspective, or rather depend on differences in developmental stages, growth habits, substrates or precipitation.

    Methods: Observations were performed using light microscopy and scanning electron microscopy. Ancestral states of selected wood and pith characters were reconstructed using an existing molecular phylogeny for Nepenthes and a broader Caryophyllales framework. Pairwise comparisons were assessed for possible relationships between wood anatomy and developmental stages, growth habits, substrates and ecology.

    Key Results: Wood anatomy of Nepenthes is diffuse porous, with mainly solitary vessels showing simple, bordered perforation plates and alternate intervessel pits, fibres with distinctly bordered pits (occasionally septate), apotracheal axial parenchyma and co-occurring uni- and multiseriate rays often including silica bodies. Precipitation and growth habit (stem length) are linked with vessel density and multiseriate ray height, while soil type correlates with vessel diameter, vessel element length and maximum ray width. For Caryophyllales as a whole, silica grains, successive cambia and bordered perforation plates are the result of convergent evolution. Peculiar helical sculpturing patterns within various cell types occur uniquely within the insectivorous clade of non-core Caryophyllales.

    Conclusions: The wood anatomical variation in Nepenthes displays variation for some characters dependent on soil type, precipitation and stem length, but is largely conservative. The helical-banded fibre-sclereids that mainly occur idioblastically in pith and cortex are synapomorphic for Nepenthes , while other typical Nepenthes characters evolved convergently in different Caryophyllales lineages.

    Matched MeSH terms: Biological Evolution*
  14. Schilthuizen M, van Til A, Salverda M, Liew TS, James SS, bin Elahan B, et al.
    Evolution, 2006 Sep;60(9):1851-8.
    PMID: 17089969
    Genetic divergence in geographically isolated populations is a prerequisite for allopatric speciation, one of the most common modes of speciation. In ecologically equivalent populations existing within a small, environmentally homogeneous area, an important role for environmentally neutral divergence is often found or inferred. We studied a species complex of conspicuously shaped Opisthostoma land snails on scattered limestone outcrops within a small area of lowland rainforest in Borneo. We used shell morphometrics, mitochondrial and nuclear DNA sequences, and marks of predation to study the factors involved in allopatric divergence. We found that a striking geographic divergence exists in shell morphology, which is partly associated with neutral genetic divergence. We also found geographic differentiation in the behavior of the snails' invertebrate predator and evidence of an evolutionary interaction between aspects of shell shape and predator behavior. Our study shows that adaptation to biotic aspects of the environment may play a more important role in allopatric speciation than previously suspected, even on a geographically very small scale.
    Matched MeSH terms: Biological Evolution*
  15. Schilthuizen M, Davison A
    Naturwissenschaften, 2005 Nov;92(11):504-15.
    PMID: 16217668
    The direction that a snail (Mollusca: Gastropoda) coils, whether dextral (right-handed) or sinistral (left-handed), originates in early development but is most easily observed in the shell form of the adult. Here, we review recent progress in understanding snail chirality from genetic, developmental and ecological perspectives. In the few species that have been characterized, chirality is determined by a single genetic locus with delayed inheritance, which means that the genotype is expressed in the mother's offspring. Although research lags behind the studies of asymmetry in the mouse and nematode, attempts to isolate the loci involved in snail chirality have begun, with the final aim of understanding how the axis of left-right asymmetry is established. In nature, most snail taxa (>90%) are dextral, but sinistrality is known from mutant individuals, populations within dextral species, entirely sinistral species, genera and even families. Ordinarily, it is expected that strong frequency-dependent selection should act against the establishment of new chiral types because the chiral minority have difficulty finding a suitable mating partner (their genitalia are on the 'wrong' side). Mixed populations should therefore not persist. Intriguingly, however, a very few land snail species, notably the subgenus Amphidromus sensu stricto, not only appear to mate randomly between different chiral types, but also have a stable, within-population chiral dimorphism, which suggests the involvement of a balancing factor. At the other end of the spectrum, in many species, different chiral types are unable to mate and so could be reproductively isolated from one another. However, while empirical data, models and simulations have indicated that chiral reversal must sometimes occur, it is rarely likely to lead to so-called 'single-gene' speciation. Nevertheless, chiral reversal could still be a contributing factor to speciation (or to divergence after speciation) when reproductive character displacement is involved. Understanding the establishment of chirality, the preponderance of dextral species and the rare instances of stable dimorphism is an important target for future research. Since the genetics of chirality have been studied in only a few pulmonate species, we also urge that more taxa, especially those from the sea, should be investigated.
    Matched MeSH terms: Biological Evolution*
  16. Schilthuizen M
    Curr Biol, 2024 Jan 22;34(2):R40-R41.
    PMID: 38262351 DOI: 10.1016/j.cub.2023.11.040
    Interview with Menno Schilthuizen, who studies the evolutionary ecology of morphological diversification in related species at the Naturalis Biodiversity Center and Leiden University.
    Matched MeSH terms: Biological Evolution*
  17. Safinah Sharuddin, Nora Muda
    Sains Malaysiana, 2015;44:1643-1651.
    Phylogenetic inference refers to the reconstruction of evolutionary relationships among various species that is usually
    presented in the form of a tree. This study constructs the phylogenetic tree by using a novel distance-based method known
    as Modified one step M-estimator (MOM) method. The branches of the phylogenetic tree constructed were then evaluated
    to see their reliability. The performance of the reliability was then compared between the p-value of multiscale bootstrap
    (AU value) and bootstrap p-value (BP value). The aim of this study was to compare the performance between the AU value
    and BP value for assessing phylogenetic tree of RNA polymerase. The results have shown that multiscale bootstrap analysis
    can detect high sampling errors but not in bootstrap analysis. To overcome this problem, the multiscale bootstrap analysis
    has reduced the sampling error by increasing the number of replications. The clusters were indicated as significant if AU
    values or BP values were 95% or higher. From the analysis, the results showed that the BP and AU values differ at 11th
    and 15th branch of the phylogenetic tree. The BP values at both branches were 72 and 85%, respectively, thereby making
    the cluster not significant but by looking at the AU values, the two branches were more than 95% and the clusters were
    significant. This was due to the biasness in calculation of the probability of bootstrap analysis, therefore, the multiscale
    bootstrap analysis has improved the calculation of the probability value compared to the bootstrap analysis.
    Matched MeSH terms: Biological Evolution
  18. Ryss AIu
    Parazitologia, 2007 Mar-Jun;41(3):161-94.
    PMID: 17722638
    The amended diagnosis of the genus Pratylenchoides and list of its valid species with synonyms are given. All the efficient diagnostic characters are listed. Modern taxonomic standard for the description of Pratylenchoides species is proposed; it may be used also in taxonomic databases. Tabular and text keys for all species of the genus are given. Five following groups are considered within the genus Pratylenchoides. The group arenicola differs from other groups in the primitive adanal bursa type; the groups magnicauda, crenicauda, ritteri, and megalobatus differ from each other in the position of cardium along the body axis in relation to the pharyngeal gland nuclei, pharynx types are named according to the stages of its evolution from the primitive tylenchoid pharynx (cardium situated posteriorly) to the advanced hoplolaimoid one (cardium situated anteriorly). Diagnoses and species compositions of the groups are given. Basing on the matrix of species characters, the dendrogram has been generated for all species of Pratylenchoides and for all characters (UPGMA, distance, mean character difference, random, characters ordered). Taking in view that the PAUP software gives equal weights to all characters, including the most important ones which define the prognostic species groups, the separate dendrograms for each prognostic species group were generated using the same above mentioned tree parameters. On the base of the records of Pratylenchoides species the matrices of plant host ranges, geographic distribution, and preferred soil-climatic conditions were developed. The dendrograms of the faunal similarities were generated using these matrices, with conclusions on a possible origin and evolution of the genus. The genus evolved from the flood lands with swampy soils and prevalence of dicotyledons (herbaceous Lamiaceae and woody Salicaceae families) to the forest mainland communities with balanced humidity and predominance of herbaceous Poaceae and Fabaceae with woody Fagaceae, Betulaceae, and Oleaceae. The leading factor of the evolutional adaptation to soil-climatic conditions was the factor of humidity, but its significance gradually decreased with the host change to more advanced plant taxa adapted to the communities with more dry balanced humidity. The genus took its origin on the south shores of Laurasia in the Cainozoe. Later, when Hindistant and Arabian Peninsula joined with Laurasia creating the Himalayas barrier, the Pratylenchoides spp. distributed by two branches: the northern one moved into Central Asia, East Europe and North America, and the south branch came into Indo-Malaya, West Asia and the north of Africa. The remnants of the ancient species groups remain in West Europe and East Asia. In the North America the genus gave an origin to its sister genus Apratylenchoides, which spread to the south up to Antarctica; another advanced branch spread in the North America reaching Alaska.
    Matched MeSH terms: Biological Evolution*
  19. Ruzanna Zam Zam
    ASEAN Journal of Psychiatry, 2010;11(1):113-0.
    MyJurnal
    This paper discusses the evolution of PSR development for people with severe mental illness since the early 20th century in Malaysia. The various aspects of PSR include the activities, service target, the treatment settings, factors contributed to the development and the challenges that have been faced are also described along with the evolution, comparing the past and
    present. It is learned that despite of many challenges, PSR in Malaysia has now continued to progress with increasing supports from the stakeholders and is in keeping with the current PSR concept.
    Matched MeSH terms: Biological Evolution
  20. Rheindt FE, Christidis L, Norman JA, Eaton JA, Sadanandan KR, Schodde R
    Zootaxa, 2017 Apr 07;4250(5):401-433.
    PMID: 28609999 DOI: 10.11646/zootaxa.4250.5.1
    White-bellied swiftlets of the Collocalia esculenta complex constitute a radiation of colony-breeding swifts distributed throughout the tropical Indo-Pacific region. Resolution of their taxonomy is challenging due to their morphological uniformity. To analyze the evolutionary history of this complex, we combine new biometric measurements and results from plumage assessment of museum specimens with novel as well as previously published molecular data. Together, this body of information constitutes the largest systematic dataset for white-bellied swiftlets yet compiled, drawn from 809 individuals belonging to 32 taxa for which new molecular, biometric, and/or plumage data are presented. We propose changing the classification of white-bellied swiftlets, for which two species are currently recognized, to elevate eight regional forms to species level, and we also describe two new subspecies. The ten taxa we recommend recognizing at the species level are: Collocalia linchi (Java to Lombok, Sumatran hills), C. dodgei (montane Borneo), C. natalis (Christmas Island), C. affinis (Greater Sundas, including the Thai-Malay Peninsula and Andaman-Nicobar Islands), C. marginata (Philippines), C. isonota (Philippines), C. sumbawae (west Lesser Sundas), C. neglecta (east Lesser Sundas), C. esculenta (Sulawesi, Moluccas, New Guinea, Bismarck Archipelago, Solomon Islands), and C. uropygialis (Vanuatu, New Caledonia). Future molecular and morphological work is needed to resolve questions of speciation and population affinities in the Philippines, Christmas Island, Wallacea and central Melanesia, and to shed light on historic diversification and patterns of gene flow in the complex.
    Matched MeSH terms: Biological Evolution
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links