Displaying publications 21 - 40 of 51 in total

Abstract:
Sort:
  1. Latha LY, Darah I, Jain K, Sasidharan S
    Eur Rev Med Pharmacol Sci, 2011 May;15(5):543-9.
    PMID: 21744750
    Vernonia (V.) cinerea Less (Asteraceae) have many therapeutic uses in the practice of traditional medicine. The methanol extract of V cinerea, was screened for antiyeast activity against pathogenic yeast Candida albicans.
    Matched MeSH terms: Candida albicans/drug effects*
  2. Lee LH, Cheah YK, Mohd Sidik S, Ab Mutalib NS, Tang YL, Lin HP, et al.
    World J Microbiol Biotechnol, 2012 May;28(5):2125-37.
    PMID: 22806035 DOI: 10.1007/s11274-012-1018-1
    The present study aimed to isolate actinobacteria from soil samples and characterized them using molecular tools and screened their secondary metabolites for antimicrobial activities. Thirty-nine strains from four different location of Barrientos Island, Antarctica using 12 types of isolation media was isolated. The isolates were preceded to screening of secondary metabolites for antimicrobial and antifungal activities. Using high-throughput screening methods, 38% (15/39) of isolates produced bioactive metabolites. Approximately 18% (7/39), 18% (7/39), 10% (4/39) and 2.5% (1/39) of isolates inhibited growth of Candida albicans ATCC 10231(T), Staphylococcus aurues ATCC 51650(T), methicillin-resistant Staphylococcus aurues (MRSA) ATCC BAA-44(T) and Pseudomonas aeruginosa ATCC 10145(T), respectively. Molecular characterization techniques like 16S rRNA analysis, Enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR), Random amplified polymorphic DNA (RAPD) and composite analyses were used to characterize the actinobacteria strains. Analysis of 16S rRNA sequences is still one of the most powerful methods to determine higher taxonomic relationships of Actinobacteria. Both RAPD and ERIC-PCR fingerprinting have shown good discriminatory capability but RAPD proved to be better in discriminatory power than ERIC-PCR. Our results demonstrated that composite analysis of both fingerprinting generally increased the discrimination ability and generated best clustering for actinobacteria strains in this study.
    Matched MeSH terms: Candida albicans/drug effects
  3. Lim CS, Wong WF, Rosli R, Ng KP, Seow HF, Chong PP
    J Basic Microbiol, 2009 Dec;49(6):579-83.
    PMID: 19810039 DOI: 10.1002/jobm.200900035
    Candida albicans is capable of undergoing yeast-hypha transition to attain pathogenicity in humans. In this study, we investigated the differential expression of CaSIR2 via quantitative real-time PCR (qPCR), during yeast-hypha transition with and without the presence of 2-dodecanol. SIR2 transcript levels were found to be significantly enhanced after hyphal induction as compared to the yeast form. This study found that 2-dodecanol is able to inhibit hyphal development and block SIR2 up-regulation, even in hyphal-inducing growth conditions. We suggest that SIR2 may be involved in Candida albicans quorum-sensing and serum-induced yeast-hyphae transition via the Ras1-cAMP-Efg1 signalling cascade.
    Matched MeSH terms: Candida albicans/drug effects*
  4. Ling JTS, Roberts CJ, Billa N
    AAPS PharmSciTech, 2019 Mar 05;20(3):136.
    PMID: 30838459 DOI: 10.1208/s12249-019-1346-7
    Surface-modified nanostructured lipid carriers (NLC) represent a promising mode of drug delivery used to enhance retention of drugs at absorption site. Formulated chitosan-coated amphotericin-B-loaded NLC (ChiAmp NLC) had a size of 394.4 ± 6.4 nm, encapsulation and loading efficiencies of 86.0 ± 3% and 11.0 ± 0.1% respectively. Amphotericin-B release from NLCs was biphasic with no changes in physical properties upon exposure to simulated gastrointestinal conditions. Antifungal properties of Amphotericin-B and ChiAmpB NLC were comparable but ChiAmpB NLC was twice less toxic to red blood cells and ten times safer on HT-29 cell lines. In vitro mucoadhesion data were observed ex vivo, where ChiAmpB NLC resulted in higher retention within the small intestine compared to the uncoated formulation. The data strongly offers the possibility of orally administering a non-toxic, yet effective Amphotericin-B nanoformulation for the treatment of systemic fungal infections.
    Matched MeSH terms: Candida albicans/drug effects
  5. Liu M, Huang P, Wang Q, Ren B, Oyeleye A, Liu M, et al.
    J Antibiot (Tokyo), 2017 05;70(5):715-717.
    PMID: 28074054 DOI: 10.1038/ja.2016.160
    Matched MeSH terms: Candida albicans/drug effects
  6. Low CF, Chong PP, Yong PV, Lim CS, Ahmad Z, Othman F
    J Appl Microbiol, 2008 Dec;105(6):2169-77.
    PMID: 19120662 DOI: 10.1111/j.1365-2672.2008.03912.x
    The aims of the present study were to determine whether Allium sativum (garlic) extract has any effect on the morphology transformation of Candida albicans, and to investigate whether it could alter the gene expression level of SIR2, a morphogenetic control gene and SAP4, a gene encoding secreted aspartyl proteinase.
    Matched MeSH terms: Candida albicans/drug effects*
  7. Matejczyk M, Ofman P, Juszczuk-Kubiak E, Świsłocka R, Shing WL, Kesari KK, et al.
    Ecotoxicol Environ Saf, 2024 Jun 01;277:116383.
    PMID: 38663192 DOI: 10.1016/j.ecoenv.2024.116383
    Vanillic acid (4-hydroxy-3-methoxybenzoic acid) (VA) is a natural benzoic acid derivative commonly found in herbs, rice, maize, and some fruits and vegetables. However, due to the wide use of VA in various industrial sectors, its presence in the environment might harm living organisms. This study evaluated the toxicity of VA and its isomers, iso-VA and orto-VA. Firstly, the antimicrobial effect of VA and its isomers iso-VA and orto-VA (in doses of 1000; 100, 10, 1; 0.1; 0.01 mg/L) against Escherichia coli, Sarcina spp., Enterobacter homaechei, Staphylococcus aureus and Candida albicans were identified. The toxic effect and protein degradation potential of VA and its isomers were determined using E. coli grpE:luxCDABE and lac:luxCDABE biosensor strains. However, the genotoxicity and oxidative stress generation were assessed with the E. coli recA:luxCDABE biosensor and E. coli strain. The results showed that VA, iso-VA, and orto-VA exhibited antimicrobial activity against all tested bacterial strains. However, VA's antimicrobial effect differed from iso-VA and orto-VA. Similar toxic, genotoxic, and oxidative stress-inducing effects were observed for VA and its isomers. Each compound exhibited toxicity, cellular protein degradation, and genotoxic activity against E. coli grpE:luxCDABE, E. coli lac:luxCDABE, and E. coli recA:luxCDABE strains. Analysis of reactive oxygen species (ROS) generation within E. coli cells highlighted oxidative stress as a contributing factor to the toxicity and genotoxicity of VA and its isomers. While the findings suggest potential applications of VA compounds as food preservatives, their presence in the environment raises concerns regarding the risks posed to living organisms due to their toxic and genotoxic characteristics.
    Matched MeSH terms: Candida albicans/drug effects
  8. Mohammed AAM, Suaifan GARY, Shehadeh MB, Okechukwu PN
    Eur J Med Chem, 2020 Sep 15;202:112513.
    PMID: 32623216 DOI: 10.1016/j.ejmech.2020.112513
    Herein we report the design, synthesis and biological evaluation of structurally modified ciprofloxacin, norfloxacin and moxifloxacin standard drugs, featuring amide functional groups at C-3 of the fluoroquinolone scaffold. In vitro antimicrobial testing against various Gram-positive bacteria, Gram-negative bacteria and fungi revealed potential antibacterial and antifungal activity. Hybrid compounds 9 (MIC 0.2668 ± 0.0001 mM), 10 (MIC 0.1358 ± 00025 mM) and 13 (MIC 0.0898 ± 0.0014 mM) had potential antimicrobial activity against a fluoroquinolone-resistant Escherichia coli clinical isolate, compared to ciprofloxacin (MIC 0.5098 ± 0.0024 mM) and norfloxacin (MIC 0.2937 ± 0.0021 mM) standard drugs. Interestingly, compound 10 also exerted potential antifungal activity against Candida albicans (MIC 0.0056 ± 0.0014 mM) and Penicillium chrysogenum (MIC 0.0453 ± 0.0156 mM). Novel derivatives and standard fluoroquinolone drugs exhibited near-identical cytotoxicity levels against L6 muscle cell-line, when measured using the MTT assay.
    Matched MeSH terms: Candida albicans/drug effects
  9. Mollataghi A, Coudiere E, Hadi AH, Mukhtar MR, Awang K, Litaudon M, et al.
    Fitoterapia, 2012 Mar;83(2):298-302.
    PMID: 22119096 DOI: 10.1016/j.fitote.2011.11.009
    Phytochemical investigation of Beilschmiedia alloiophylla has resulted in the isolation of one new alkaloid, 2-hydroxy-9-methoxyaporphine (1), and ten known natural products, laurotetanine (2), liriodenine (3), boldine (4), secoboldine (5), isoboldine (6), asimilobine (7), oreobeiline (8), 6-epioreobeiline (9), β-amyrone (10), and (S)-3-methoxynordomesticine (11). Chemical studies on the bark of B. kunstleri afforded compounds 2 and 4 along with one bisbenzylisoquinoline alkaloid, N-dimethylphyllocryptine (12). Structures of compounds 1-12 were elucidated on the basis of spectroscopic methods. All of these isolates were evaluated for their anti-acetylcholinesterase (AChE), anti-α-glucosidase, anti-leishmanial and anti-fungal activities. Compounds 1-12 exhibited strong to moderate bioactivities in aforementioned bioassays.
    Matched MeSH terms: Candida albicans/drug effects
  10. Munusamy K, Vadivelu J, Tay ST
    Rev Iberoam Micol, 2018 03 12;35(2):68-72.
    PMID: 29544734 DOI: 10.1016/j.riam.2017.07.001
    BACKGROUND: Biofilm is known to contribute to the antifungal resistance of Candida yeasts. Aureobasidin A (AbA), a cyclic depsipeptide targeting fungal sphingolipid biosynthesis, has been shown to be effective against several Candida species.

    AIMS: The aim of this study was to investigate Candida biofilm growth morphology, its biomass, metabolic activity, and to determine the effects of AbA on the biofilm growth.

    METHODS: The biofilm forming ability of several clinical isolates of different Candida species from our culture collection was determined using established methods (crystal violet and XTT assays). The determination of AbA planktonic and biofilm MICs was performed based on a micro-broth dilution method. The anti-biofilm effect of AbA on Candida albicans was examined using field emission scanning electron microscope (FESEM) analysis.

    RESULTS: A total of 35 (29.7%) of 118 Candida isolates were regarded as biofilm producers in this study. Candida parapsilosis was the largest producer, followed by Candida tropicalis and C. albicans. Two morphological variants of biofilms were identified in our isolates, with 48.6% of the isolates showing mainly yeast and pseudohyphae-like structures, while the remaining ones were predominantly filamentous forms. The biofilm producers were divided into two populations (low and high), based on the ability in producing biomass and their metabolic activity. Candida isolates with filamentous growth, higher biomass and metabolic activity showed lower AbA MIC50 (at least fourfold), compared to those exhibiting yeast morphology, and lower biomass and metabolic activity. The observation of filament detachment and the almost complete removal of biofilm from AbA-treated C. albicans biofilm in FESEM analysis suggests an anti-biofilm effect of AbA.

    CONCLUSIONS: The variability in the growth characteristics of Candida biofilm cultures affects susceptibility to AbA, with higher susceptibility noted in biofilm cultures exhibiting filamentous form and high biomass/metabolic activity.

    Matched MeSH terms: Candida albicans/drug effects
  11. Musa SF, Yeat TS, Kamal LZM, Tabana YM, Ahmed MA, El Ouweini A, et al.
    J Sci Food Agric, 2018 Feb;98(3):1197-1207.
    PMID: 28746729 DOI: 10.1002/jsfa.8573
    BACKGROUND: Green synthesis of silver nanoparticles (AgNPs) has become widely practiced worldwide. In this study, AgNPs were synthesized using a hot-water extract of the edible mushroom Pleurotus sajor-caju. The product, PSC-AgNPs, was characterized by using UV-visible spectra, dynamic light scattering analysis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectrometry. To assess its antifungal activity against Candida albicans, gene transcription and protein expression analyses were conducted for CaICL1 and its product, ICL, using real-time quantitative polymerase chain reaction and western blot, respectively.

    RESULTS: PSC-AgNPs with an average particle size of 11.68 nm inhibited the growth of the pathogenic yeast C. albicans. Values for minimum inhibitory concentration and minimum fungicidal concentration were 250 and 500 mg L-1 , respectively. TEM images revealed that the average particle size of PSC-AgNPs was 16.8 nm, with the values for zeta potential and the polydispersity index being -8.54 mV and 0.137, respectively. XRD and FTIR spectra showed PSC-AgNPs to have a face-centered cubic crystalline structure. The polysaccharides and amino acid residues present in P. sajor-caju extract were found to be involved in reducing Ag+ to AgNP. Both CaICL1 transcription and ICL protein expression were found to be suppressed in the cells treated with PSC-AgNPs as compared with the control.

    CONCLUSION: Our PSC-AgNP preparation makes for a promising antifungal agent that can downregulate isocitrate lyase. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Candida albicans/drug effects*
  12. Nordin MA, Wan Harun WH, Abdul Razak F, Musa MY
    Int J Oral Sci, 2014 Mar;6(1):15-21.
    PMID: 24406634 DOI: 10.1038/ijos.2013.97
    Candida species have been associated with the emergence of strains resistant to selected antifungal agents. Plant products have been used traditionally as alternative medicine to ease mucosal fungal infections. This study aimed to investigate the effects of Piper betle extract on the growth profile and the ultrastructure of commonly isolated oral candidal cells. The major component of P. betle was identified using liquid chromatography-mass spectrophotometry (LC-MS/MS). Seven ATCC control strains of Candida species were cultured in yeast peptone dextrose broth under four different growth environments: (i) in the absence of P. betle extract; and in the presence of P. betle extract at respective concentrations of (ii) 1 mg⋅mL(-1); (iii) 3 mg⋅mL(-1); and (iv) 6 mg⋅mL(-1). The growth inhibitory responses of the candidal cells were determined based on changes in the specific growth rates (µ). Scanning electron microscopy (SEM) was used to observe any ultrastructural alterations in the candida colonies. LC-MS/MS was performed to validate the presence of bioactive compounds in the extract. Following treatment, it was observed that the µ-values of the treated cells were significantly different than those of the untreated cells (P<0.05), indicating the fungistatic properties of the P. betle extract. The candidal population was also reduced from an average of 13.44×10(6) to 1.78×10(6) viable cell counts (CFU)⋅mL(-1). SEM examination exhibited physical damage and considerable morphological alterations of the treated cells. The compound profile from LC-MS/MS indicated the presence of hydroxybenzoic acid, chavibetol and hydroxychavicol in P. betle extract. The effects of P. betle on candida cells could potentiate its antifungal activity.
    Matched MeSH terms: Candida albicans/drug effects
  13. Permana D, Lajis NH, Mackeen MM, Ali AM, Aimi N, Kitajima M, et al.
    J Nat Prod, 2001 Jul;64(7):976-9.
    PMID: 11473441
    Two new prenylated compounds, the benzoquinone atrovirinone (1) and the depsidone atrovirisidone (2), were isolated from the roots of Garcinia atroviridis. Their structures were determined on the basis of the analysis of spectroscopic data. While compound 2 showed some cytotoxicity against HeLa cells, both compounds 1 and 2 were only mildly inhibitory toward Bacillus cereus and Staphylococcus aureus.
    Matched MeSH terms: Candida albicans/drug effects
  14. Rajasekaran A, Murugesan S, AnandaRajagopal K
    Arch Pharm Res, 2006 Jul;29(7):535-40.
    PMID: 16903071
    Several novel 1-[2-(1H-tetrazol-5-yl) ethyl]-1H-benzo[d][1,2,3]triazoles (3a-h) have been synthesized by the condensation of 1-[2-(1H-tetrazol-5-yl)-ethyl]-1H-benzotriazole (2) and appropriate acid chlorides. 1-[2-(1H-tetrazol-5-yl)-ethyl]-1H-benzotriazole (2) was synthesized by reacting 3-(1H-benzo[d][1,2,3]triazol-1-yl)propanenitrile with sodium azide and ammonium chloride in the presence of dimethylformamide. The synthesized compounds were characterized by IR and PMR analysis. The titled compounds were evaluated for their in-vitro antibacterial and antifungal activity by the cup plate method and anticonvulsant activity evaluated by the maximal electroshock induced convulsion method in mice. All synthesized compounds exhibited moderate antibacterial activity against Bacillus subtilis and moderate antifungal activity against Candida albicans. Compounds 5-(2-(1H-benzo[d][1,2,3]triazo-1-yl)ethyl)-1H-tetrazol-1-yl)(4-aminophenyl)methanone 3d and 5-(2-(1 H-benzo[d][1,2,3]triazo-1-yl)ethyl)-1H-tetrazol-1-yl)(2-aminophenyl)methanone 3e elicited excellent anticonvulsant activity.
    Matched MeSH terms: Candida albicans/drug effects
  15. Rajeh MA, Zuraini Z, Sasidharan S, Latha LY, Amutha S
    Molecules, 2010 Aug 31;15(9):6008-18.
    PMID: 20877206 DOI: 10.3390/molecules15096008
    The antimicrobial activities of the methanolic extracts of Euphorbia hirta L leaves, flowers, stems and roots were evaluated against some medically important bacteria and yeast using the agar disc diffusion method. Four Gram positive (Staphylococcus aureus, Micrococcus sp., Bacillus subtilis and Bacillus thuringensis), four Gram negative (Escherichia coli, Klebsiella pneumonia, Salmonella typhi and P. mirabilis) and one yeast (Candida albicans) species were screened. Inhibition zones ranged between 16-29 mm. Leaves extract inhibited the growth of all tested microorganisms with large zones of inhibition, followed by that of flowers, which also inhibited all the bacteria except C. albicans. The most susceptible microbes to all extracts were S. aureus and Micrococcus sp. Root extract displayed larger inhibition zones against Gram positive bacteria than Gram negative bacteria and had larger inhibition zones compared to stem extract. The lowest MIC values were obtained with E. coli and C. albicans (3.12 mg/mL), followed by S. aureus (12.50 mg/mL) and P. mirabilis (50.00 mg/mL). All the other bacteria had MIC values of 100.00 mg/mL. Scanning Electron Microscopic (SEM) studies revealed that the cells exposed to leaf extract displayed a rough surface with multiple blends and invaginations which increased with increasing time of treatment, and cells exposed to leaf extract for 36 h showed the most damage, with abundant surface cracks which may be related to final cell collapse and loss of function. Time-kill assay of C. albicans indicated a primarily fungicidal effect at 1- and 2-fold MIC. E. hirta extracts had LC(50) values of 0.71, 0.66, 0.41 and 0.03 mg/mL for stems, leaves, roots and flowers, respectively against Artemia salina. Hence, these plants can be used to discover new bioactive natural products that may serve as leads in the development of new pharmaceuticals.
    Matched MeSH terms: Candida albicans/drug effects
  16. Rohilla P, Deep A, Kamra M, Narasimhan B, Ramasamy K, Mani V, et al.
    Drug Res (Stuttg), 2014 Oct;64(10):505-9.
    PMID: 24992500 DOI: 10.1055/s-0034-1368720
    A series of N'-(substituted benzylidene)-2-(benzo[d]oxazol-3(2H)-yl)acetohydrazide derivatives was synthesized and evaluated for its in vitro antimicrobial and anticancer activities. Antimicrobial activity results revealed that compound 12 was found to be the most potent antimicrobial agent. Results of anticancer study indicated that the synthesized compounds exhibited average anticancer potential. Compound 7 (IC 50 =3.12 µM) and compound 16 (IC 50 =2.88 µM) were found to be most potent against breast cancer (MCF7) cell lines. In conclusion, compound 12 and 16 have the potential to be selected as lead compound for the developing of novel antimicrobial and anticancer agents respectively.
    Matched MeSH terms: Candida albicans/drug effects
  17. Rosli N, Sumathy V, Vikneswaran M, Sreeramanan S
    Trop Biomed, 2014 Dec;31(4):871-9.
    PMID: 25776614 MyJurnal
    Hymenocallis littoralis (Jacq.) Salisb (Melong kecil) commonly known as 'Spider Lily' is an herbaceous plant from the family Amaryllidaceae. Study was carried out to determine the effect of H. littoralis leaf extract on the growth and morphogenesis of two pathogenic microbes, Candida albicans and Escherichia coli. The leaf extract displayed favourable anticandidal and antibacterial activity with a minimum inhibition concentration (MIC) of 6.25 mg/mL. Time kill study showed both microbes were completely killed after treated with leaf extract at 20 h. Both microbes' cell walls were heavily ruptured based on scanning electron microscopy (SEM) analysis. The significant anticandidal and antibacterial activities showed by H. littoralis leaf extract suggested the potential antimicrobial agent against C. albicans and E. coli.
    Matched MeSH terms: Candida albicans/drug effects*
  18. Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM
    Trop Biomed, 2011 Apr;28(1):132-7.
    PMID: 21602779 MyJurnal
    Swietenia mahogani crude methanolic (SMCM) seed extract was investigated for the antifungal activity against Candida albicans which has not been evaluated previously. The antifungal activity was evaluated against C. albicans via disk diffusion, minimum inhibition concentration (MIC), scanning electron microscope (SEM), transmission electron microscope (TEM) and time killing profile. The MIC value of SMCM seed extract is 12.5 mg/ml. The SEM and TEM findings showed there is morphological changes and cytological destruction of C. albicans at the MIC value. Animal model was used to evaluate the in vivo antifungal activity of SMCM seed extract. The colony forming unit (CFU) were calculated per gram of kidney sample and per ml of blood sample respectively for control, curative and ketaconazole treated groups. There was significant reduction for the CFU/ml of blood and CFU/g of kidney. This indicated that the extract was observed to be effective against C. albicans in vitro and in vivo conditions.
    Matched MeSH terms: Candida albicans/drug effects*
  19. Sangetha S, Zuraini Z, Suryani S, Sasidharan S
    Micron, 2009 Jun;40(4):439-43.
    PMID: 19261482 DOI: 10.1016/j.micron.2009.01.003
    The inhibitory effect of Cassia spectabilis methanol leaf extract was evaluated against biofilm forming Candida albicans, which was sensitive to 6.25 mg/ml concentration of the extract. Transmission (TEM) and scanning electron microscope (SEM) observations were used to study the anticandidal activity and prevention of biofilm formation by the C. spectabilis extract. SEM analysis further revealed reduction in C. albicans biofilm in response to the extract. The main abnormalities noted via TEM study was the alterations in morphology and complete collapse of the yeast cells after 36 h of exposure to the extract. The significant antifungal activity shown by this methanol extract of C. spectabilis suggests its potential against infections caused by C. albicans.
    Matched MeSH terms: Candida albicans/drug effects*
  20. Sangetha S, Zuraini Z, Sasidharan S, Suryani S
    Nihon Ishinkin Gakkai Zasshi, 2008;49(4):299-304.
    PMID: 19001757
    The fungicidal activity of Cassia spectabilis leaf extracts was investigated using the disk diffusion technique and the broth dilution method. The extract showed a favorable antimicrobial activity against Candida albicans with a minimum inhibition concentration(MIC) value of 6.25 mg / ml. Apart from the fungicidal effects, imaging using scanning electron microscopy (SEM) was done to determine the major alterations in the microstructure of the C. albicans. The main abnormalities noted in the SEM studies were the alterations in morphology and complete collapse of the yeast cells after 36 h of exposure to the extract. The in vitro time-kill study performed using the leaf extract at 1/2, 1 or 2 times of the MIC significantly inhibited the yeast growth with a noticeable drop in optical density (OD) of yeast culture, thus confirming the fungicidal effect of the extract on C. albicans. In addition, in vivo antifungal activity studies on candidiasis in mice showed a 5-fold decrease in Candida in kidneys and blood samples in the groups of animals treated with the extract (2.5 g / kg body weight). In an acute toxicity study using mice, the acute minimum fatal dose of the extract was greater than 2000 mg / kg, and we found no histopathological changes in macroscopic examination by necropsy of mice treated with extract. We conclude that the extract may be safely used as an anticandidal agent.
    Matched MeSH terms: Candida albicans/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links