Displaying publications 21 - 40 of 147 in total

Abstract:
Sort:
  1. Gupta D, Singh A, Somvanshi P, Singh A, Khan AU
    ACS Omega, 2020 Apr 28;5(16):9356-9365.
    PMID: 32363287 DOI: 10.1021/acsomega.0c00356
    The manifestation of class D β-lactamases in the community raises significant concern as they can hydrolyze carbapenem antibiotics. Hence, it is exceptionally alluring to design novel inhibitors. Structure-based virtual screening using docking programs and molecular dynamics simulations was employed to identify two novel non-β-lactam compounds that possess the ability to block different OXA variants. Furthermore, the presence of a nonpolar aliphatic amino acid, valine, near the active site serine, was identified in all OXA variants that can be accounted to block the catalytic activity of OXA enzymes.
    Matched MeSH terms: Catalytic Domain
  2. Mohamad Sobri MF, Abd-Aziz S, Abu Bakar FD, Ramli N
    Int J Mol Sci, 2020 Jun 04;21(11).
    PMID: 32512945 DOI: 10.3390/ijms21114035
    β-glucosidases (Bgl) are widely utilized for releasing non-reducing terminal glucosyl residues. Nevertheless, feedback inhibition by glucose end product has limited its application. A noticeable exception has been found for β-glucosidases of the glycoside hydrolase (GH) family 1, which exhibit tolerance and even stimulation by glucose. In this study, using local isolate Trichoderma asperellum UPM1, the gene encoding β-glucosidase from GH family 1, hereafter designated as TaBgl2, was isolated and characterized via in-silico analyses. A comparison of enzyme activity was subsequently made by heterologous expression in Escherichia coli BL21(DE3). The presence of N-terminal signature, cis-peptide bonds, conserved active site motifs, non-proline cis peptide bonds, substrate binding, and a lone conserved stabilizing tryptophan (W) residue confirms the identity of Trichoderma sp. GH family 1 β-glucosidase isolated. Glucose tolerance was suggested by the presence of 14 of 22 known consensus residues, along with corresponding residues L167 and P172, crucial in the retention of the active site's narrow cavity. Retention of 40% of relative hydrolytic activity on ρ-nitrophenyl-β-D-glucopyranoside (ρNPG) in a concentration of 0.2 M glucose was comparable to that of GH family 1 β-glucosidase (Cel1A) from Trichoderma reesei. This research thus underlines the potential in the prediction of enzymatic function, and of industrial importance, glucose tolerance of family 1 β-glucosidases following relevant in-silico analyses.
    Matched MeSH terms: Catalytic Domain
  3. Shamiri A, Chakrabarti MH, Jahan S, Hussain MA, Kaminsky W, Aravind PV, et al.
    Materials (Basel), 2014 Jul 09;7(7):5069-5108.
    PMID: 28788120 DOI: 10.3390/ma7075069
    50 years ago, Karl Ziegler and Giulio Natta were awarded the Nobel Prize for their discovery of the catalytic polymerization of ethylene and propylene using titanium compounds and aluminum-alkyls as co-catalysts. Polyolefins have grown to become one of the biggest of all produced polymers. New metallocene/methylaluminoxane (MAO) catalysts open the possibility to synthesize polymers with highly defined microstructure, tacticity, and steroregularity, as well as long-chain branched, or blocky copolymers with excellent properties. This improvement in polymerization is possible due to the single active sites available on the metallocene catalysts in contrast to their traditional counterparts. Moreover, these catalysts, half titanocenes/MAO, zirconocenes, and other single site catalysts can control various important parameters, such as co-monomer distribution, molecular weight, molecular weight distribution, molecular architecture, stereo-specificity, degree of linearity, and branching of the polymer. However, in most cases research in this area has reduced academia as olefin polymerization has seen significant advancements in the industries. Therefore, this paper aims to further motivate interest in polyolefin research in academia by highlighting promising and open areas for the future.
    Matched MeSH terms: Catalytic Domain
  4. Yeganeh Ghotbi M, Javanmard A, Soleimani H
    Sci Rep, 2018 02 21;8(1):3404.
    PMID: 29467510 DOI: 10.1038/s41598-018-21782-3
    A layered nanoreactor (zinc hydroxide gallate/nitrate nanohybrid) has been designed as a nano-vessel to confine the gallate/nitrate reaction inside zinc hydroxide layers for production of metal/nitrogen-doped carbon catalysts. Metals (Fe2+, Co2+ and Ni2+) doped and bare zinc hydroxide nitrates (ZHN) were synthesized as the α-phase hydroxide hosts. By an incomplete ion-exchange process, nitrate anions between the layers of the hosts were then partially replaced by the gallate anions to produce the layered nanoreactors. Under heat-treatment, the reaction between the remaining un-exchanged nitrate anions and the organic moiety inside the basal spacing of each nanohybrid plate resulted in obtaining highly porous 3D metal/nitrogen-doped carbon nanosheets. These catalysts were then used as extremely efficient electrocatalysts for catalyzing oxygen reduction reaction (ORR). This study is intended to show the way to get maximum electrocatalytic activity of the metal/N-doped carbon catalysts toward the ORR. This exceptionally high ORR performance originates from the increased available surface, the best pore size range and the uniform distribution of the active sites in the produced catalysts, all provided by the use of new idea of the layered nanoreactor.
    Matched MeSH terms: Catalytic Domain
  5. Zainal Abidin MH, Abd Halim KB, Huyop F, Tengku Abdul Hamid TH, Abdul Wahab R, Abdul Hamid AA
    J Mol Graph Model, 2019 07;90:219-225.
    PMID: 31103914 DOI: 10.1016/j.jmgm.2019.05.003
    Dehalogenase E (DehE) is a non-stereospecific enzyme produced by the soil bacterium, Rhizobium sp. RC1. Till now, the catalytic mechanism of DehE remains unclear although several literature concerning its structure and function are available. Since DehE is non-stereospecific, the enzyme was hypothesized to follow a 'direct attack mechanism' for the catalytic breakdown of a haloacid. For a molecular insight, the DehE modelled structure was docked in silico with the substrate 2-chloropropionic acid (2CP) in the active site. The ideal position of DehE residues that allowed a direct attack mechanism was then assessed via molecular dynamics (MD) simulation. It was revealed that the essential catalytic water was hydrogen bonded to the 'water-bearer', Asn114, at a relatively constant distance of ∼2.0 Å after 50 ns. The same water molecule was also closely sited to the catalytic Asp189 at an average distance of ∼2.0 Å, signifying the imperative role of the latter to initiate proton abstraction for water activation. This reaction was crucial to promote a direct attack on the α-carbon of 2CP to eject the halide ion. The water molecule was oriented favourably towards the α-carbon of 2CP at an angle of ∼75°, mirrored by the formation of stable enzyme-substrate orientations throughout the simulation. The data therefore substantiated that the degradation of a haloacid by DehE followed a 'direct attack mechanism'. Hence, this study offers valuable information into future advancements in the engineering of haloacid dehalogenases with improved activity and selectivity, as well as functionality in solvents other than water.
    Matched MeSH terms: Catalytic Domain/physiology*
  6. Parra-Cruz R, Jäger CM, Lau PL, Gomes RL, Pordea A
    J Phys Chem B, 2018 09 13;122(36):8526-8536.
    PMID: 30114369 DOI: 10.1021/acs.jpcb.8b05926
    The stability of enzymes is critical for their application in industrial processes, which generally require different conditions from the natural enzyme environment. Both rational and random protein engineering approaches have been used to increase stability, with the latter requiring extensive experimental effort for the screening of variants. Moreover, some general rules addressing the molecular origin of protein thermostability have been established. Herein, we demonstrate the use of molecular dynamics simulations to gain molecular level understanding of protein thermostability and to engineer stabilizing mutations. Carbonic anhydrase (CA) is an enzyme with a high potential for biotechnological carbon capture applications, provided it can be engineered to withstand the high temperature process environments, inevitable in most gas treatment units. In this study, we used molecular dynamics simulations at 343, 353, and 363 K to study the relationship between structure flexibility and thermostability in bacterial α-CAs and applied this knowledge to the design of mutants with increased stability. The most thermostable α-CA known, TaCA from Thermovibrio ammonificans, had the most rigid structure during molecular dynamics simulations, but also showed regions with high flexibility. The most flexible amino acids in these regions were identified from root mean square fluctuation (RMSF) studies, and stabilizing point mutations were predicted based on their capacity to improve the calculated free energy of unfolding. Disulfide bonds were also designed at sites with suitable geometries and selected based on their location at flexible sites, assessed by B-factor calculation. Molecular dynamics simulations allowed the identification of five mutants with lower RMSF of the overall structure at 400 K, compared to wild-type TaCA. Comparison of free-energy landscapes between wild-type TaCA and the most promising mutants, Pro165Cys-Gln170Cys and Asn140Gly, showed an increased conformational stability of the mutants at 400 K.
    Matched MeSH terms: Catalytic Domain/genetics
  7. Lee YV, Choi SB, Wahab HA, Choong YS
    J Chem Inf Model, 2017 09 25;57(9):2351-2357.
    PMID: 28820943 DOI: 10.1021/acs.jcim.7b00265
    Tuberculosis (TB) still remains a global threat due to the emergence of a drug-resistant strain. Instead of focusing on the drug target of active stage TB, we are highlighting the isocitrate lyase (ICL) at the dormant stage TB. ICL is one of the persistent factors for Mycobacterium tuberculosis (MTB) to survive during the dormant phase. In addition, the absence of ICL in human has made ICL a potential drug target for TB therapy. However, the dynamic details of ICL which could give insights to the ICL-ligand interaction have yet to be solved. Therefore, a series of ICL dimer dynamics studies through molecular dynamics simulation were performed in this work. The ICL active site entrance gate closure is contributed to by hydrogen bonding and electrostatic interactions with the C-terminal. Analysis suggested that the open-closed behavior of the ICL active site entrance depends on the type of ligand present in the active site. We also observed four residues (Ser91, Asp108, Asp153, and Cys191) which could possibly be the nucleophiles for nucleophilic attack on the cleavage of isocitrate at the C2-C3bond. We hope that the elucidation of ICL dynamics can benefit future works such as lead identification or antibody design against ICL for TB therapeutics.
    Matched MeSH terms: Catalytic Domain*
  8. Sudi IY, Hamid AA, Shamsir MS, Jamaluddin H, Wahab RA, Huyop F
    Biotechnology, biotechnological equipment, 2014 Jul 04;28(4):608-615.
    PMID: 26740767
    Halogenated compounds are recalcitrant environmental pollutants prevalent in agricultural fields, waste waters and industrial by-products, but they can be degraded by dehalogenase-containing microbes. Notably, 2-haloalkanoic acid dehalogenases are employed to resolve optically active chloropropionates, as exemplified by the d-specific dehalogenase from Rhizobium sp. RCI (DehD), which acts on d-2-chloropropionate but not on its l-enantiomer. The catalytic residues of this dehalogenase responsible for its affinity toward d-2-chloropropionate have not been experimentally determined, although its three-dimensional crystal structure has been solved. For this study, we performed in silico docking and molecular dynamic simulations of complexes formed by this dehalogenase and d- or l-2-chloropropionate. Arg134 of the enzyme plays the key role in the stereospecific binding and Arg16 is in a position that would allow it to activate a water molecule for hydrolytic attack on the d-2-chloropropionate chiral carbon for release of the halide ion to yield l-2-hydroxypropionate. We propose that within the DehD active site, the NH group of Arg134 can form a hydrogen bond with the carboxylate of d-2-chloropropionate with a strength of ∼4 kcal/mol that may act as an acid-base catalyst, whereas, when l-2-chloropropionate is present, this bond cannot be formed. The significance of the present work is vital for rational design of this dehalogenase in order to confirm the involvement of Arg16 and Arg134 residues implicated in hydrolysis and binding of d-2-chloropropionate in the active site of d-specific dehalogenase from Rhizobium sp. RC1.
    Matched MeSH terms: Catalytic Domain
  9. Nadzirin N, Willett P, Artymiuk PJ, Firdaus-Raih M
    Nucleic Acids Res, 2013 Jul;41(Web Server issue):W432-40.
    PMID: 23716645 DOI: 10.1093/nar/gkt431
    We describe a server that allows the interrogation of the Protein Data Bank for hypothetical 3D side chain patterns that are not limited to known patterns from existing 3D structures. A minimal side chain description allows a variety of side chain orientations to exist within the pattern, and generic side chain types such as acid, base and hydroxyl-containing can be additionally deployed in the search query. Moreover, only a subset of distances between the side chains need be specified. We illustrate these capabilities in case studies involving arginine stacks, serine-acid group arrangements and multiple catalytic triad-like configurations. The IMAAAGINE server can be accessed at http://mfrlab.org/grafss/imaaagine/.
    Matched MeSH terms: Catalytic Domain
  10. Salga SM, Ali HM, Abdullah MA, Abdelwahab SI, Wai LK, Buckle MJ, et al.
    Molecules, 2011 Nov 07;16(11):9316-30.
    PMID: 22064271 DOI: 10.3390/molecules16119316
    Some novel Schiff bases derived from 1-(2-ketoiminoethyl)piperazines were synthesized and characterized by mass spectroscopy, FTIR, UV-Visible, 1H and 13C-NMR. The compounds were tested for inhibitory activities on human acetylcholinesterase (hAChE), antioxidant activities, acute oral toxicity and further studied by molecular modeling techniques. The study identified the compound (DHP) to have the highest activity among the series in hAChE inhibition and DPPH assay while the compound LP revealed the highest activity in the FRAP assay. The hAChE inhibitory activity of DHP is comparable with that of propidium, a known AChE inhibitor. This high activity of DHP was checked by molecular modeling which showed that DHP could not be considered as a bivalent ligand due to its incapability to occupy the esteratic site (ES) region of the 3D crystal structure of hAChE. The antioxidant study unveiled varying results in 1,1-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. This indicates mechanistic variations of the compounds in the two assays. The potential therapeutic applications and safety of these compounds were suggested for use as human acetylcholinesterase inhibitors and antioxidants.
    Matched MeSH terms: Catalytic Domain
  11. Sudi IY, Wong EL, Joyce-Tan KH, Shamsir MS, Jamaluddin H, Huyop F
    Int J Mol Sci, 2012;13(12):15724-54.
    PMID: 23443090 DOI: 10.3390/ijms131215724
    Currently, there is no three-dimensional structure of D-specific dehalogenase (DehD) in the protein database. We modeled DehD using ab initio technique, performed molecular dynamics (MD) simulation and docking of D-2-chloropropionate (D-2CP), D-2-bromopropionate (D-2BP), monochloroacetate (MCA), monobromoacetate (MBA), 2,2-dichloropropionate (2,2-DCP), d,l-2,3-dichloropropionate (d,l-2,3-DCP), and 3-chloropropionate (3-CP) into the DehD active site. The sequences of DehD and D-2-haloacid dehalogenase (HadD) from Pseudomonas putida AJ1 have 15% sequence similarity. The model had 80% of the amino acid residues in the most favored region when compared to the crystal structure of DehI from Pseudomonas putida PP3. Docking analysis revealed that Arg107, Arg134 and Tyr135 interacted with D-2CP, and Glu20 activated the water molecule for hydrolytic dehalogenation. Single residue substitutions at 25-30 °C showed that polar residues of DehD were stable when substituted with nonpolar residues and showed a decrease in activity within the same temperature range. The molecular dynamics simulation of DehD and its variants showed that in R134A variant, Arg107 interacted with D-2CP, while in Y135A, Gln221 and Arg231 interacted with D-2CP. It is our emphatic belief that the new model will be useful for the rational design of DehDs with enhanced potentials.
    Matched MeSH terms: Catalytic Domain
  12. Taha M, Ismail NH, Imran S, Selvaraj M, Rahim A, Ali M, et al.
    Bioorg Med Chem, 2015 Dec 1;23(23):7394-404.
    PMID: 26526743 DOI: 10.1016/j.bmc.2015.10.037
    A series of compounds consisting of 25 novel oxadiazole-benzohydrazone hybrids (6-30) were synthesized through a five-step reaction sequence and evaluated for their β-glucuronidase inhibitory potential. The IC50 values of compounds 6-30 were found to be in the range of 7.14-44.16μM. Compounds 6, 7, 8, 9, 11, 13, 18, and 25 were found to be more potent than d-saccharic acid 1,4-lactone (48.4±1.25μM). These compounds were further subjected for molecular docking studies to confirm the binding mode towards human β-d-glucuronidase active site. Docking study for compound 13 (IC50=7.14±0.30μM) revealed that it adopts a binding mode that fits within the entire pocket of the binding site of β-d-glucuronidase. Compound 13 has the maximum number of hydrogens bonded to the residues of the active site as compared to the other compounds, that is, the ortho-hydroxyl group forms hydrogen bond with carboxyl side chain of Asp207 (2.1Å) and with hydroxyl group of Tyr508 (2.6Å). The other hydroxyl group forms hydrogen bond with His385 side chain (2.8Å), side chain carboxyl oxygen of Glu540 (2.2Å) and Asn450 side-chain's carboxamide NH (2.1Å).
    Matched MeSH terms: Catalytic Domain
  13. Venkatramanan M, Sankar Ganesh P, Senthil R, Akshay J, Veera Ravi A, Langeswaran K, et al.
    ACS Omega, 2020 Oct 13;5(40):25605-25616.
    PMID: 33073086 DOI: 10.1021/acsomega.0c02483
    Chromobacterium violaceum (C. violaceum) is a Gram-negative, rod-shaped facultatively anaerobic bacterium implicated with recalcitrant human infections. Here, we evaluated the anti-QS and antibiofilm activities of ethyl acetate extracts of Passiflora edulis (P. edulis) on the likely inactivation of acyl-homoserine lactone (AHL)-regulated molecules in C. violaceum both by in vitro and in silico analyses. Our investigations showed that the sub-MIC levels were 2, 1, and 0.5 mg/mL, and the concentrations showed a marked reduction in violacein pigment production by 75.8, 64.6, and 35.2%. AHL quantification showed 72.5, 52.2, and 35.9% inhibitions, inhibitions of EPS production (72.8, 36.5, and 25.9%), and reductions in biofilm formation (90.7, 69.4, and 51.8%) as compared to a control. Light microscopy and CLSM analysis revealed dramatic reduction in the treated biofilm group as compared to the control. GC-MS analysis showed 20 major peaks whose chemical structures were docked as the CviR ligand. The highest docking score was observed for hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester bonds in the active site of CviR with a binding energy of -8.825 kcal/mol. Together, we found that hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester remarkably interacted with CviR to inhibit the QS system. Hence, we concluded that hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester of P. edulis could likely be evaluated for treating C. violaceum infections.
    Matched MeSH terms: Catalytic Domain
  14. Solangi M, Kanwal, Mohammed Khan K, Saleem F, Hameed S, Iqbal J, et al.
    Bioorg Med Chem, 2020 Nov 01;28(21):115605.
    PMID: 33065441 DOI: 10.1016/j.bmc.2020.115605
    One of the most prevailing metabolic disorder diabetes mellitus has become the global health issue that has to be addressed and cured. Different marketed drugs have been made available for the treatment of diabetes but there is still a need of introducing new therapeutic agents that are economical and have lesser or no side effects. The current study deals with the synthesis of indole acrylonitriles (3-23) and the evaluation of these compounds for their potential for α-glucosidase inhibition. The structures of these synthetic molecules were deduced by using different spectroscopic techniques. Acarbose (IC50 = 2.91 ± 0.02 μM) was used as standard in this study and the synthetic molecules (3-23) have shown promising α-glucosidase inhibitory activity. Compounds 4, 8, 10, 11, 14, 18, and 21 displayed superior inhibition of α-glucosidase enzyme in the range of (IC50 = 0.53 ± 0.01-1.36 ± 0.04 μM) as compared to the standard acarbose. Compound 10 (IC50 = 0.53 ± 0.01 μM) was the most effective inhibitor of this library and displayed many folds enhanced activity in contrast to the standard. Molecular docking of synthetic compounds was performed to verify the binding interactions of ligand with the active site of enzyme. This study had identified a number of potential α-glucosidase inhibitors that can be used for further research to identify a potent therapeutic agent against diabetes.
    Matched MeSH terms: Catalytic Domain
  15. Teh AH, Fazli NH, Furusawa G
    Appl Microbiol Biotechnol, 2020 Jan;104(2):633-641.
    PMID: 31784792 DOI: 10.1007/s00253-019-10237-y
    PdAgaC from the marine bacterium Persicobacter sp. CCB-QB2 is a β-agarase belonging to the glycoside hydrolase family 16 (GH16). It is one of only a handful of endo-acting GH16 β-agarases able to degrade agar completely to produce neoagarobiose (NA2). The crystal structure of PdAgaC's catalytic domain, which has one of the highest Vmax value at 2.9 × 103 U/mg, was determined in order to understand its unique mechanism. The catalytic domain is made up of a typical β-jelly roll fold with two additional insertions, and a well-conserved but wider substrate-binding cleft with some minor changes. Among the unique differences, two unconserved residues, Asn226 and Arg286, may potentially contribute additional hydrogen bonds to subsites -1 and +2, respectively, while a third, His185 from one of the additional insertions, may further contribute another bond to subsite +2. These additional hydrogen bonds may probably have enhanced PdAgaC's affinity for short agaro-oligosaccharides such as neoagarotetraose (NA4), rendering it capable of binding NA4 strongly enough for rapid degradation into NA2.
    Matched MeSH terms: Catalytic Domain
  16. Garba L, Mohamad Yussoff MA, Abd Halim KB, Ishak SNH, Mohamad Ali MS, Oslan SN, et al.
    PeerJ, 2018;6:e4347.
    PMID: 29576935 DOI: 10.7717/peerj.4347
    Membrane-bound fatty acid desaturases perform oxygenated desaturation reactions to insert double bonds within fatty acyl chains in regioselective and stereoselective manners. The Δ9-fatty acid desaturase strictly creates the first double bond between C9 and 10 positions of most saturated substrates. As the three-dimensional structures of the bacterial membrane fatty acid desaturases are not available, relevant information about the enzymes are derived from their amino acid sequences, site-directed mutagenesis and domain swapping in similar membrane-bound desaturases. The cold-tolerantPseudomonassp. AMS8 was found to produce high amount of monounsaturated fatty acids at low temperature. Subsequently, an active Δ9-fatty acid desaturase was isolated and functionally expressed inEscherichia coli. In this paper we report homology modeling and docking studies of a Δ9-fatty acid desaturase from a Cold-tolerantPseudomonassp. AMS8 for the first time to the best of our knowledge. Three dimensional structure of the enzyme was built using MODELLER version 9.18 using a suitable template. The protein model contained the three conserved-histidine residues typical for all membrane-bound desaturase catalytic activity. The structure was subjected to energy minimization and checked for correctness using Ramachandran plots and ERRAT, which showed a good quality model of 91.6 and 65.0%, respectively. The protein model was used to preform MD simulation and docking of palmitic acid using CHARMM36 force field in GROMACS Version 5 and Autodock tool Version 4.2, respectively. The docking simulation with the lowest binding energy, -6.8 kcal/mol had a number of residues in close contact with the docked palmitic acid namely, Ile26, Tyr95, Val179, Gly180, Pro64, Glu203, His34, His206, His71, Arg182, Thr85, Lys98 and His177. Interestingly, among the binding residues are His34, His71 and His206 from the first, second, and third conserved histidine motif, respectively, which constitute the active site of the enzyme. The results obtained are in compliance with thein vivoactivity of the Δ9-fatty acid desaturase on the membrane phospholipids.
    Matched MeSH terms: Catalytic Domain
  17. Bahaman AH, Abdul Wahab R, Hamid AAA, Halim KBA, Kaya Y, Edbeib MF
    J Biomol Struct Dyn, 2020 Sep;38(14):4246-4258.
    PMID: 31608812 DOI: 10.1080/07391102.2019.1679667
    Fungi of the Trichoderma species are valued industrial enzymes in support of the 'zero-waste' technology to convert agro-industrial biomass into valuable products, i.e. nanocellulose (NC). In this study, an in silico approach using substrate docking and molecular dynamic (MD) simulation was used to predict the order of which the multilayers of cellulosic polymers, i.e. lignin, hemicellulose and cellulose in oil palm leaves (OPL) are degraded by fungal enzymes, endocellulase and exocellulase. The study aimed to establish the catalytic tendencies of the enzymes to optimally degrade the cellulosic components of OPL for high yield production of NC. Energy minimized endocellulase and exocellulase models revealed satisfactory scores of PROCHECK (90.0% and 91.2%), Verify3D (97.23% and 98.85%) and ERRAT (95.24% and 91.00%) assessments. Active site prediction by blind docking, COACH meta-server and multiple sequence alignment indicated the catalytic triads for endocellulase and exocellulase were Ser116-His205-Glu249 and Ser382-Arg124-Asp385, respectively. Binding energy of endocellulase docked with hemicellulose (-6.0   kcal mol-1) was the most favourable followed by lignin (-5.6   kcal mol-1) and cellulose (-4.4   kcal mol-1). Exocellulase, contrarily, bonded favorably with lignin (-8.7   kcal mol-1), closely followed by cellulose (-8.5   kcal mol-1) and hemicellulose (-8.4   kcal mol-1). MDs simulations showed that interactions of complexes, endocellulase-hemicellulose and the exocellulase-cellulose being the most stable. Thus, the findings of the study successfully identified the specific actions of sugar-acting enzymes for NC production. Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Catalytic Domain
  18. Cahyo Budiman, Carlmond Goh Kah Wun, Lee, Ping Chin, Rafida Razali, Thean, Chor Leow
    MyJurnal
    FK506-binding protein35 of Plasmodium knowlesi (Pk-FKBP35) is a member of peptidyl prolyl cis-trans isomerase (PPIase) and is considered as a promising avenue of antimalarial drug target development. This protein is organized into the N-terminal domain responsible for PPIase catalytic activity followed and the tetratricopeptide repeat domain for its dimerization. The protease-coupling and protease-free assays are known to be the common methods for investigating the catalytic properties of PPIase. Earlier, the protease-coupling assay was used to confirm the catalytic activity of Pk-FKBP35 in accelerating cis-trans isomerization of the peptide substrate. This report is aimed to re-assess the catalytic and substrate specificity of Pk-FKBP35 using an alternative method of a protease-free assay. The result indicated that while Pk-FKBP35 theoretically contained many possible cleavage sites of chymotrypsin, experimentally, the catalytic domain was relatively stable from chymotrypsin. Furthermore, under protease-free assay, Pk-FKBP35 also demonstrated remarkable PPIase catalytic activity with kcat/KM of 4.5 + 0.13 × 105 M−1 s−1, while the kcat/KM of active site mutant of D55A is 0.81 + 0.05 × 105 M−1 s−1. These values were considered comparable to kcat/KM obtained from the protease-coupling assay. Interestingly, the substrate specificities of Pk-FKBP35 obtained from both methods are also similar, with the preference of Pk-FKBP35 towards Xaa at P1 position was Leu>Phe>Lys>Trp>Val>Ile>His>Asp>Ala>Gln>Glu. Altogether, we proposed that protease-free and protease-coupling assays arereliable for Pk-FKBP35.
    Matched MeSH terms: Catalytic Domain
  19. Yap PG, Gan CY
    Foods, 2021 Mar 22;10(3).
    PMID: 33810046 DOI: 10.3390/foods10030675
    Nature-derived tyrosinase inhibitors are of great industrial interest. Three monophenolase inhibitor peptides (MIPs) and three diphenolase inhibitor peptides (DIPs) from a previous study were investigated for their in vitro tyrosinase inhibitory effects, mode of inhibition, copper-chelating activity, sun protection factor (SPF) and antioxidant activities. DIP1 was found to be the most potent tyrosinase inhibitor (IC50 = 3.04 ± 0.39 mM), which could be due to the binding interactions between its aromatic amino acid residues (Y2 and D7) with tyrosinase hotspots (H85, V248, H258, H263, F264, R268, V283 and E322) and its ability to chelate copper ion within the substrate-binding pocket. The conjugated planar rings of tyrosine and tryptophan may interact with histidine within the active site to provide stability upon enzyme-peptide binding. This postulation was later confirmed as the Lineweaver-Burk analysis had identified DIP1 as a competitive inhibitor and DIP1 also showed 36.27 ± 1.17% of copper chelating activity. In addition, DIP1 provided the highest SPF value (11.9 ± 0.04) as well as ferric reducing antioxidant power (FRAP) (5.09 ± 0.13 mM FeSO4), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) (11.34 ± 0.90%) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (29.14 ± 1.36%) free radical scavenging activities compared to other peptides. These results demonstrated that DIP1 could be a multifunctional anti-tyrosinase agent with pharmaceutical and cosmeceutical applications.
    Matched MeSH terms: Catalytic Domain
  20. Sri Raja Rajeswari Mahalingam, Priya Madhavan, Chong, Pei Pei
    MyJurnal
    Introduction: One of the most common aetiology of opportunistic fungal infections in humans is Candida species. The virulence of Candida species is due to repertoire of factors, specifically, the ability to form biofilms. Medical devices such as intravenous catheters, prosthetic heart valves and surgical interventions provide pathogenic microorganisms with a surface to adhere to form biofilm. Fungi present as biofilms are often resistant to antifungal treatment because these biofilms offer a protective barrier that prohibits the drugs to get to the active site of the fungi. The objective of this study is to investigate the biofilm architecture of Candida rugosa (C.rugosa) at different developmental phases and to identify Sessile Minimum Inhibition Concentrations (SMICs) of amphotericin B, caspofungin, fluconazole, and voriconazole for the biofilm of C. rugosa. Methods: Confocal scanning laser microscopy (CSLM) and scanning electron microscopy (SEM) were used to visualize C. rugosa biofilms at different developmental phases. The antifungal susceptibility test was performed using serial doubling dilution. The growth kinetics of Candida biofilms was quantified using XTT reduction assay and crystal violet assay. Results: From the antifungal susceptibility test, the biofilms had SMIC of >16μg/mL for amphotericin B, 6µg/mL for caspofungin, >64μg/mL for fluconazole and >16μg/ mL for voriconazole. From the SEM micrographs, C. rugosa biofilm have a structure composed of an adherent yeast cells and blastopores with hyphal elements. There were significant alterations in the morphology after exposure to antifungal agents. The quantitative measurement of the matrix thickness of embedded yeast cells were obtained from CLSM micrographs. Conclusion: In conclusion, the ability of C. rugosa to form biofilms may attribute to one of the virulence factors that causes reduced susceptibility to antifungal agents.
    Matched MeSH terms: Catalytic Domain
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links