Displaying publications 21 - 40 of 216 in total

Abstract:
Sort:
  1. Md Noh SM, Sheikh Abdul Kadir SH, Bannur ZM, Froemming GA, Abdul Hamid Hasani N, Mohd Nawawi H, et al.
    Exp Eye Res, 2014 Oct;127:236-42.
    PMID: 25139730 DOI: 10.1016/j.exer.2014.08.005
    Anti-Vascular Endothelial Growth Factors (Anti-VEGF) agents have received recent interest as potential anti-fibrotic agents for their concurrent use with trabeculectomy. Preliminary cohort studies have revealed improved bleb morphology following trabeculectomy augmented with ranibizumab. The effects of this humanized monoclonal antibody on human Tenon's fibroblast (HTF), the key player of post trabeculectomy scar formation, are not fully understood. This study was conducted to understand the effects of ranibizumab on extracellular matrix production by HTF. The effect of ranibizumab on HTF proliferation and cell viability was determined using MTT assay (3-(4,5-dimethylthiazone-2-yl)-2,5-diphenyl tetrazolium). Ranibizumab at concentrations ranging from 0.01 to 0.5 mg/mL were administered for 24, 48 and 72 h in serum and serum free conditions. Supernatants and cell lysates from samples were assessed for collagen type 1 alpha 1 and fibronectin mRNA and protein level using quantitative real time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). After 48-h, ranibizumab at 0.5 mg/mL, significantly induced cell death under serum-free culture conditions (p cell viability in cultured HTF. From this study, we found that single application of ranibizumab is inadequate to induce the anti-fibrotic effects on HTF, suggesting the importance of adjunctive therapy. Further studies are underway to understand mechanism of actions of ranibizumab on HTF.
    Matched MeSH terms: Cell Culture Techniques
  2. Ng AM, Kojima K, Kodoma S, Ruszymah BH, Aminuddin BS, Vacanti AC
    Med J Malaysia, 2008 Jul;63 Suppl A:121-2.
    PMID: 19025015
    Bone marrow derived progenitor cells have been widely studied for its multipotent property and have proofed to be an important resource in regenerative medicine. However, the propagation of murine bone marrow appeared to be a great challenge as compared to other mammalian species. In this study, various isolation techniques and the plasticity of the isolated cells were evaluated. Our result shows that magnetic sorting technique yielded the most viable cells and displayed wider differentiation capacity.
    Matched MeSH terms: Cell Culture Techniques/methods
  3. Suriyanti SN, Usup G
    Toxicon, 2015 Dec 15;108:257-63.
    PMID: 26541573 DOI: 10.1016/j.toxicon.2015.10.017
    Screening of the occurrence of potentially toxic diatoms was carried out at two sites of cage cultures in Tebrau Straits, Johor. Phytoplankton samples from Sungai Pendas and Teluk Sengat were collected using a 20 μm mesh plankton net and salinity was recorded in-situ. Nitzschia and Pseudo-nitzschia cells were isolated and established into clonal cultures. All cultures were tested for domoic acid using HPLC-UV analysis and verified by LC-MS analysis. Three Nitzschia spp. and one Pseudo-nitzschia sp. were identified from these locations. Toxic and non-toxic strains of Nitzschia navis-varingica are found at the cage culture areas. Cellular toxin content in the toxic strain of N. navis-varingica is 1.8 pg cell(-1). This is a new record from Malaysia and this species was isolated from estuarine water with salinity 28 PSU. The discovery of toxic Nitzschia species in Tebrau Straits indicates the potential for domoic acid accumulation in seafood.
    Matched MeSH terms: Cell Culture Techniques
  4. Higuchi A, Kao SH, Ling QD, Chen YM, Li HF, Alarfaj AA, et al.
    Sci Rep, 2015 Dec 14;5:18136.
    PMID: 26656754 DOI: 10.1038/srep18136
    The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture, whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.
    Matched MeSH terms: Cell Culture Techniques/methods*
  5. Chen LH, Sung TC, Lee HH, Higuchi A, Su HC, Lin KJ, et al.
    Biomater Sci, 2019 Aug 14.
    PMID: 31411209 DOI: 10.1039/c9bm00418a
    Recombinant vitronectin-grafted hydrogels were developed by adjusting surface charge of the hydrogels with grafting of poly-l-lysine for optimal culture of human embryonic stem cells (hESCs) under xeno- and feeder-free culture conditions, with elasticity regulated by crosslinking time (10-30 kPa), in contrast to conventional recombinant vitronectin coating dishes, which have a fixed stiff surface (3 GPa). hESCs proliferated on the hydrogels for over 10 passages and differentiated into the cells derived from three germ layers indicating the maintenance of pluripotency. hESCs on the hydrogels differentiated into cardiomyocytes under xeno-free culture conditions with much higher efficiency (80% of cTnT+ cells) than those on conventional recombinant vitronectin or Matrigel-coating dishes just only after 12 days of induction. It is important to have an optimal design of cell culture biomaterials where biological cues (recombinant vitronectin) and physical cues (optimal elasticity) are combined for high differentiation of hESCs into specific cell lineages, such as cardiomyocytes, under xeno-free and feeder-free culture conditions.
    Matched MeSH terms: Cell Culture Techniques
  6. Rosman NH, Nor Anuar A, Othman I, Harun H, Sulong Abdul Razak MZ, Elias SH, et al.
    Bioresour Technol, 2013 Feb;129:620-3.
    PMID: 23317554 DOI: 10.1016/j.biortech.2012.12.113
    Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater. Regular, dense and fast settling granule (average diameter, 1.5 mm; settling velocity, 33 m h(-1); and sludge volume index, 22.3 mL g(-1)) were developed in a single reactor. In addition, 96.5% COD removal efficiency was observed in the system at the end of the granulation period, while its ammonia and total nitrogen removal efficiencies were up to 94.7% and 89.4%, respectively. The study demonstrated the capabilities of AGS development in a single, high and slender column type-bioreactor for the treatment of rubber wastewater.
    Matched MeSH terms: Batch Cell Culture Techniques
  7. Trang NTH, Tang DYY, Chew KW, Linh NT, Hoang LT, Cuong NT, et al.
    Mol Biotechnol, 2021 Nov;63(11):1004-1015.
    PMID: 34185249 DOI: 10.1007/s12033-021-00362-3
    Various studies showed that the suppression of α-glucosidase activity can impede the glucose absorption in our body, and therefore, it can be used to treat type 2 diabetes. Hence, the compounds with anti-α-glucosidase have gained considerable attention because of their potential application in diabetes treatment. In previous literature studies, these anti-α-glucosidase compounds were extracted from plants and fungus. Less studies are being conducted to identify the anti-α-glucosidase compounds in the microbial community. In this study, 23 marine bacterial strains were screened for their potential to suppress the α-glucosidase activity. The highest inhibitory activity was exhibited by isolated L06 which was identified as Oceanimonas smirnovii EBL6. The cultivation conditions, such as temperature and pH, were optimized to increase the production of α-glucosidase inhibitors by Oceanimonas smirnovii EBL6 strain. The result findings showed that the highest yield of α-glucosidase inhibitors can be obtained at the culture time of 120 h, fermentation temperature of 30 °C, and pH 4.6. Under these conditions, the inhibitory activity of α-glucosidase can reach 81%. The IC50 of n-butanol extract was 13.89 μg/ml, while standard acarbose was 31.16 μg/ml. Overall, these findings suggest that Oceanimonas smirnovii produces α-glucosidase inhibitors and could been applied in the biochemical and medicinal fields in the future.
    Matched MeSH terms: Cell Culture Techniques/methods
  8. Imaizumi Y, Nagao N, Yusoff FM, Taguchi S, Toda T
    Bioresour Technol, 2014 Jun;162:53-9.
    PMID: 24747382 DOI: 10.1016/j.biortech.2014.03.123
    To determine the optimum light intensity per cell required for rapid growth regardless of cell density, continuous cultures of the microalga Chlorella zofingiensis were grown with a sufficient supply of nutrients and CO2 and were subjected to different light intensities in the range of 75-1000 μE m(-2) s(-1). The cell density of culture increased over time for all light conditions except for the early stage of the high light condition of 1000 μE m(-2) s(-1). The light intensity per cell required for the high specific growth rate of 0.5 day(-1) was determined to be 28-45 μE g-ds(-1) s(-1). The specific growth rate was significantly correlated to light intensity (y=0.721×x/(66.98+x), r(2)=0.85, p<0.05). A high specific growth rate was maintained over a range of light intensities (250-1000 μE m(-2) s(-1)). This range of light intensities suggested that effective production of C. zofingiensis can be maintained outdoors under strong light by using the optimum specific light intensity.
    Matched MeSH terms: Cell Culture Techniques/methods*
  9. Choong PF, Mok PL, Cheong SK, Leong CF, Then KY
    Cytotherapy, 2007;9(2):170-83.
    PMID: 17453969
    The multipotency of stromal cells has been studied extensively. It has been reported that mesenchymal stromal cells (MSC) are capable of differentiating into cells of multilineage. Different methods and reagents have been used to induce the differentiation of MSC. We investigated the efficacy of different growth factors in inducing MSC differentiation into neurons.
    Matched MeSH terms: Cell Culture Techniques/methods
  10. Ngoh, Gek Cheng, Masitah Hasan, Kumoro, Andri Chahyo, Chew, Fui Ling, Tham, Margaret
    MyJurnal
    The production of ethanol, from glucose in batch and fed batch culture, was investigated. In the fed batch culture, the glucose feeding was added into the culture at 16th hour of fermentation. The effects of different glucose concentration feeding rates on ethanol fermentation were investigated for fed batch culture. The 2gL-1hr-1 glucose concentration feeding rate was found to give higher ethanol yield (2.47 g ethanol g glucose-1), with respect to substrate consumed as compared to 8 gL-1hr-1 (0.23 g ethanol g glucose-1) and 4 gL-1hr-1 (0.20 g ethanol g glucose-1). The ethanol yield with respect to substrate consumed obtained in batch culture was 0.81 g ethanol g glucose-1. The fed batch culture at 2 gL-1hr-1 glucose concentration feeding rate was proven to be a better fermentation system than the batch culture. The specific growth rate, specific glucose consumption rate and specific ethanol production rate for the fed batch fermentation, at 2 gL-1hr-1 glucose concentration feeding rate, were 0.065 hr-1, 1.20 hr-1 and 0.0009 hr-1, respectively.
    Matched MeSH terms: Batch Cell Culture Techniques
  11. Hasan NAHM, Harith HH, Israf DA, Tham CL
    Mol Biol Rep, 2020 May;47(5):3511-3519.
    PMID: 32279207 DOI: 10.1007/s11033-020-05439-x
    Epithelial-mesenchymal transition (EMT) is one of the mechanisms that contribute to bronchial remodelling which underlie chronic inflammatory airway diseases such as chronic obstructive pulmonary disorder (COPD) and asthma. Bronchial EMT can be triggered by many factors including transforming growth factor β1 (TGFβ1). The majority of studies on TGFβ1-mediated bronchial EMT used BEGM as the culture medium. LHC-9 medium is another alternative available which is more economical but a less common option. Using normal human bronchial epithelial cells (BEAS-2B) cultured in BEGM as a reference, this study aims to validate the induction of EMT by TGFβ1 in cells cultured in LHC-9. Briefly, the cells were maintained in either LHC-9 or BEGM, and induced with TGFβ1 (5, 10 and 20 ng/ml) for 48 h. EMT induction was confirmed by morphological analysis and EMT markers expression by immunoblotting. In both media, cells induced with TGFβ1 displayed spindle-like morphology with a significantly higher radius ratio compared to non-induced cells which displayed a cobblestone morphology. Correspondingly, the expression of the epithelial marker E-cadherin was significantly lower, whereas the mesenchymal marker vimentin expression was significantly higher in induced cells, compared to non-induced cells. By contrast, a slower cell growth rate was observed in LHC-9 compared to that of BEGM. This study demonstrates that neither LHC-9 nor BEGM significantly influence TGFβ1-induced bronchial EMT. However, LHC-9 is less optimal for bronchial epithelial cell growth compared to BEGM. Thus, LHC-9 may be a more cost-effective substitute for BEGM, provided that time is not a factor.
    Matched MeSH terms: Cell Culture Techniques/methods
  12. Chew FN, Tan WS, Boo HC, Tey BT
    Prep Biochem Biotechnol, 2012;42(6):535-50.
    PMID: 23030465 DOI: 10.1080/10826068.2012.660903
    An optimized cultivation condition is needed to maximize the functional green fluorescent protein (GFP) production. Six process variables (agitation rate, temperature, initial medium pH, concentration of inducer, time of induction, and inoculum density) were screened using the fractional factorial design. Three variables (agitation rate, temperature, and time of induction) exerted significant effects on functional GFP production in E. coli shake flask cultivation and were optimized subsequently using the Box-Behnken design. An agitation rate of 206 rpm at 31°C and induction of the protein expression when the cell density (OD(600nm)) reaches 1.04 could enhance the yield of functional GFP production from 0.025 g/L to 0.241 g/L, which is about ninefold higher than the unoptimized conditions. Unoptimized cultivation conditions resulted in protein aggregation and hence reduced the quantity of functional GFP. The model and regression equation based on the shake flask cultivation could be applied to a 2-L bioreactor for maximum functional GFP production.
    Matched MeSH terms: Cell Culture Techniques/methods; Cell Culture Techniques/standards
  13. Chong SL, Mou DG, Ali AM, Lim SH, Tey BT
    Hybridoma (Larchmt), 2008 Apr;27(2):107-11.
    PMID: 18642675
    The effect of mild hypothermic (32 degrees C) conditions on cell growth, cell-cycle progress, and antibody production of hybridoma C2E7 cells was investigated in the present study. The growth of hybridoma cells was slower during the mild hypothermic condition compared to that at 37 degrees C; this led to about 10% decrease in maximum viable cell density and volumetric antibody productivity. However, under mild hypothermic growth conditions, the culture viability was substantially improved and the specific antibody productivity was enhanced compared to that at 37 degrees C. The average specific productivity for the entire batch culture at 32 degrees C is about 5% higher than that at 37 degrees C. Cell-cycle analysis data showed that there was no growth arrestment during the mild hypothermic growth of hybridoma cells. The G1-phase cells were increased, while the S-phase cells were decreased gradually as the culture time progressed. Further analysis showed that the specific antibody productivity of hybridoma cells was correlated to the fraction of S-phase cells.
    Matched MeSH terms: Cell Culture Techniques
  14. Ng WH, Umar Fuaad MZ, Azmi SM, Leong YY, Yong YK, Ng AMH, et al.
    Cell Tissue Res, 2019 Feb;375(2):383-396.
    PMID: 30232595 DOI: 10.1007/s00441-018-2918-7
    Mesenchymal stem cells (MSCs) are known to secrete cardioprotective paracrine factors that can potentially activate endogenous cardiac c-kit cells (CCs). This study aims to optimise MSC growth conditions and medium formulation for generating the conditioned medium (CdM) to facilitate CC growth and expansion in vitro. The quality of MSC-CdM after optimisation of seeding density during MSC stabilisation and medium formulation used during MSC stimulation including glucose, ascorbic acid, serum and oxygen levels and the effects of treatment concentration and repeated CdM harvesting were assessed based on CC viability in vitro under growth factor- and serum-deprived condition. Our data showed that functional CdM can be produced from MSCs with a density of 20,000 cells/cm2, which were stimulated using high glucose (25 mM), ascorbic acid supplemented, serum-free medium under normoxic condition. The generated CdM, when applied to growth factor- and serum-deprived medium at 1:1 ratio, improved CC viability, migration and proliferation in vitro. Such an effect could further be augmented by generating CdM concentrates without compromising CC gene and protein expressions, while retaining its capability to undergo differentiation to form endothelial, smooth muscle and cardiomyocytes. Nevertheless, CdM could not be repeatedly harvested from the same MSC culture, as the protein content and its effect on CC viability deteriorated after the first harvest. In conclusion, this study provides a proof-of-concept strategy to standardise the production of CdM from MSCs based on rapid, stepwise assessment of CC viability, thus enabling production of CdM favourable to CC growth for in vitro or clinical applications.
    Matched MeSH terms: Cell Culture Techniques/standards*
  15. Fatimah SS, Ng SL, Chua KH, Hayati AR, Tan AE, Tan GC
    Hum. Cell, 2010 Nov;23(4):141-51.
    PMID: 21166885 DOI: 10.1111/j.1749-0774.2010.00096.x
    Human amniotic epithelial cells (hAECs) are potentially one of the key players in tissue engineering due to their easy availability. The aim of the present study was to develop an optimal isolation and transportation technique, as well as to determine the immunophenotype and epithelial gene expression of hAECs. Amnion was mechanically peeled off from the chorion and digested with trypsin-ethylenediaminetetraacetic acid. The isolated hAECs were cultured in medium containing 10 ng/mL epidermal growth factor until P4. The epithelial gene expression, cell surface antigen and protein expression of hAECs were analyzed by quantitative polymerase chain reaction, flow cytometry and immunocytochemistry. hAECs were also cultured in adipogenic, osteogenic and neurogenic induction media. The best cell yield of hAECs was seen in the digestion of 15 pieces of amnion (2 × 2 cm) and isolated 30 min after digestion with trypsin. F12:Dulbecco's modified eagle medium was the best medium for short term storage at 4 °C. hAECs expressed CD9, CD44, CD73 and CD90, and negligibly expressed CD31, CD34, CD45 and CD117. After serial passage, CK3, CK19 and involucrin gene expressions were upregulated, while p63, CK1 and CK14 gene expressions were downregulated. Sustained gene expressions of integrin β1 and CK18 were observed. At initial culture, these cells might have stem-like properties. However, they differentiated after serial passage. Nonetheless, hAECs have epithelial stem cell characteristics and have the potential to differentiate into corneal epithelial cells. Further investigations are still needed to elucidate the mechanism of differentiation involved and to optimize the culture condition for long term in vitro culture.
    Matched MeSH terms: Cell Culture Techniques/methods*
  16. Poh YW, Gan SY, Tan EL
    Exp Oncol, 2012 Jul;34(2):85-9.
    PMID: 23013758
    The aim of this study is to investigate whether IL-6, IL-10 and TGF-β are able to confer resistance to apoptosis in nasopharyngeal carcinoma cells by upregulating the expression of survivin.
    Matched MeSH terms: Cell Culture Techniques
  17. Rahman MF, Shukor MY, Suhaili Z, Mustafa S, Shamaan NA, Syed MA
    J Environ Biol, 2009 Jan;30(1):65-72.
    PMID: 20112865
    The need to isolate efficient heavy metal reducers for cost effective bioremediation strategy have resulted in the isolation of a potent molybdenum-reducing bacterium. The isolate was tentatively identified as Serratia sp. strain DRY5 based on the Biolog GN carbon utilization profiles and partial 16S rDNA molecular phylogeny. Strain DRY5 produced 2.3 times the amount of Mo-blue than S. marcescens strain Dr.Y6, 23 times more than E. coli K12 and 7 times more than E. cloacae strain 48. Strain DRY5 required 37 degrees C and pH 7.0 for optimum molybdenum reduction. Carbon sources such as sucrose, maltose, glucose and glycerol, supported cellular growth and molybdate reduction after 24 hr of static incubation. The most optimum carbon source that supported reduction was sucrose at 1.0% (w/v). Ammonium sulphate, ammonium chloride, glutamic acid, cysteine, and valine supported growth and molybdate reduction with ammonium sulphate as the optimum nitrogen source at 0. 2% (w/v). Molybdate reduction was optimally supported by 30 mM molybdate. The optimum concentration of phosphate for molybdate reduction was 5 mM when molybdate concentration was fixed at 30 mM and molybdate reduction was totally inhibited at 100 mM phosphate. Mo-blue produced by this strain shows a unique characteristic absorption profile with a maximum peak at 865 nm and a shoulder at 700 nm, Dialysis tubing experiment showed that 95.42% of Mo-blue was found in the dialysis tubing suggesting that the molybdate reduction seen in this bacterium was catalyzed by enzyme(s). The characteristics of isolate DRY5 suggest that it would be useful in the bioremediation ofmolybdenum-containing waste.
    Matched MeSH terms: Cell Culture Techniques
  18. Shukor MY, Gusmanizar N, Azmi NA, Hamid M, Ramli J, Shamaan NA, et al.
    J Environ Biol, 2009 Jan;30(1):57-64.
    PMID: 20112864
    Several local acrylamide-degrading bacteria have been isolated. One of the isolate that exhibited the highest growth on acrylamide as a nitrogen source was then further characterized. The isolate was tentatively identified as Bacillus cereus strain DRY135 based on carbon utilization profiles using Biolog GP plates and partial 16S rDNA molecular phylogeny. The isolate grew optimally in between the temperatures of 25 and 30 degrees C and within the pH range of 6.8 to 7.0. Glucose, fructose, lactose, maltose, mannitol, citric acid and sucrose supported growth with glucose being the best carbon source. Different concentrations of acrylamide ranging from 100 to 4000 mg l(-1) incorporated into the growth media shows that the highest growth was obtained at acrylamide concentrations of between 500 to 1500 mg l(-1). At 1000 mg l(-1) of acrylamide, degradation was 90% completed after ten days of incubation with concomitant cell growth. The metabolite acrylic acid was detected in the media during degradation. Other amides such as methacrylamide, nicotinamide, acetamide, propionamide and urea supported growth with the highest growth supported by acetamide, propionamide and urea. Strain DRY135, however was not able to assimilate 2-chloroacetamide. The characteristics of this isolate suggest that it would be useful in the bioremediation of acrylamide.
    Matched MeSH terms: Cell Culture Techniques
  19. Lim JW, Seng CE, Lim PE, Ng SL, Sujari AN
    Bioresour Technol, 2011 Nov;102(21):9876-83.
    PMID: 21890353 DOI: 10.1016/j.biortech.2011.08.014
    The performance of moving bed sequencing batch reactors (MBSBRs) added with 8 % (v/v) of polyurethane (PU) foam cubes as carrier media in nitrogen removal was investigated in treating low COD/N wastewater. The results indicate that MBSBR with 8-mL cubes achieved the highest total nitrogen (TN) removal efficiency of 37% during the aeration period, followed by 31%, 24% and 19 % for MBSBRs with 27-, 64- and 125-mL cubes, respectively. The increased TN removal in MBSBRs was mainly due to simultaneous nitrification and denitrification (SND) process which was verified by batch studies. The relatively lower TN removal in MBSBR with larger PU foam cubes was attributed to the observation that larger PU foam cubes were not fully attached by biomass. Higher concentrations of 8-mL PU foam cubes in batch reactors yielded higher TN removal.
    Matched MeSH terms: Batch Cell Culture Techniques/instrumentation*
  20. Zainab-L I, Sudesh K
    J Biotechnol, 2019 Nov 10;305:35-42.
    PMID: 31493421 DOI: 10.1016/j.jbiotec.2019.09.001
    The cost of polyhydroxyalkanoates (PHAs) can be reduced by improving their productivity and recovery. In this study, we attempted to obtain a high cell density culture from a 13 L bioreactor and subsequently improved the recently developed biological recovery process using mealworms to obtain the PHA granules. A cell dry weight of 161 g/L containing 68-70 wt% P(3HB) was obtained. The freeze-dried cells contained a significant amount of mineral salts from the culture medium which reduced the cells' palatability for the mealworms. A simple washing procedure with water was sufficient to remove the residual mineral salts and this improved the cells' consumption by up to 12.5% of the mealworms' body weight. As a result, one kilogram of mealworms consumed 125 g of the washed cells daily and 87.2 g of feacal pellets were recovered, which was almost twice the weight of the unwashed cells. In addition, it also improved the purity of the PHA in the faecal pellets to a value <90% upon washing with water to remove the water-soluble compounds. This study has demonstrated a significant improvement in the production and recovery of PHA. In addition, the resulting mealworms showed a significant increase in protein content up to 79% and a decrease in fat content down to 8.3% of its dry weight.
    Matched MeSH terms: Batch Cell Culture Techniques/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links