Displaying publications 21 - 40 of 192 in total

Abstract:
Sort:
  1. Ooi EH, J Y Chia N, Ooi ET, Foo JJ, Liao IY, R Nair S, et al.
    Int J Hyperthermia, 2018 12;34(8):1142-1156.
    PMID: 29490513 DOI: 10.1080/02656736.2018.1437282
    A recent study by Ooi and Ooi (EH Ooi, ET Ooi, Mass transport in biological tissues: Comparisons between single- and dual-porosity models in the context of saline-infused radiofrequency ablation, Applied Mathematical Modelling, 2017, 41, 271-284) has shown that single-porosity (SP) models for describing fluid transport in biological tissues significantly underestimate the fluid penetration depth when compared to dual-porosity (DP) models. This has raised some concerns on whether the SP model, when coupled with models of radiofrequency ablation (RFA) to simulate saline-infused RFA, could lead to an underestimation of the coagulation size. This paper compares the coagulation volumes obtained following saline-infused RFA predicted based on the SP and DP models for fluid transport. Results showed that the SP model predicted coagulation zones that are consistently 0.5 to 0.9 times smaller than that of DP model. This may be explained by the low permeability value of the tissue interstitial space, which causes the majority of the saline to flow through the vasculature. The absence of fluid flow tracking in the vasculature in the SP model meant that any flow of saline into the vasculature is treated as losses and do not contribute to the saline penetration depth of the tissue. Comparisons with experimental results from the literature revealed that the DP models predicted coagulation zone sizes that are closer to the experimental values than the SP models. This supports the hypothesis that the SP model is a poor choice for simulating the outcome of saline-infused RFA.
    Matched MeSH terms: Cell Death
  2. Chen Z, Wang W, Abdul Razak SR, Han T, Ahmad NH, Li X
    Cell Death Dis, 2023 Jul 24;14(7):460.
    PMID: 37488128 DOI: 10.1038/s41419-023-05930-w
    Ferroptosis is a recently discovered essential type of cell death that is mainly characterized by iron overload and lipid peroxidation. Emerging evidence suggests that ferroptosis is a double-edged sword in human cancer. However, the precise underlying molecular mechanisms and their differential roles in tumorigenesis are unclear. Therefore, in this review, we summarize and briefly present the key pathways of ferroptosis, paying special attention to the regulation of ferroptosis as well as its dual role as an oncogenic and as a tumor suppressor event in various human cancers. Moreover, multiple pharmacological ferroptosis activators are summarized, and the prospect of targeting ferroptosis in cancer therapy is further elucidated.
    Matched MeSH terms: Cell Death
  3. Ejaz U, Afzal M, Mazhar M, Riaz M, Ahmed N, Rizg WY, et al.
    Int J Nanomedicine, 2024;19:453-469.
    PMID: 38250190 DOI: 10.2147/IJN.S446017
    INTRODUCTION: Silver nanoparticles (AgNPs) have been found to exhibit unique properties which show their potential to be used in various therapies. Green synthesis of AgNPs has been progressively gaining acceptance due to its cost-effectiveness and energy-efficient nature.

    OBJECTIVE: In the current study, aqueous extract of Thymus vulgaris (T. vulgaris) was used to synthesize the AgNPs using green synthesis techniques followed by checking the effectiveness and various biological activities of these AgNPs.

    METHODS: At first, the plant samples were proceeded for extraction of aqueous extracts followed by chromatography studies to measure the phenolics and flavonoids. The synthesis and characterization of AgNPs were done using green synthesis techniques and were confirmed using Fourier transform infra-red (FT-IR) spectroscopy, UV-visible spectroscopy, scanning electron microscope (SEM), zeta potential, zeta sizer and X-Ray diffraction (XRD) analysis. After confirmation of synthesized AgNPs, various biological activities were checked.

    RESULTS: The chromatography analysis detected nine compounds accounting for 100% of the total amount of plant constituents. The FT-IR, UV-vis spectra, SEM, zeta potential, zeta sizer and XRD analysis confirmed the synthesis of AgNPs and the variety of chemical components present on the surface of synthesized AgNPs in the plant extract. The antioxidant activity of AgNPs showed 92% inhibition at the concentration of at 1000 µg/mL. A greater inhibitory effect in anti-diabetic analysis was observed with synthesized AgNPs as compared to the standard AgNPs. The hemolytic activity was low, but despite low concentrations of hemolysis activity, AgNPs proved not to be toxic or biocompatible. The anti-inflammatory activity of AgNPs was observed by in-vitro and in-vivo approaches in range at various concentrations, while maximum inhibition occurs at 1000 µg (77.31%).

    CONCLUSION: Our data showed that the potential biological activities of the bioactive constituents of T. vulgaris can be enhanced through green synthesis of AgNPs from T. vulgaris aqueous extracts. In addition, the current study depicted that AgNPs have good potential to cure different ailments as biogenic nano-medicine.

    Matched MeSH terms: Cell Death
  4. Harun FB, Syed Sahil Jamalullail SM, Yin KB, Othman Z, Tilwari A, Balaram P
    ScientificWorldJournal, 2012;2012:439479.
    PMID: 22666123 DOI: 10.1100/2012/439479
    Eupatorium odoratum (EO) contains many biologically active compounds, the anticancer effects of which are not well documented. This study evaluates the cytotoxic effects and mechanism of action of EO extracts on MCF-7 and Vero cell lines. Evaluation of the cytotoxic activity using MTT assay, morphological alterations, and apoptosis were carried out. Autophagy was evaluated by LC3-A protein expression. Cytotoxic activity, membrane blebbing and ballooning at 24 hours, replacement by mass vacuolation, and double membrane vesicles mimicking autophagy and cell death were observed in the cancer cells. No apoptosis was observed by DNA fragmentation assay. Overexpression of LC3-A protein indicated autophagic cell death. Cell cycle analysis showed G0 and G2/M arrest. The Vero cells did not show significant cell death at concentrations <100 μg/mL. These results thus suggest that acetone and ethyl acetate extracts of EO induce cell death through induction of autophagy and hold potential for development as potential anticancer drugs.
    Matched MeSH terms: Cell Death/drug effects*
  5. Ho WY, Yeap SK, Ho CL, Rahim RA, Alitheen NB
    PLoS One, 2012;7(9):e44640.
    PMID: 22970274 DOI: 10.1371/journal.pone.0044640
    In comparison to monolayer cells, MCTS has been claimed as more suitable candidate for studying drug penetration due to the high resemblance to solid tumors. However, the cultivation of MCTS is cumbersome, time consuming, and most technique fail to generate spheroids with uniform sizes. Therefore, the application of spheroid cultures in high throughput screening has been rather limiting. Besides, the lack of a well established screening protocol method that is applicable to spheroid could also be attributed to this limitation. Here we report a simple way of cultivating homogenous MCTS cultures with compact and rigid structure from the MCF-7 cells. Besides, we had also made some modifications to the standard MTT assay to realize high throughput screening of these spheroids. Using the modified protocol, tamoxifen showed cytotoxicity effect towards MCTS cultures from MCF-7 with high consistency. The results correlated well with the cultures' response assessed by LDH release assay but the latter assay was not ideal for detecting a wide range of cytotoxicity due to high basal background reading. The MTT assay emerged as a better indicator to apoptosis event in comparison to the LDH release assay. Therefore, the method for spheroid generation and the modified MTT assay we reported here could be potentially applied to high throughput screening for response of spheroid cultures generated from MCF-7 as well as other cancer cell lines towards cytotoxic stimuli.
    Matched MeSH terms: Cell Death/drug effects
  6. Hong TB, Rahumatullah A, Yogarajah T, Ahmad M, Yin KB
    Int J Mol Sci, 2010;11(3):1057-69.
    PMID: 20479999 DOI: 10.3390/ijms11031057
    This study aims to elucidate the effects of chrysin on human ER-negative breast cancer cell line, MDA-MB-231. The study demonstrated that treatment of MDA-MB-231 cells with 20 microM chysin for 48 h significantly inhibited the growth of MDA-MB-231 cells and induced cytoplasmic lipid accumulation in the cells, but that the observed of cell death was not caused by apoptosis. The expression of PPARalpha mRNA in chrysin-treated MDA-MB-231 cells was significantly increased, which was likely associated to the proliferation of the cells post chrysin treatment.
    Matched MeSH terms: Cell Death/drug effects
  7. Inayat-Hussain SH, Rajab NF, Roslie H, Hussin AA, Ali AM, Annuar BO
    Med J Malaysia, 2004 May;59 Suppl B:176-7.
    PMID: 15468875
    Biomaterials intended for end-use application as bone-graft substitutes have to undergo safety evaluation. In this study, we investigated the in vitro cytotoxic effects especially to determine the mode of death of two hydroxyapatite compounds (HA2, HA3) which were synthesized locally. The methods used for cytotoxicity was the standard MTT assay whereas AO/PI staining was performed to determine the mode of cell death in HA treated L929 fibroblasts. Our results demonstrated that both HA2 and HA3 were not significantly cytotoxic as more than 75% cells after 72 hours treatment were viable. Furthermore, we found that the major mode of cell death in HA treated cells was apoptosis. In conclusion, our results demonstrated that these hydroxyapatite compounds are not cytotoxic where the mode of death was primarily via apoptosis.
    Matched MeSH terms: Cell Death/drug effects*
  8. Teh SS, Ee GC, Mah SH, Lim YM, Ahmad Z
    Molecules, 2013 Feb 04;18(2):1985-94.
    PMID: 23381024 DOI: 10.3390/molecules18021985
    The cytotoxic structure-activity relationships among a series of xanthone derivatives from Mesua beccariana, Mesua ferrea and Mesua congestiflora were studied. Eleven xanthone derivatives identified as mesuarianone (1), mesuasinone (2), mesuaferrin A (3), mesuaferrin B (4), mesuaferrin C (5), 6-deoxyjacareubin (6), caloxanthone C (7), macluraxanthone (8), 1,5-dihydroxyxanthone (9), tovopyrifolin C (10) and α-mangostin (11) were isolated from the three Mesua species. The human cancer cell lines tested were Raji, SNU-1, K562, LS-174T, SK-MEL-28, IMR-32, HeLa, Hep G2 and NCI-H23. Mesuaferrin A (3), macluraxanthone (8) and α-mangostin (11) showed strong cytotoxicities as they possess significant inhibitory effects against all the cell lines. The structure-activity relationship (SAR) study revealed that the diprenyl, dipyrano and prenylated pyrano substituent groups of the xanthone derivatives contributed towards the cytotoxicities.
    Matched MeSH terms: Cell Death/drug effects
  9. Kim TG, Hwi KK, Hung CS
    In Vivo, 2005 May-Jun;19(3):551-7.
    PMID: 15875775
    Andrographolide was extracted and purified from Andrographis panicula using hexane and water partitioning followed by ethyl acetate extraction and chromatography. It showed selective cytotoxicity to prostate cancer PC-3 cells in vitro. The morphological and biochemical changes induced by the extract in carcinoma PC-3 cell death were studied. In andrographolide-treated cells, evidence of apoptosis such as cell shrinkage and surface microvilli loss after 4-hour treatment and chromatin condensation and fragmentation in H&E-stained cells between 4 to 8 hours after treatment were observed. Under electron microscopy, membrane blebbing and apoptotic bodies formation were seen after 8-hour treatment. Using immunocytochemistry staining and cellular caspase-3 activity assay, andrographolide-treated cells showed considerable caspase-3 activation and caspase-8 in PC-3 cells at 4 and 2 hours after treatment, respectively. This suggests andrographolide-induced cell death was achieved through the apoptotic pathway, via the activation of an extrinsic caspase cascade.
    Matched MeSH terms: Cell Death/drug effects
  10. Kapitonova MY, Mansor O
    Malays J Pathol, 2003 Jun;25(1):15-27.
    PMID: 16196374
    OBJECTIVE: To determine in situ using TEM the balance of apoptosis and necrosis in the articular cartilage of patients with inflammatory (rheumatoid arthritis and seronegative spondyloarthritis) and degenerative (osteoarthritis) joint diseases and to establish possible correlation between the cell death rate and the matrix vesicles formation.
    METHODS: Cartilage samples of the knee joint were obtained from patients with rheumatoid arthritis (RA, 18 cases), osteoarthritis (OA, 22 cases), Reiter's disease (RD, 9 cases), peripheral form of the ankylosing spondyloarthritis (AS, 6 cases) and psoriatic arthritis (PA, 6 cases) during arthroscopy or knee surgery. Normal samples taken from autopsy cases without a history of joint diseases were used as control. Samples were processed for TEM with subsequent semi-quantitative estimation of the cell death rate in the superficial, middle and deep zone of non-calcified articular cartilage, and computer-aided ultramorphometric evaluation of the matrix vesicles of different types.
    RESULTS: Both apoptotic and necrotic cell death could be identified in the cartilage of patients with inflammatory joint diseases, including seronegative spondyloarthritides and degenerative arthropathies. Apoptosis dominated over necrosis in all examined arthritides, including RA patients in which necrosis of the chondrocyte was the most frequent among arthropathies, while the highest apoptotic cell death rate was discovered in OA in which it correlated with the volume and numeric density of the matrix vesicles. These data provide evidence that apoptosis may contribute to the cartilage breakdown not only in RA and OA but also in the seronegative spondyloarthritides, which had a significantly higher apoptotic rate than the normal cartilage.
    Matched MeSH terms: Cell Death/physiology*
  11. Herr DR, Reolo MJ, Peh YX, Wang W, Lee CW, Rivera R, et al.
    Sci Rep, 2016 Apr 15;6:24541.
    PMID: 27080739 DOI: 10.1038/srep24541
    Ototoxic drugs, such as platinum-based chemotherapeutics, often lead to permanent hearing loss through apoptosis of neuroepithelial hair cells and afferent neurons of the cochlea. There is no approved therapy for preventing or reversing this process. Our previous studies identified a G protein-coupled receptor (GPCR), S1P2, as a potential mediator of otoprotection. We therefore sought to identify a pharmacological approach to prevent cochlear degeneration via activation of S1P2. The cochleae of S1pr2(-/-) knockout mice were evaluated for accumulation of reactive oxygen species (ROS) with a nitro blue tetrazolium (NBT) assay. This showed that loss of S1P2 results in accumulation of ROS that precedes progressive cochlear degeneration as previously reported. These findings were supported by in vitro cell-based assays to evaluate cell viability, induction of apoptosis, and accumulation of ROS following activation of S1P2 in the presence of cisplatin. We show for the first time, that activation of S1P2 with a selective receptor agonist increases cell viability and reduces cisplatin-mediated cell death by reducing ROS. Cumulatively, these results suggest that S1P2 may serve as a therapeutic target for attenuating cisplatin-mediated ototoxicity.
    Matched MeSH terms: Cell Death/genetics
  12. Narayanan KB, Ali M, Barclay BJ, Cheng QS, D'Abronzo L, Dornetshuber-Fleiss R, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S89-110.
    PMID: 26106145 DOI: 10.1093/carcin/bgv032
    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis.
    Matched MeSH terms: Cell Death/drug effects*
  13. Fathoni I, Petitbois JG, Alarif WM, Abdel-Lateff A, Al-Lihaibi SS, Yoshimura E, et al.
    Molecules, 2020 Sep 01;25(17).
    PMID: 32882989 DOI: 10.3390/molecules25173986
    Cyanobacteria are reported as rich sources of secondary metabolites that provide biological activities such as enzyme inhibition and cytotoxicity. Ten depsipeptide derivatives (lyngbyabellins) were isolated from a Malaysian Moorea bouillonii and a Red Sea Okeania sp.: lyngbyabellins G (1), O (2), P (3), H (4), A (7), 27-deoxylyngbyabellin A (5), and homohydroxydolabellin (6). This study indicated that lyngbyabellins displayed cytotoxicity, antimalarial, and antifouling activities. The isolated compounds were tested for cytotoxic effect against human breast cancer cells (MCF7), for antifouling activity against Amphibalanus amphitrite barnacle larvae, and for antiplasmodial effect towards Plasmodium falciparum. Lyngbyabellins A and G displayed potent antiplasmodial effect against Plasmodium, whereas homohydroxydolabellin showed moderate effect. For antifouling activity, the side chain decreases the activity slightly, but the essential feature is the acyclic structure. As previously reported, the acyclic lyngbyabellins are less cytotoxic than the corresponding cyclic ones, and the side chain increases cytotoxicity. This study revealed that lyngbyabellins, despite being cytotoxic agents as previously reported, also exhibit antimalarial and antifouling activities. The unique chemical structures and functionalities of lyngbyabellin play an essential role in their biological activities.
    Matched MeSH terms: Cell Death/drug effects
  14. Siddiqa AJ, Shrivastava NK, Ali Mohsin ME, Abidi MH, Shaikh TA, El-Meligy MA
    Colloids Surf B Biointerfaces, 2019 Jul 01;179:445-452.
    PMID: 31005739 DOI: 10.1016/j.colsurfb.2019.04.014
    This paper focuses on the development of a drug delivery system for systemically controlled release of a poorly soluble drug, letrozole. The work meticulously describes the preparation and characterizations of 2-hydroxyethyl methacrylate (HEMA) polymerization onto hydrophilic acrylamide grafted low-density polyethylene (AAm-g-LDPE) surface for targeted drug release system. The surface morphology and thickness measurement of coated pHEMA layer were measured using scanning electron microscopy (SEM). The swelling study was done in deionized (DI) water and simulated uterine fluid (SUF, pH = 7.6). In vitro release of letrozole from the system was performed in SUF. Further, the release kinetics of letrozole from the system was studied using different mathematical models. The results, suggest that the rate of drug release can be altered by varying the concentrations of cross-linker in pHEMA. The optimized sample released 72% drug at the end of 72 h of measurement.
    Matched MeSH terms: Cell Death/drug effects
  15. Özkaya D, Nazıroğlu M, Vanyorek L, Muhamad S
    Biol Trace Elem Res, 2021 Apr;199(4):1356-1369.
    PMID: 33389617 DOI: 10.1007/s12011-020-02556-3
    Hypoxia (HYPX) in several eye diseases such as glaucoma and diabetic retinopathy causes oxidative cell death and inflammation. TRPM2 cation channel is activated by HYPX-induced ADP-ribose (ADPR) and oxidative stress. The protective role of selenium via inhibition of TRPM2 on the HYPX-induced oxidative cytotoxicity and inflammation values in the human kidney cell line was recently reported. However, the protective role of selenium nanoparticles (SeNP) on the values in the retinal pigment epithelial (ARPE-19) cells has not been clarified yet. In the current study, we investigated two subjects. First, we investigated the involvement of TRPM2 channel on the HYPX-induced oxidative injury, inflammation, and apoptosis in the ARPE-19 cells. Second, we investigated the protective role of SeNP via inhibition of TRPM2 channel on the HYPX-induced oxidative injury and apoptosis in the ARPE-19 cells. For the aims, the ARPE-19 cells were divided into four main groups as follows: Control (Ctr), SeNP (2.5 μg/ml for 24 h), HYPX (200 μM CoCl2 for 24 h), and HYPX+SeNP. The TRPM2 current density and Ca2+ fluorescence intensity with an increase of mitochondrial membrane depolarization and oxygen free radical (OFR) generations were increased in the ARPE-19 cells by the treatment of HYPX. There was no increase of Ca2+ fluorescence intensity in the pre-treated cells with PARP-1 inhibitors (DPQ and PJ34) or in the presence of Ca2+-free extracellular buffer. When HYPX-induced TRPM2 activity was treated by SeNP and TRPM2 (2-APB and ACA) blockers, the increases of OFR generation, cytokine (TNF-α and IL-1β) levels, TRPM2, and PARP-1 expressions were restored. In conclusion, the exposure of HYPX caused mitochondrial oxidative cell cytotoxicity and cell death via TRPM2-mediated Ca2+ signaling and may provide an avenue for treating HYPX-induced retinal diseases associated with the excessive OFR and Ca2+ influx.
    Matched MeSH terms: Cell Death*
  16. Maqbool M, Vidyadaran S, George E, Ramasamy R
    Cell Biol Int, 2011 Dec;35(12):1247-51.
    PMID: 21649586 DOI: 10.1042/CBI20110070
    We have previously shown that human MSC (mesenchymal stem cells) inhibit the proliferation of most of the immune cells. However, there are innate immune cells such as neutrophils and other PMN (polymorphonuclear) cells that do not require an extensive proliferation prior to their effector function. In this study, the effect of MSC on neutrophils in the presence of complete and serum-deprived culture media was investigated. In the presence of MSC, the viability of neutrophils increase as measured in 24 h of incubation at various supplementation of serum concentration. We have utilized Annexin V and PI (propidium iodide) staining to confirm whether the enhancement of neutrophil's viability is due to a reduction in PCD (programmed cell death). MSC significantly rescue neutrophils from apoptosis at 1, 5 and 10% of FBS (fetal bovine serum) supplementation. The fractions of viable and dead cells were increased and decreased respectively in the presence of MSC. Our results indicate MSC rescue neutrophils from nutrient- or serum-deprived cell death. However, whether this effect is exerted through a specific signalling pathway or confining neutrophils in resting state by MSC requires further investigation.
    Matched MeSH terms: Cell Death*
  17. Abbasi M, Yaqoob M, Haque RA, Iqbal MA
    Mini Rev Med Chem, 2021;21(1):69-78.
    PMID: 32767935 DOI: 10.2174/1389557520666200807130721
    Development of novel metallodrugs with pharmacological profile plays a significant role in modern medicinal chemistry and drug design. Metal complexes have shown remarkable clinical results in current cancer therapy. Gold complexes have attained attention due to their high antiproliferative potential. Gold-based drugs are used for the treatment of rheumatoid arthritis. Gold-containing compounds with selective and specific targets are capable to assuage the symptoms of a range of human diseases. Gold (I) species with labile ligands (such as Cl in TEPAuCl) interact with isolated DNA; therefore, this biomolecule has been considered as a target for gold drugs. Gold (I) has a high affinity towards sulfur and selenium. Due to this, gold (I) drugs readily interact with cysteine or selenocysteine residue of the enzyme to form protein-gold(I) thiolate or protein-gold (I) selenolate complexes that lead to inhibition of the enzyme activity. Au(III) compounds due to their square-planner geometriesthe same as found in cisplatin, represent a good source for the development of anti-tumor agents. This article aims to review the most important applications of gold products in the treatment of human colon cancer and to analyze the complex interplay between gold and the human body.
    Matched MeSH terms: Cell Death/drug effects
  18. Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M
    Molecules, 2021 Aug 24;26(17).
    PMID: 34500560 DOI: 10.3390/molecules26175119
    α-Mangostin (AMG) is a potent anticancer xanthone that was discovered in mangosteen (Garcinia mangostana Linn.). AMG possesses the highest opportunity for chemopreventive and chemotherapeutic therapy. AMG inhibits every step in the process of carcinogenesis. AMG suppressed multiple breast cancer (BC) cell proliferation and apoptosis by decreasing the creation of cancerous compounds. Accumulating BC abnormalities and their associated molecular signaling pathways promotes novel treatment strategies. Chemotherapy is a commonly used treatment; due to the possibility of unpleasant side effects and multidrug resistance, there has been substantial progress in searching for alternative solutions, including the use of plant-derived natural chemicals. Due to the limitations of conventional cancer therapy, nanotechnology provides hope for effective and efficient cancer diagnosis and treatment. Nanotechnology enables the delivery of nanoparticles and increased solubility of drugs and drug targeting, resulting in increased cytotoxicity and cell death during BC treatment. This review summarizes the progress and development of AMG's cytotoxicity and the mechanism of death BC cells. The combination of natural medicine and nanotechnology into a synergistic capital will provide various benefits. This information will aid in the development of AMG nanoparticle preparations and may open up new avenues for discovering an effective BC treatment.
    Matched MeSH terms: Cell Death/drug effects*
  19. Colley HE, Said Z, Santocildes-Romero ME, Baker SR, D'Apice K, Hansen J, et al.
    Biomaterials, 2018 09;178:134-146.
    PMID: 29929183 DOI: 10.1016/j.biomaterials.2018.06.009
    Oral lichen planus (OLP) and recurrent aphthous stomatitis (RAS) are chronic inflammatory conditions often characterised by erosive and/or painful oral lesions that have a considerable impact on quality of life. Current treatment often necessitates the use of steroids in the form of mouthwashes, creams or ointments, but these are often ineffective due to inadequate drug contact times with the lesion. Here we evaluate the performance of novel mucoadhesive patches for targeted drug delivery. Electrospun polymeric mucoadhesive patches were produced and characterised for their physical properties and cytotoxicity before evaluation of residence time and acceptability in a human feasibility study. Clobetasol-17-propionate incorporated into the patches was released in a sustained manner in both tissue-engineered oral mucosa and ex vivo porcine mucosa. Clobetasol-17 propionate-loaded patches were further evaluated for residence time and drug release in an in vivo animal model and demonstrated prolonged adhesion and drug release at therapeutic-relevant doses and time points. These data show that electrospun patches are adherent to mucosal tissue without causing tissue damage, and can be successfully loaded with and release clinically active drugs. These patches hold great promise for the treatment of oral conditions such as OLP and RAS, and potentially many other oral lesions.
    Matched MeSH terms: Cell Death/drug effects
  20. Setyawati MI, Kutty RV, Leong DT
    Small, 2016 Oct;12(40):5601-5611.
    PMID: 27571230 DOI: 10.1002/smll.201601669
    Targeted drug delivery is one of the key challenges in cancer nanomedicine. Stoichiometric and spatial control over the antibodies placement on the nanomedicine vehicle holds a pivotal role to overcome this key challenge. Here, a DNA tetrahedral is designed with available conjugation sites on its vertices, allowing to bind one, two, or three cetuximab antibodies per DNA nanostructure. This stoichiometrically definable cetuximab conjugated DNA nanostructure shows enhanced targeting on the breast cancer cells, which results with higher overall killing efficacy of the cancer cells.
    Matched MeSH terms: Cell Death/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links