Displaying publications 21 - 40 of 200 in total

Abstract:
Sort:
  1. Usman A, Razak IA, Fun HK, Chantrapromma S, Zhao BG, Xu JH
    Acta Crystallogr C, 2002 Feb;58(Pt 2):o57-8.
    PMID: 11828107
    In the title compound, C(26)H(22)O(4), the pyranone ring adopts a twisted boat conformation, while the cyclohexane ring is close to an envelope conformation. The dihedral angle between the mean planes of the coumarin and naphthalene systems is 78.8(1) degree. The attached phenyl ring is in an equatorial position with respect to the cyclohexane ring.
    Matched MeSH terms: Crystallography, X-Ray
  2. Usman A, Razak IA, Chantrapromma S, Ghorai SK, Mal D, Fun HK, et al.
    Acta Crystallogr C, 2001 Sep;57(Pt 9):1118-9.
    PMID: 11588390
    The title compound, C(19)H(16)O, crystallizes with two molecules of opposite chirality in the asymmetric unit. In both molecules, the naphthalene and cyclopentanone moieties are individually planar. The two cyclopentane rings adopt envelope conformations, while the cyclohexane ring adopts a boat conformation.
    Matched MeSH terms: Crystallography, X-Ray
  3. Usman A, Razak IA, Chantrapromma S, Fun HK, Sarkar TK, Basak S, et al.
    Acta Crystallogr C, 2001 Sep;57(Pt 9):1116-7.
    PMID: 11588389
    In the title compound, C(16)H(19)ClN(2)O(4), the pyridine ring is nearly planar, the piperidine ring is non-planar and the cyclohexane ring adopts a screw-boat conformation. The carboxylate group makes a dihedral angle of 80.9 (2) degrees with the least-squares plane through the cyclohexane ring.
    Matched MeSH terms: Crystallography, X-Ray
  4. Usman A, Razak IA, Fun HK, Chantrapromma S, Zhao BG, Xu JH
    Acta Crystallogr C, 2002 Jan;58(Pt 1):o24-5.
    PMID: 11781485
    In the title compound, C20H16N2O5, both of the 1-acetylisatin (1-acetyl-1H-indole-2,3-dione) moieties are planar and form a dihedral angle of 74.1 (1) degrees. Weak intermolecular hydrogen bonds and C-H...pi interactions stabilize the packing in the crystal.
    Matched MeSH terms: Crystallography, X-Ray
  5. Tursun M, Kumar CS, Bilge M, Rhyman L, Fun HK, Parlak C, et al.
    PMID: 25829021 DOI: 10.1016/j.saa.2015.03.022
    Molecular structure and properties of 2-fluoro-4-bromobenzaldehyde (FBB, C7H4BrFO) was experimentally investigated by X-ray diffraction technique and vibrational spectroscopy. Experimental results on the molecular structure of FBB were supported with computational studies using the density functional theory, with the Becke-3-Lee-Yang-Parr functional and the 6-311+G(3df,p) basis set. Molecular dimer formed by the intermolecular hydrogen bonding was investigated. Potential energy distribution analysis of normal modes was performed to identify characteristic frequencies. FBB crystallizes in orthorhombic space group P2(1)2(1)2(1) with the O-trans conformation. In order to investigate halogen effect, the chloro- (CBB) and bromo- (BBB) analogs of FBB have also been studied theoretically. It is observed that all compounds prefer the stable O-trans conformation. Although the free energy difference between the O-cis and O-trans conformers is less than 2.5 kcal/mol, the free energy rotational barrier is at least 7.4 kcal/mol. There is a good agreement between the experimentally determined structural parameters, and vibrational frequencies of FBB and those predicted theoretically.
    Matched MeSH terms: Crystallography, X-Ray
  6. Tiekink ER, Zukerman-Schpector J
    Chem Commun (Camb), 2011 Jun 21;47(23):6623-5.
    PMID: 21455512 DOI: 10.1039/c1cc11173f
    Crystal structures of transition and main group element 1,1-dithiolates are shown to be partially sustained by C-H···π(chelate) interactions. For the planar binary bisdithiocarbamates, C-H···π(MS(2)C) interactions lead to aggregation patterns ranging from a 0-D four molecule aggregate to a 3-D architecture but with the majority of structures featuring 1-D or 2-D supramolecular assemblies.
    Matched MeSH terms: Crystallography, X-Ray
  7. Thu HE, Ng SF
    Int J Pharm, 2013 Sep 15;454(1):99-106.
    PMID: 23856162 DOI: 10.1016/j.ijpharm.2013.06.082
    In our previous study, a novel alginate-based bilayer film for slow-release wound dressings was successfully developed. We found that alginate alone yielded poor films; however, the addition of gelatine had significantly enhanced the drug dispersion as well as the physical properties. Here, an investigation of the drug-polymer interactions in the bilayer films was carried out. Drug content uniformity test and microscopy observation revealed that the addition of gelatine generated bilayer films with a homogenous drug distribution within the matrix. The FTIR and XRD data showed an increase in film crystallinity which might infer the presence of drug-polymer crystalline microaggregates in the films. DSC confirmed the drug-polymer interaction and indicated that the gelatine has no effect on the thermal behaviour of the microaggregates, suggesting the compatibility of the drug and excipients in the bilayer films. In conclusion, the addition of gelatine can promote homogenous dispersion of hydrophobic drugs in alginate films possibly through the formation of crystalline microaggregates.
    Matched MeSH terms: Crystallography, X-Ray
  8. Then LY, Chidan Kumar CS, Kwong HC, Win YF, Mah SH, Quah CK, et al.
    Acta Crystallogr E Crystallogr Commun, 2017 Jul 01;73(Pt 8):1227-1231.
    PMID: 28932442 DOI: 10.1107/S2056989017010556
    2-(Benzo-furan-2-yl)-2-oxoethyl 2-chloro-benzoate, C17H11ClO4 (I), and 2-(benzo-furan-2-yl)-2-oxoethyl 2-meth-oxy-benzoate, C18H14O5 (II), were synthesized under mild conditions. Their chemical and mol-ecular structures were analyzed by spectroscopic and single-crystal X-ray diffraction studies, respectively. These compounds possess different ortho-substituted functional groups on their phenyl rings, thus experiencing extra steric repulsion force within their mol-ecules as the substituent changes from 2-chloro (I) to 2-meth-oxy (II). The crystal packing of compound (I) depends on weak inter-molecular hydrogen bonds and π-π inter-actions. Mol-ecules are related by inversion into centrosymmetric dimers via C-H⋯O hydrogen bonds, and further strengthened by π-π inter-actions between furan rings. Conversely, mol-ecules in compound (II) are linked into alternating dimeric chains propagating along the [101] direction, which develop into a two-dimensional plate through extensive inter-molecular hydrogen bonds. These plates are further stabilized by π-π and C-H⋯π inter-actions.
    Matched MeSH terms: Crystallography, X-Ray
  9. Teh CH, Abdulghani M, Morita H, Shiro M, Hussin AH, Chan KL
    Planta Med, 2011 Jan;77(2):128-32.
    PMID: 20665368 DOI: 10.1055/s-0030-1250159
    13 α,21-Dihydroeurycomanone (1), a known quassinoid of Eurycoma longifolia Jack was recrystallized from chloroform into a novel crystal structure in space group P2 (1). Its X-ray data were compared with those of eurycomanone ( 2). Following intraperioneal injections at similar doses of 2.44 µmol/kg/day for 3 consecutive days, 2 displayed comparable potency with tamoxifen but was more potent than 1 in the anti-estrogenic effect against 17 α-ethynylestradiol (EE)-induced uterotrophy of immature rats.
    Matched MeSH terms: Crystallography, X-Ray
  10. Teh AH, Saito JA, Baharuddin A, Tuckerman JR, Newhouse JS, Kanbe M, et al.
    FEBS Lett., 2011 Oct 20;585(20):3250-8.
    PMID: 21925500 DOI: 10.1016/j.febslet.2011.09.002
    Hell's Gate globin I (HGbI), a heme-containing protein structurally homologous to mammalian neuroglobins, has been identified from an acidophilic and thermophilic obligate methanotroph, Methylacidiphilum infernorum. HGbI has very high affinity for O(2) and shows barely detectable autoxidation in the pH range of 5.2-8.6 and temperature range of 25-50°C. Examination of the heme pocket by X-ray crystallography and molecular dynamics showed that conformational movements of Tyr29(B10) and Gln50(E7), as well as structural flexibility of the GH loop and H-helix, may play a role in modulating its ligand binding behavior. Bacterial HGbI's unique resistance to the sort of extreme acidity that would extract heme from any other hemoglobin makes it an ideal candidate for comparative structure-function studies of the expanding globin superfamily.
    Matched MeSH terms: Crystallography, X-Ray
  11. Teh AH, Saito JA, Najimudin N, Alam M
    Sci Rep, 2015;5:11407.
    PMID: 26094577 DOI: 10.1038/srep11407
    Globins are haem-binding proteins with a conserved fold made up of α-helices and can possess diverse properties. A putative globin-coupled sensor from Methylacidiphilum infernorum, HGbRL, contains an N-terminal globin domain whose open and closed structures reveal an untypical dimeric architecture. Helices E and F fuse into an elongated helix, resulting in a novel site-swapped globin fold made up of helices A-E, hence the distal site, from one subunit and helices F-H, the proximal site, from another. The open structure possesses a large cavity binding an imidazole molecule, while the closed structure forms a unique Lys-His hexacoordinated species, with the first turn of helix E unravelling to allow Lys52(E10) to bind to the haem. Ligand binding induces reorganization of loop CE, which is stabilized in the closed form, and helix E, triggering a large conformational movement in the open form. These provide a mechanical insight into how a signal may be relayed between the globin domain and the C-terminal domain of HGbRL, a Roadblock/LC7 domain. Comparison with HGbI, a closely related globin, further underlines the high degree of structural versatility that the globin fold is capable of, enabling it to perform a diversity of functions.
    Matched MeSH terms: Crystallography, X-Ray
  12. Teh AH, Fazli NH, Furusawa G
    Appl Microbiol Biotechnol, 2020 Jan;104(2):633-641.
    PMID: 31784792 DOI: 10.1007/s00253-019-10237-y
    PdAgaC from the marine bacterium Persicobacter sp. CCB-QB2 is a β-agarase belonging to the glycoside hydrolase family 16 (GH16). It is one of only a handful of endo-acting GH16 β-agarases able to degrade agar completely to produce neoagarobiose (NA2). The crystal structure of PdAgaC's catalytic domain, which has one of the highest Vmax value at 2.9 × 103 U/mg, was determined in order to understand its unique mechanism. The catalytic domain is made up of a typical β-jelly roll fold with two additional insertions, and a well-conserved but wider substrate-binding cleft with some minor changes. Among the unique differences, two unconserved residues, Asn226 and Arg286, may potentially contribute additional hydrogen bonds to subsites -1 and +2, respectively, while a third, His185 from one of the additional insertions, may further contribute another bond to subsite +2. These additional hydrogen bonds may probably have enhanced PdAgaC's affinity for short agaro-oligosaccharides such as neoagarotetraose (NA4), rendering it capable of binding NA4 strongly enough for rapid degradation into NA2.
    Matched MeSH terms: Crystallography, X-Ray
  13. Teh AH, Sim PF, Hisano T
    Biochem Biophys Res Commun, 2020 12 10;533(3):257-261.
    PMID: 33010888 DOI: 10.1016/j.bbrc.2020.09.064
    The alginate lyase AlyQ from Persicobacter sp. CCB-QB2 is a three-domained enzyme with a carbohydrate-binding module (CBM) from family 32. The CBM32 domain, AlyQB, binds enzymatically cleaved but not intact alginate. Co-crystallisation of AlyQB with the cleaved alginate reveals that it binds to the 4,5-unsaturated mannuronic acid of the non-reducing end. The binding pocket contains a conserved R248 that interacts with the sugar's carboxyl group, as well as an invariant W303 that stacks against the unsaturated pyranose ring. Targeting specifically the non-reducing end is more efficient than the reducing end since the latter consists of a mixture of mannuronic acid and guluronic acid. AlyQB also seems unable to bind these two saturated sugars as they contain OH groups that will clash with the pocket. Docking analysis of YeCBM32, which binds oligogalacturonic acid, shows that the stacking of the pyranose ring is shifted in order to accommodate the sugar's axial C1-OH, and its R69 is accordingly elevated to bind the sugar's carboxyl group. Unlike AlyQB, YeCBM32's binding pocket is able to accommodate both saturated and unsaturated galacturonic acid.
    Matched MeSH terms: Crystallography, X-Ray
  14. Tariq QU, Malik S, Khan A, Naseer MM, Khan SU, Ashraf A, et al.
    Bioorg Chem, 2019 03;84:372-383.
    PMID: 30530108 DOI: 10.1016/j.bioorg.2018.11.053
    Xanthenone based hydrazone derivatives (5a-n) have been synthesized as potential α-glucosidase inhibitors. All synthesized compounds (5a-n) are characterized by their FTIR, 1H NMR, 13C NMR and HRMS, and in case of 5g also by X-ray crystallographic technique. The compounds unveiled a varying degree of α-glucosidase inhibitory activity when compared with standard acarbose (IC50 = 375.38 ± 0.12 µM). Amongst the series, compound 5l (IC50 = 62.25 ± 0.11 µM) bearing a trifluoromethyl phenyl group is found to be the most active compound. Molecular modelling is performed to establish the binding pattern of the more active compound 5l, which revealed the significance of substitution pattern. The pharmacological properties of molecules are also calculated by MedChem Designer which determines the ADME (absorption, distribution, metabolism, excretion) properties of molecules. The solid state self-assembly of compound 5g is discussed to show the conformation and role of iminoamide moiety in the molecular packing.
    Matched MeSH terms: Crystallography, X-Ray
  15. Tang SY, Tan CH, Sim KS, Yong KT, Lim KH, Low YY, et al.
    Phytochemistry, 2023 Apr;208:113587.
    PMID: 36646163 DOI: 10.1016/j.phytochem.2023.113587
    Eight undescribed iboga alkaloids, polyneurines A-H, were isolated from the bark of Tabernaemontana polyneura. The structures of these alkaloids were established by interpretation of the MS and NMR data, while the configurations were determined using GIAO NMR calculations and DP4+ probability analysis, TDDFT-ECD method, or X-ray diffraction analysis. Polyneurine A possesses a γ-lactone unit embedded within the iboga skeleton, while polyneurines D and E incorporate a formylmethyl moiety at C-3 of the iboga skeleton. Biosynthetic pathways towards the formation of polyneurines A, C, D, and E were proposed.
    Matched MeSH terms: Crystallography, X-Ray
  16. Tan WS, McNae IW, Ho KL, Walkinshaw MD
    PMID: 17671358
    Hepatitis B core (HBc) particles have been extensively exploited as carriers for foreign immunological epitopes in the development of multicomponent vaccines and diagnostic reagents. Crystals of the T = 4 HBc particle were grown in PEG 20,000, ammonium sulfate and various types of alcohols. A temperature jump from 277 or 283 to 290 K was found to enhance crystal growth. A crystal grown using MPD as a cryoprotectant diffracted X-rays to 7.7 A resolution and data were collected to 99.6% completeness at 8.9 A. The crystal belongs to space group P2(1)2(1)2(1), with unit-cell parameters a = 352.3, b = 465.5, c = 645.0 A. The electron-density map reveals a protrusion that is consistent with the N-terminus extending out from the surface of the capsid. The structure presented here supports the idea that N-terminal insertions can be exploited in the development of diagnostic reagents, multicomponent vaccines and delivery vehicles into mammalian cells.
    Matched MeSH terms: Crystallography, X-Ray
  17. Tan SJ, Lim JL, Low YY, Sim KS, Lim SH, Kam TS
    J Nat Prod, 2014 Sep 26;77(9):2068-80.
    PMID: 25211145 DOI: 10.1021/np500439u
    A total of 20 new indole alkaloids comprising mainly oxidized derivatives of macroline- (including alstofonidine, a macroline indole incorporating a butyrolactone ring-F), pleiocarpamine-, and sarpagine-type alkaloids were isolated from the bark and leaf extracts of Alstonia angustifolia. The structures and relative configurations of these alkaloids were determined using NMR and MS analyses and in some instances confirmed by X-ray diffraction analyses. Alkaloids 3, 7, 35, and 41 showed moderate to weak activity, while 21 showed strong activity in reversing multidrug resistance in vincristine-resistant KB cells.
    Matched MeSH terms: Crystallography, X-Ray
  18. Tan SJ, Low YY, Choo YM, Abdullah Z, Etoh T, Hayashi M, et al.
    J Nat Prod, 2010 Nov 29;73(11):1891-7.
    PMID: 21043460 DOI: 10.1021/np100552b
    A total of 25 alkaloids were isolated from the leaf and stem-bark extracts of Alstonia spatulata, of which five are new alkaloids of the strychnan type (alstolucines A-E, 1-5) and the other, a new alkaloid of the secoangustilobine A type (alstolobine A, 6). The structures of these alkaloids were established using NMR and MS analysis and, in the case of alstolucine B (2), also confirmed by X-ray diffraction analysis. A reinvestigation of the stereochemical assignment of scholaricine (13) by NMR and X-ray analyses indicated that the configuration at C-20 required revision. Alkaloids 1, 2, 6, 7, 9, 10, and 13 reversed multidrug resistance in vincristine-resistant KB cells.
    Matched MeSH terms: Crystallography, X-Ray
  19. Takhi M, Sreenivas K, Reddy CK, Munikumar M, Praveena K, Sudheer P, et al.
    Eur J Med Chem, 2014 Sep 12;84:382-94.
    PMID: 25036796 DOI: 10.1016/j.ejmech.2014.07.036
    A novel and potent series of ene-amides featuring azetidines has been developed as FabI inhibitors active against drug resistant Gram-positive pathogens particularly staphylococcal organisms. Most of the compounds from the series possessed excellent biochemical inhibition of Staphylococcus aureus FabI enzyme and whole cell activity against clinically relevant MRSA, MSSA and MRSE organisms which are responsible for significant morbidity and mortality in community as well as hospital settings. The binding mode of one of the leads, AEA16, in Escherichia coli FabI enzyme was determined unambiguously using X-ray crystallography. The lead compounds displayed good metabolic stability in mice liver microsomes and pharmacokinetic profile in mice. The in vivo efficacy of lead AEA16 has been demonstrated in a lethal murine systemic infection model.
    Matched MeSH terms: Crystallography, X-Ray
  20. Taha M, Ismail NH, Zaki HM, Wadood A, Anouar EH, Imran S, et al.
    Bioorg Chem, 2017 12;75:235-241.
    PMID: 29031169 DOI: 10.1016/j.bioorg.2017.10.004
    3,4-Dimethoxybenzohydrazide derivatives (1-25) have been synthesized and evaluated for their urease inhibitory potential. Among the series, compounds 2, 3, 4 and 5 with IC50 values 12.61 ± 0.07, 18.24 ± 0.14, 19.22 ± 0.21, and 8.40 ± 0.05 µM, respectively, showed excellent urease inhibitory potentials when compared with standard thiourea (IC50 value 21.40 ± 0.21 µM). Compounds 1, 6, 8, 18, 19 and 20 also showed good to moderate inhibition, while the remaining compounds were found to be completely inactive. The structures of compounds 6 and 25 were confirmed through X-ray crystallography while the structures of remaining compounds were confirmed through ESI-MS and 1H NMR. Molecular docking studies were performed understand the binding interactions with enzyme active site. The synthesized compounds were evaluated for cytotoxicity and found to be nontoxic.
    Matched MeSH terms: Crystallography, X-Ray
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links