Displaying publications 21 - 40 of 87 in total

Abstract:
Sort:
  1. Yahya, N.A., Lim, K.H.D.
    Ann Dent, 2008;15(2):89-93.
    MyJurnal
    Direct composite veneers can be used to mask tooth discolorations and/or to correct unaesthetic tooth forms and/or positions. However, these type of restorations are often regarded as one of the most challenging in aesthetic dentistry presumably due to the extent of natural tooth structure that must be recreated. This paper discusses easy application techniques and tips for Ceram.X Duo™, a nano ceramic composite restorative material. Its natural shading system allows the restoration of tooth with both dentine and enamel shade and transforms it into a final direct veneer restoration that mimics a natural tooth.
    Matched MeSH terms: Dentin
  2. Lin GSS, Ghani NRNA, Noorani TY, Ismail NH, Mamat N
    Odontology, 2021 Jan;109(1):149-156.
    PMID: 32623538 DOI: 10.1007/s10266-020-00535-7
    To compare the dislodgement resistance and the adhesive pattern of four different endodontic sealers to root dentine walls. Ninety lower premolars were assigned to five groups (n = 18), Group 1: no sealer (control); Group 2: EndoRez (ERZ); Group 3: Sealapex (SPX); Group 4: EndoSeal MTA (ESA) and Group 5: BioRoot RCS (BRS). They were instrumented up to size 30 taper 0.06 and obturated using single cone technique with matched-taper gutta-percha cones and one of the mentioned sealers. Six teeth from each group were then randomly subjected to 100, 1000 and 10,000 thermocycles, respectively. 1 mm slice of mid root region, measuring 6 mm from the apical foramen was prepared and subjected to push-out test under a Universal Testing Machine. Adhesive patterns of sealers were assessed using a stereomicroscope at 20 × magnification and classified using a new system. Statistical analyses were performed using two-way ANOVA, complemented by Tukey HSD and Chi-square tests. ESA and BRS showed significantly higher (p  0.05) at 100, 1000 and 10,000 thermocycles, respectively. Both ESA and BRS exhibited a significant higher rate (p dentine wall than SPX and ERZ, especially after artificial ageing.
    Matched MeSH terms: Dentin
  3. Al-Haddad AY, Kacharaju KR, Haw LY, Yee TC, Rajantheran K, Mun CS, et al.
    J Contemp Dent Pract, 2020 Nov 01;21(11):1218-1221.
    PMID: 33850066
    AIM: This study aimed to evaluate the effect of the prior application of intracanal medicaments on the bond strength of OrthoMTA (mineral trioxide aggregate) and iRoot SP to the root dentin.

    MATERIALS AND METHODS: Thirty single-rooted mandibular premolars were standardized and prepared using ProTaper rotary files. The specimens were divided into a control group and two experimental groups receiving Diapex and Odontopaste medicament, either filled with iRoot SP or OrthoMTA, for 1 week. Each root was sectioned transversally, and the push-out bond strength and failure modes were evaluated. The data were analyzed using Kruskal Wallis and Mann-Whitney U post hoc test.

    RESULTS: There was no significant difference between the bond strength of iRoot SP and OrthoMTA without medicaments and with the prior placement of Diapex (p value > 0.05). However, iRoot SP showed significantly higher bond strength with the prior placement of Odontopaste (p value < 0.05). Also, there was no association between bond strength of OrthoMTA with or without intracanal medicament (p value > 0.05) and between failure mode and root filling materials (p value > 0.05). The prominent failure mode for all groups was cohesive.

    CONCLUSION: Prior application of Diapex has no effect on the bond strength of iRoot SP and OrthoMTA. However, Odontopaste improved the bond strength of iRoot SP.

    CLINICAL SIGNIFICANCE: Dislodgment resistance of root canal filling from root dentin could be an indicator of the durability and prognosis of endodontic treated teeth.

    Matched MeSH terms: Dentin
  4. Alshammary F, Karobari MI, Assiry AA, Marya A, Shaikh GM, Siddiqui AA, et al.
    Biomed Res Int, 2021;2021:5523242.
    PMID: 34036099 DOI: 10.1155/2021/5523242
    This study is aimed at assessing the influence of Nd:YAG, Er,Cr:YSGG laser irradiation, and adjunctive photodynamic therapy (aPDT) on the bond strength of zirconia posts to radicular dentin. Eighty extracted anterior teeth were randomly categorized into 4 groups (n = 20) based on varying laser irradiation treatments, i.e., conventional cleaning and shaping (CCS), Nd:YAG, Er,Cr:YSGG, and aPDT group, respectively. Using a cutting machine, the samples were prepared for push-out bond strength analysis; 4 sections (2 on each apical and cervical) of around 1 mm thickness were sectioned for all roots at a right angle to the long axis of the post. After making the space for the post, they were incorporated into the root system and were subjected to different laser treatments. The universal testing machine was utilized to assess the push-out bond strength, which had a defined 1 mm/minute crosshead speed until the failure was encountered. Specimens in the aPDT group (8.20 ± 2.14 MPa) demonstrated the highest mean push-out bond strength, whereas the lowest was shown by samples in the CCS group (7.08 ± 1.11 MPa). According to the independent t-test, the mean push-out bond strength scores of the cervical segments were higher as compared to the apical segments in research groups (p < 0.05). Overall, the adhesive type was the most frequently encountered failure mode in all of the experimental groups, with the least number of failures observed in aPDT treated teeth samples. In conclusion, the push-out bond strength to radicular dentin was not much influenced by Nd:YAG, Er,Cr:YSGG laser, and aPDT in comparison with CCS. Although statistically not significant, however, the application of aPDT provided better outcomes as compared to other research groups.
    Matched MeSH terms: Dentin/radiation effects*
  5. Parolia A, Kumar H, Ramamurthy S, Madheswaran T, Davamani F, Pichika MR, et al.
    Molecules, 2021 Jan 30;26(3).
    PMID: 33573147 DOI: 10.3390/molecules26030715
    To determine the antibacterial effect of propolis nanoparticles (PNs) as an endodontic irrigant against Enterococcus faecalis biofilm inside the endodontic root canal system. Two-hundred-ten extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into seven groups, with 30 dentinal blocks in each group including: group I-saline; group II-propolis 100 µg/mL; group III-propolis 300 µg/mL; group IV-propolis nanoparticle 100 µg/mL; group V-propolis nanoparticle 300µg/mL; group VI-6% sodium hypochlorite; group VII-2% chlorhexidine. Dentin shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of one, five, and ten minutes. The non-parametric Kruskal-Wallis and Mann-Whitney tests were used to compare the differences in reduction in CFUs between all groups, and probability values of p < 0.05 were set as the reference for statistically significant results. The antibacterial effect of PNs as an endodontic irrigant was also assessed against E. faecalis isolates from patients with failed root canal treatment. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were also performed after exposure to PNs. A Raman spectroscope, equipped with a Leica microscope and lenses with curve-fitting Raman software, was used for analysis. The molecular interactions between bioactive compounds of propolis (Pinocembrin, Kaempferol, and Quercetin) and the proteins Sortase A and β-galactosidase were also understood by computational molecular docking studies. PN300 was significantly more effective in reducing CFUs compared to all other groups (p < 0.05) except 6% NaOCl and 2% CHX (p > 0.05) at all time intervals and both depths. At five minutes, 6% NaOCl and 2% CHX were the most effective in reducing CFUs (p < 0.05). However, no significant difference was found between PN300, 6% NaOCl, and 2% CHX at 10 min (p > 0.05). SEM images also showed the maximum reduction in E. faecalis with PN300, 6% NaOCl, and 2% CHX at five and ten minutes. CLSM images showed the number of dead cells in dentin were highest with PN300 compared to PN100 and saline. There was a reduction in the 484 cm-1 band and an increase in the 870 cm-1 band in the PN300 group. The detailed observations of the docking poses of bioactive compounds and their interactions with key residues of the binding site in all the three docking protocols revealed that the interactions were consistent with reasonable docking and IFD docking scores. PN300 was equally as effective as 6% NaOCl and 2% CHX in reducing the E. faecalis biofilms.
    Matched MeSH terms: Dentin/microbiology
  6. Al-Maqtari AA, Lui JL
    J Prosthodont, 2010 Jul;19(5):347-56.
    PMID: 20456026 DOI: 10.1111/j.1532-849X.2010.00593.x
    The purpose of this in vitro study was to determine if packable resin composite with/without flowable resin composite has the ability to prevent coronal leakage in restored endodontic access openings following aging.
    Matched MeSH terms: Dentin-Bonding Agents/chemistry
  7. Masudi, S.M., Padtong, E.A.
    MyJurnal
    The objective of this study was to evaluate and compare the effect of times elapsed on the application of a single-step adhesive system and activation of light cured subsequently placed composite to the bond strength between composites and adhesives. This was an experimental study using fifteen teeth extracted human premolars, which were caries and pathology free. Sample of teeth were embedded up to cemento-enamel junction on box of acrylic resin. All teeth were cut to obtain flat occlusal dentin surfaces. The specimens were randomly selected and divided into three groups with five teeth each. All the teeth were assigned to single-step bonding system AQ Bond (Sun Medical Co. Ltd., Shiga, Japan) according to manufacturer’s direction. Group 1 was left for 45 seconds, group 2 for 2 minutes, while group 3 was 5 minutes before putting subsequently restorative material. Composite resin was applied in 3 mm diameter and 6 mm height of cylinder mold and cured according to manufacturer’s direction on the dentin surface. Shear bond strength were measured using a testing system (Instron 8874, Instron Corp., Canton, MA, USA) at a crosshead speed of 2 mm/min with cell load capacity of 25 KN. The bond-strengths between single step adhesive system (AQ Bond) and light cured composites were tested. Mann-Whitney test showed no significant differences in bond-strength between Group 1 and Group 2. However, there were significantly differences (p
    Matched MeSH terms: Dentin; Dentin-Bonding Agents
  8. Awang, R.A.R., Masudi, S.M., Mohd Nor, W.Z.W.
    MyJurnal
    Desensitization of teeth after cavity preparation has been recommended in an attempt to avoid post-operative sensitivity. However, there is concern regarding application effect of desensitizing agent on shear bond strength of the adhesive system used. The purpose of our study was to compare the shear bond strength of adhesive system in two different dentin surface treatments, with and without desensitizing agent. Sixteen extracted human premolars were sectioned off at the coronal portion to expose the flat dentin surfaces. The surfaces were finished using 600 Grit Wet Silicon Carbide abrasive papers. The premolars were randomly assigned to two groups: control and treated with MS Coat desensitizing agent. The desensitizer was applied according to manufacturer’s instruction. Resin composite was bonded to each dentin surface using Prime & Bond ® adhesive system. The composite resin was debonded by shear stress. Mann-Whitney Test was used in statistical analysis. Our result showed that application of MS Coat desensitizing agent on dentin surface had significantly reduced the shear bond strength of the adhesive system used (z = - 0.14, p < 0.05). Thus, we conclude that shear bond strength of Prime & Bond ® NT (Dentsply, USA) adhesive system will be reduced if dentin surface is treated with MS Coat (Sun Medical, Japan) desensitizing agent.
    Matched MeSH terms: Dentin
  9. AbdulQader ST, Kannan TP, Rahman IA, Ismail H, Mahmood Z
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:225-233.
    PMID: 25686943 DOI: 10.1016/j.msec.2014.12.070
    Calcium phosphate (CaP) scaffolds have been widely and successfully used with osteoblast cells for bone tissue regeneration. However, it is necessary to investigate the effects of these scaffolds on odontoblast cells' proliferation and differentiation for dentin tissue regeneration. In this study, three different hydroxyapatite (HA) to beta tricalcium phosphate (β-TCP) ratios of biphasic calcium phosphate (BCP) scaffolds, BCP20, BCP50, and BCP80, with a mean pore size of 300μm and 65% porosity were prepared from phosphoric acid (H2PO4) and calcium carbonate (CaCO3) sintered at 1000°C for 2h. The extracts of these scaffolds were assessed with regard to cell viability and differentiation of odontoblasts. The high alkalinity, more calcium, and phosphate ions released that were exhibited by BCP20 decreased the viability of human dental pulp cells (HDPCs) as compared to BCP50 and BCP80. However, the cells cultured with BCP20 extract expressed high alkaline phosphatase activity and high expression level of bone sialoprotein (BSP), dental matrix protein-1 (DMP-1), and dentin sialophosphoprotein (DSPP) genes as compared to that cultured with BCP50 and BCP80 extracts. The results highlighted the effect of different scaffold ratios on the cell microenvironment and demonstrated that BCP20 scaffold can support HDPC differentiation for dentin tissue regeneration.
    Matched MeSH terms: Dentin/drug effects; Dentin/metabolism; Dentin/physiology
  10. Yahya, N.A., Lui, J.L., Chong, K.W.A., Abu Kasim, N.H., Radzi, Z., Lim, C.M.
    Ann Dent, 2008;15(1):11-19.
    MyJurnal
    The objective of this study was to investigate the effect of various luting cement systems on bond strength of fibre-reinforced posts to root canal dentine. 40 extracted single rooted sound premolar teeth were root filled, decoronated and randomly divided into four groups. Fibre posts, Aestheti- Plus™ (Bisco,Inc. Schaumburg, IL, USA) were cemented using four luting cements: Group A (control): Elite 100® Zinc phosphate (GC Corp, Japan), Group B: Calibra ™ Esthetic Resin Cement (Dentsply Caulk, USA), Group C: RelyX ARC Adhesive Resin (3M ESPE), Group D: RelyX Unicem Aplicap (3M ESPE). Each root was sliced into 2 discs representing the coronal and middle portions of the root canal giving rise to 20 specimens per group. Bond strength was determined using push-out tests and data was analyzed using SPSS version 14.0. The mean bond strength of Group A to Aestheti-Plus™ post was 7.71 MPa (±2.51) and Group B was 5.69 MPa (±3.23). Group C exhibited the lowest mean bond strength, 4.29 MPa (±3.53) while the highest bond strength was obtained from Group D, 7.98 MPa (±2.61). One way ANOVA showed significant interaction between all groups (p=.OOI). Post-hoc Bonferroni test reve;iled that bond strength of Group C was significantly lower compared to Group A (p=.008) and D (p=.004). In conclusion, the mean bond strength of Aestheti- Plus™ post to root canal dentine was highest when cemented with RelyX Unicem resin cement followed by Elite 100® zinc phosphate cement, Calibra and RelyX ARC resin cements. However, the bond strengths of Cali bra and RelyX Unicem resin cements were not significantly different from Elite 100® zinc phosphate cement.
    Matched MeSH terms: Dentin
  11. Parolia A, Kumar H, Ramamurthy S, Davamani F, Pau A
    BMC Oral Health, 2020 11 25;20(1):339.
    PMID: 33238961 DOI: 10.1186/s12903-020-01330-0
    BACKGROUND: The successful outcome of endodontic treatment depends on controlling the intra-radicular microbial biofilm by effective instrumentation and disinfection using various irrigants and intracanal medicaments. Instrumentation alone cannot effectively debride the root canals specially due to the complex morphology of the root canal system. A number of antibiotics and surfactants are being widely used in the treatment of biofilms however, the current trend is towards identification of natural products in disinfection. The aim of the study was to determine the antibacterial effect of chitosan-propolis nanoparticle (CPN) as an intracanal medicament against Enterococcus faecalis biofilm in root canal.

    METHODS: 240 extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into eight groups (n = 30) according to the intracanal medicament placed: group I: saline, group II: chitosan, group III: propolis100 µg/ml (P100), group IV: propolis 250 µg/ml (P250), group V: chitosan-propolis nanoparticle 100 µg/ml (CPN100), group VI: chitosan-propolis nanoparticle 250 µg/ml (CPN250), group VII: calcium hydroxide(CH) and group VIII: 2% chlorhexidine (CHX) gel. Dentine shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of day one, three and seven. The non-parametric Kruskal Wallis and Mann-Whitney tests were used to compare the differences in reduction of CFUs between all groups and probability values of p dentin treated with CPN250 had less coverage with E. faecalis bacteria similarly, CLSM images also showed higher percentage of dead E. faecalis bacteria with CPN250 than to CPN100.

    CONCLUSION: CPN250 was the most effective in reducing E. faecalis colonies on day one, three at both depths and at day seven CPN250 was equally effective as CPN100 and 2% CHX.

    Matched MeSH terms: Dentin
  12. Reza F, Lim SP
    J Conserv Dent, 2012 Apr;15(2):123-6.
    PMID: 22557808 DOI: 10.4103/0972-0707.94576
    To compare push-out bond strength between self-cured and dual-cured resin cement using a titanium post.
    Matched MeSH terms: Dentin-Bonding Agents
  13. Karobari MI, Batul R, Snigdha NTS, Al-Rawas M, Noorani TY
    PLoS One, 2023;18(11):e0294076.
    PMID: 37956149 DOI: 10.1371/journal.pone.0294076
    INTRODUCTION: Root canal sealing materials play a crucial role in an endodontic procedure by forming a bond between the dentinal walls and the gutta-percha. The current study aims to analyse the dentinal tubule penetration and adhesive pattern, including the push-out bond strength of six commercially available root canal sealers.

    METHODOLOGY: Eighty-four mandibular first premolars were split into seven groups (and n = 12), Group 1: Dia-Root, Group 2: One-Fil, Group 3: BioRoot RCS, Group 4: AH Plus, Group 5: CeraSeal, Group 6: iRoot SP, Group 7: GP without sealer (control). Two groups were made, one for dentinal tubule penetration and the other for push-out bond strength; the total sample size was one hundred sixty-eight. Root canal treatment was performed using a method called the crown down technique, and for obturation, the single cone technique was used. A confocal laser scanning microscope (Leica, Microsystem Heidel GmbH, Version 2.00 build 0585, Germany) was used to evaluate dentinal tubule penetration, and Universal Testing Machine was utilised to measure the push-out bond strength (Shimadzu, Japan) using a plunger size of 0.4 mm and speed of 1mm/min. Finally, the adhesive pattern of the sealers was analysed by HIROX digital microscope (KH-7700). Statistical analysis was carried out by a one-way Anova test, Dunnet's T3 test, and Chi-square test.

    RESULTS: Highest dentinal tubule penetration was noticed with One-Fil (p<0.05), followed by iRoot SP, CeraSeal, AH Plus, Dia-Root also, the most negligible value was recorded for BioRoot RCS. Meanwhile, BioRoot RCS (p<0.05) demonstrated the greater value of mean push-out bond strength, followed by One-fil, iRoot SP, CeraSeal, AH Plus and Dia-Root. Regarding adhesive pattern, most of the samples were classified as type 3 and type 4 which implies greater sealing ability and better adherence to the dentinal wall. However, BioRoot RCS revealed the most type 4 (p<0.05), followed by AH Plus, One-Fil, CeraSeal and Dia-Root.

    CONCLUSION: The highest dentinal tubule penetration was shown by One-Fil compared to other groups. Meanwhile, BioRoot RCS had greater push-out bond strength and more adhesive pattern than other tested materials.

    Matched MeSH terms: Dentin
  14. Thomas AR, Mani R, Reddy TV, Ravichandran A, Sivakumar M, Krishnakumar S
    J Contemp Dent Pract, 2019 Sep 01;20(9):1090-1094.
    PMID: 31797835
    AIM: The aim of the study was to assess the antibacterial efficiency of a combination of 1% alexidine (ALX) and 5.25% sodium hypochlorite (NaOCl) against E. faecalis biofilm using a confocal scanning electron microscopy.

    MATERIALS AND METHODS: An estimated 120 human root dentin disks were prepared, sterilized, and inoculated with E. faecalis strain (ATCC 29212) to develop a 3-weeks-old biofilm. The dentin discs were exposed to group I-control group: 5.25% sodium hypochlorite (NaOCl) (n = 20); group II-1% ALX + 5.25% NaOCl (n = 40); group III-1% alexidine (ALX) (n = 40) (Sigma-Aldrich, Mumbai, India); group IV-negative control: saline (n = 20). After exposure, the dentin disks were stained with the fluorescent live/dead dye and evaluated with a confocal scanning electron microscope to calculate the proportion of dead cells. Statistical analysis was done using the Kruskal-Wallis and Mann-Whitney U test (p < 0.05).

    RESULTS: The maximum proportion of dead cells were seen in the groups treated with the combination of 1% ALX + 5.25% NaOCl (94.89%) and in the control group 5.25% NaOCl (93.14%). The proportion of dead cells presented in the 1% ALX group (51.79%) and negative control group saline (15.10%) were comparatively less.

    CONCLUSION: The antibacterial efficiency of a combination of 1% ALX and 5.25% NaOCl was more effective when compared with 1% ALX alone.

    CLINICAL SIGNIFICANCE: Alexidine at 1% could be used as an alternative endodontic irrigant to chlorhexidine, as alexidine does not form any toxic precipitates with sodium hypochlorite. The disinfection regimen comprising a combination of 1% ALX and 5.25% NaOCl is effective in eliminating E. faecalis biofilms.

    Matched MeSH terms: Dentin
  15. Ahmad Azlina, Berahim Zurairah, Sidek Mohamad Ros, Mokhtar Khairani Idah, Samsudin Abdul Rani
    MyJurnal
    Mitochondrial DNA (mtDNA) is a hereditary material located in mitochondria and is normally maternally inherited. Mutational analysis performed on mtDNA proved that the mutations are closely related with a number of genetic illnesses, besides being exploitable for forensic identification. Those findings imply the importance of mtDNA in the scientific field. MtDNA can be found in abundance in tooth dentin where it is kept protected by the enamel, the hardest outer part of the tooth. In this study, two techniques of mtDNA extraction were compared to determine the efficacy between the two techniques. Teeth used for the study was collected from Dental Clinic, Hospital Universiti Sains Malaysia. After the removal of tooth from the tooth socket of the patient, the tooth was kept at -20C until use. Later, pulp tissue and enamel was excised using dental bur and only the root dentin was utilized for the isolation of mtDNA by crushing it mechanically into powdered form. MtDNA was extracted using the two published methods, Pfeifer and Budowle and then subjected to spectrophotometry DNA quantification and purity, Polymerase chain reaction (PCR) amplification of hypervariable-two region of mtDNA, followed by DNA sequencing to analyze the reliability of the extraction techniques. In conclusion, both techniques proved to be efficient and capable for the extraction of mtDNA from tooth dentin.
    Matched MeSH terms: Dentin
  16. Akram Z, Daood U, Aati S, Ngo H, Fawzy AS
    Mater Sci Eng C Mater Biol Appl, 2021 Mar;122:111894.
    PMID: 33641897 DOI: 10.1016/j.msec.2021.111894
    We formulated a pH-sensitive chlorhexidine-loaded mesoporous silica nanoparticles (MSN) modified with poly-(lactic-co-glycolic acid) (CHX-loaded/MSN-PLGA) and incorporated into experimental resin-based dentin adhesives at 5 and 10 wt%. Nanocarriers were characterized in terms of morphology, physicochemical features, spectral analyses, drug-release kinetics at varying pH and its effect on dentin-bound proteases was investigated. The modified dentin adhesives were characterized for cytotoxicity, antimicrobial activity, degree of conversion (DC) along with CHX release, micro-tensile bond strength (μTBS) and nano-leakage expression were studied at different pH values and storage time. CHX-loaded/MSN-PLGA nanocarriers exhibited a significant pH-dependent drug release behavior than CHX-loaded/MSN nanocarriers without PLGA modification. The highest percentage of CHX release was seen with 10 wt% CHX-loaded/MSN-PLGA doped adhesive at a pH of 5.0. CHX-loaded/MSN-PLGA modified adhesives exhibited more profound antibiofilm characteristics against S. mutans and more sustained CHX-release which was pH dependent. After 6 months in artificial saliva at varying pH, the 5 wt% CHX-loaded/MSN-PLGA doped adhesive showed excellent bonding under SEM/TEM, higher μTBS, and least nano-leakage expression. The pH-sensitive CHX-loaded/MSN-PLGA could be of crucial advantage for resin-dentin bonding applications especially in reduced pH microenvironment resulting from biofilm formation; and the activation of dentin-bound proteases as a consequence of acid etching and acidic content of bonding resin monomers.
    Matched MeSH terms: Dentin
  17. Subhi H, Reza F, Husein A, Al Shehadat SA, Nurul AA
    Int J Biomater, 2018;2018:3804293.
    PMID: 30147725 DOI: 10.1155/2018/3804293
    Effective pulp capping material must be biocompatible and have the ability to induce dentin bridge formation as well as having suitable physical and mechanical properties; however, many current materials do not satisfy the clinical requirements. This study aimed to assess the physical and mechanical properties of gypsum-based chitosan material (Gp-CT) and to evaluate its effects on cellular properties of stem cells from human exfoliated deciduous teeth (SHED). The experimental material was prepared with different concentrations of chitosan (CT) with or without BMP-2. Then, setting time, compressive strength, and pH were determined. In addition, cell viability, alkaline phosphatase (ALP) activity, and cell attachment were assessed. The setting time, compressive strength, and pH obtained were 4.1-6.6 min, 2.63-5.83 MPa, and 6.5-5.7, respectively. The cell viability to gypsum (Gp) with different CT concentrations was similar to that of the control on day 1 but statistically different from that of Gp alone on day 3. The ALP activity of SHED was significantly higher (p < 0.05) in CT- and BMP-2-containing materials than those in the control and Dycal at days 3 and 14. The scanning electron microscopy (SEM) image revealed that flattened cells were distributed across and adhered to the material surface. In conclusion, Gp-CT material shows promise as a potential material for direct pulp capping.
    Matched MeSH terms: Dentin
  18. Asaduzzaman K, Khandaker MU, Binti Baharudin NA, Amin YBM, Farook MS, Bradley DA, et al.
    Chemosphere, 2017 Jun;176:221-230.
    PMID: 28273529 DOI: 10.1016/j.chemosphere.2017.02.114
    With rapid urbanization and large-scale industrial activities, modern human populations are being increasingly subjected to chronic environmental heavy metal exposures. Elemental uptake in tooth dentine is a bioindicator, the uptake occurring during the formation and mineralization processes, stored to large extent over periods of many years. The uptake includes essential elements, most typically geogenic dietary sources, as well as non-essential elements arising through environmental insults. In this study, with the help of the Dental Faculty of the University of Malaya, a total of 50 separate human teeth were collected from dental patients of various ethnicity, age, gender, occupation, dietary habit, residency, etc. Analysis was conducted using inductively coupled plasma-mass spectrometry (ICP-MS), most samples indicating the presence of the following trace elements, placed in order of concentration, from least to greatest: As, Mn, Ba, Cu, Cr, Pb, Zn, Hg, Sb, Al, Sr, Sn. The concentrations have been observed to increase with age. Among the ethnic groups, the teeth of ethnic Chinese showed marginally greater metal concentrations than those of the Indians and Malays, the teeth dentine of females generally showing greater concentrations than that of males. Greater concentrations of Hg, Cu and Sn were found in molars while Pb, Sr, Sb and Zn were present in greater concentrations in incisors. With the elevated concentration levels of heavy metals in tooth dentine reflecting pollution from industrial emissions and urbanization, it is evident that human tooth dentine can provide chronological information on exposure, representing a reliable bio-indicator of environmental pollution.
    Matched MeSH terms: Dentin/chemistry*
  19. Mohd. Bakri, M, Mat Salleh, A.
    Ann Dent, 2003;10(1):-.
    MyJurnal
    Decalcified permanent teeth were sectioned and stained with Van Gieson and Gomori trichome dyes. Sections dyed with the Van Gieson dye did not produce any zones in dentine but with the Gomori trichome dye, four different zones of dentine were produced. Zone 1 begins at the predentine-dentine junction while zone 4 ends at the enamel - dentine junction. In zone 1, the intertubular dentine was stained clearly while in zone 3 intense staining of the peritubular dentine was observed. The result of this study supports the previous findings reported by other workers that the formation of intertubular dentine takes place in zone 1 while peritubular dentine occurs in zone 3.
    Matched MeSH terms: Dentin
  20. Daood U, Tsoi JKH, Neelakantan P, Matinlinna JP, Omar HAK, Al-Nabulsi M, et al.
    Dent Mater, 2018 08;34(8):1175-1187.
    PMID: 29779627 DOI: 10.1016/j.dental.2018.05.005
    OBJECTIVE: Collagen fibrils aid in anchoring resin composite restorations to the dentine substrate. The aim of the study was to investigate effect of non-enzymatic glycation on bond strength and durability of demineralized dentine specimens in a modified two-step etch-and-rinse dentine adhesive.

    METHODS: Dentine surfaces were etched with 37% phosphoric acid, bonded with respective in vitro ethanol and acetone adhesives modified with (m/m, 0, 1%, 2% and 3% ribose), restored with restorative composite-resin, and sectioned into resin-dentine slabs and beams to be stored for 24h or 12 months in artificial saliva. Bond-strength testing was performed with bond failure analysis. Pentosidine assay was performed on demineralized ribose modified dentine specimens with HPLC sensitive fluorescent detection. The structural variations of ribose-modified dentine were analysed using TEM and human dental pulpal cells were used for cell viability. Three-point bending test of ribose-modified dentine beams were performed and depth of penetration of adhesives evaluated with micro-Raman spectroscopy. The MMP-2 and cathepsin K activities in ribose-treated dentine powder were also quantified using ELISA. Bond strength data was expressed using two-way ANOVA followed by Tukey's test. Paired T tests were used to analyse the specimens for pentosidine crosslinks. The modulus of elasticity and dentinal MMP-2 and cathepsin K concentrations was separately analyzed using one-way ANOVA.

    RESULTS: The incorporation of RB in the experimental two-step etch-and-rinse adhesive at 1% improved the adhesive bond strength without adversely affecting the degree of polymerisation. The newly developed adhesive increases the resistance of dentine collagen to degradation by inhibiting endogenous matrix metalloproteinases and cysteine cathepsins. The application of RB to acid-etched dentine helps maintain the mechanical properties.

    SIGNIFICANCE: The incorporation of 1%RB can be considered as a potential candidate stabilizing resin dentine bond.

    Matched MeSH terms: Dentin-Bonding Agents/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links