Displaying publications 21 - 40 of 47 in total

Abstract:
Sort:
  1. Elsaid Ali AA, Taher M, Mohamed F
    J Microencapsul, 2013;30(8):728-40.
    PMID: 23631380 DOI: 10.3109/02652048.2013.788081
    Documented to exhibit cytotoxicity and poor oral bioavailability, alpha-mangostin was encapsulated into PLGA microspheres with optimization of formulation using response surface methodology. Mixed levels of four factors Face central composite design was employed to evaluate critical formulation variables. With 30 runs, optimized formula was 1% w/v polyvinyl alcohol, 1:10 ratio of oil to aqueous and sonicated at 2 and 5 min time for primary and secondary emulsion, respectively. Optimized responses for encapsulation efficiency, particle size and polydispersity index were found to be 39.12 ± 0.01%, 2.06 ± 0.017 µm and 0.95 ± 0.009, respectively, which matched values predicted by mathematical models. About 44.4% of the encapsulated alpha-mangostin was released over 4 weeks. Thermal analysis of the microspheres showed physical conversion of alpha-mangostin from crystallinity to amorphous with encapsulated one had lower in vitro cytotoxicity than free alpha-mangostin. Aerodynamic diameter (784.3 ± 7.5 nm) of this alpha-mangostin microsphere suggests suitability for peripheral pulmonary delivery.
    Matched MeSH terms: Drug Compounding/methods
  2. Etti CJ, Yusof YA, Chin NL, Mohd Tahir S
    J Diet Suppl, 2017 Mar 04;14(2):132-145.
    PMID: 27487244
    The tableting properties of Labisia pumila herbal powder, which is well known for its therapeutic benefits was investigated. The herbal powder was compressed into tablets using a stainless steel cylindrical uniaxial die of 13-mm- diameter with compaction pressures ranging from 7 to 25 MPa. Two feed weights, 0.5 and 1.0 g were used to form tablets. Some empirical models were used to describe the compressibility behavior of Labisia pumila tablets. The strength and density of tablets increased with increase in compaction pressure and resulted in reduction in porosity of the tablets. Smaller feeds, higher forces and increase in compaction pressure, contributed to more coherent tablets. These findings can be used to enhance the approach and understanding of tableting properties of Labisia pumila herbal powder tablets.
    Matched MeSH terms: Drug Compounding/methods*
  3. Rehman K, Amin MC, Muda S
    Drug Res (Stuttg), 2013 Dec;63(12):657-62.
    PMID: 23842943 DOI: 10.1055/s-0033-1349129
    The increase in diseases of the colon underscores the need to develop cost-effective site-directed therapies. We formulated a polysaccharide-based matrix system that could release ibuprofen under conditions simulating those in the colon by employing a wet granulation method. Tablets were prepared in a series of formulations containing a polysaccharide (beta-cyclodextrin and chitosan) matrix system along with ethylcellulose. We characterized physicochemical properties and performed an in vitro drug release assay in the absence and presence of digestive enzymes to assess the ability of the polysaccharides to function as a protective barrier against the upper gastrointestinal environment. Fourier transform infrared spectroscopy studies revealed no chemical interaction between ibuprofen and polysaccharides; however, spectrum analysis suggested the formation of an inclusion complex of beta-cyclodextrin with ibuprofen. The formulations contained 50% ethylcellulose and 50% beta-cyclodextrins (1:1) were proven to be the better formulation that slowly released the drug until 24 h (101.04 ± 0.65% maximum drug release in which 83.08 ± 0.89% drug was released in colonic medium) showed better drug release profiles than the formulations containing chitosan. We conclude that a beta-cyclodextrin drug carrier system may represent an effective approach for treatment of diseases of the colon.
    Matched MeSH terms: Drug Compounding/methods
  4. Shaharuddin S, Muhamad II
    Carbohydr Polym, 2015 Mar 30;119:173-81.
    PMID: 25563958 DOI: 10.1016/j.carbpol.2014.11.045
    The aim of this research was to enhance the survivability of Lactobacillus rhamnosus NRRL 442 against heat exposure via a combination of immobilization and microencapsulation processes using sugarcane bagasse (SB) and sodium alginate (NaA), respectively. The microcapsules were synthesized using different alginate concentration of 1, 2 and 3% and NaA:SB ratio of 1:0, 1:1 and 1:1.5. This beneficial step of probiotic immobilization before microencapsulation significantly enhanced microencapsulation efficiency and cell survivability after heat exposure of 90°C for 30s. Interestingly, the microcapsule of SB-immobilized probiotic could obtain protection from heat using microencapsulation of NaA concentration as low as 1%. SEM images illustrated the incorporation of immobilized L. rhamnosus within alginate matrices and its changes after heat exposure. FTIR spectra confirmed the change in functional bonding in the presence of sugarcane bagasse, probiotic and alginate. The results demonstrated a great potential in the synthesis of heat resistant microcapsules for probiotic.
    Matched MeSH terms: Drug Compounding/methods*
  5. Ali MA, Yusof YA, Chin NL, Ibrahim MN, Muneer S
    J Diet Suppl, 2019;16(1):66-85.
    PMID: 29469600 DOI: 10.1080/19390211.2018.1429517
    Moringa oleifera leaves were selected as a model due to their hundreds of health benefits. On the other hand, the powder of these leaves has exhibited poor flowability, low tensile strength, bitter taste, poor dissolution rate, and lack of information regarding dosage. These are the common hurdles and limitations in the adaptation of herbal-based medications. Therefore, a comprehensive study was planned to introduce herbal-based medicines into mainstream medicines by standardization according to the U.S. Food and Drug Administration (FDA) and international pharmaceutical standards. A Simplex Lattice Design (SLD) of Design Expert 8.0 software was used to formulate different concentrations of superdisintegrant, binder/diluent, and sweeteners. An Instron Universal Testing machine coupled with a 13 mm stainless cylindrical die was used to manufacture tablets by means of direct compression method at 20 kN applied force. Therefore, selection of excipients was made on the basis of their tensile strength, flowability, and taste-masking properties. Optimum formulation was tested on rabbits for toxicity and growth rate. All formulated tablets were evaluated on standard parameters for orally disintegrating tablets described by the Food and Drug Authority (U.S.). The optimum formulation fulfills all standard parameters such as hardness, disintegration time, friability, and dissolution rate. The present formulation showed no toxicity when tested on rabbits. The present study provides a fundamental understanding of the tableting characteristics of natural medicines. The present study provides information that will help to overcome the challenges.
    Matched MeSH terms: Drug Compounding/methods*
  6. Ali NH, Amin MCIM, Ng SF
    J Biomater Sci Polym Ed, 2019 06;30(8):629-645.
    PMID: 30896336 DOI: 10.1080/09205063.2019.1595892
    Biofilms comprise bacteria attached to wound surfaces and are major contributors to non-healing wounds. It was found that the increased resistance of biofilms to antibiotics allows wound infections to persist chronically in spite of antibiotic therapy. In this study, the reduced form of graphene oxide (rGO) was explored as plausible antibiofilm agents. The rGO was synthesized via reducing the functional groups of GO. Then, rGO were characterized using zetasizer, X-ray photoelectron spectroscopy, UV-Vis spectroscopy and FESEM. The rGO were then formulated into sodium carboxymethyl cellulose (NaCMC) hydrogels to form rGO hydrogel and tested for antibiofilm activities in vitro using XTT test, and in vivo biofilm formation assay using nematodes C. elegans. Reduced GO hydrogel was successfully formed by reducing the functional groups of GO, and a reduction of up to 95% of functional groups was confirmed with X-ray photoelectron spectroscopy analysis. XTT tests confirmed that rGO hydrogels reduced biofilm formation by S. aureus (81-84%) and P. aeruginosa (50-62%). Fluorescence intensity also confirmed that rGO hydrogel can inhibit biofilm bacteria in C. elegans experiments. This study implied that rGO hydrogel is an effective antibiofilm agent for infected wounds.
    Matched MeSH terms: Drug Compounding/methods
  7. Hezaveh H, Muhamad II, Noshadi I, Shu Fen L, Ngadi N
    J Microencapsul, 2012;29(4):368-79.
    PMID: 22309480 DOI: 10.3109/02652048.2011.651501
    We studied a model system of controlled drug release using beta-carotene and κ-carrageenan/NaCMC hydrogel as a drug and a device, respectively. Different concentrations of genipin were added to crosslink the beta-carotene loaded beads by using the dripping method. Results have shown that the cross-linked beads possess lower swelling ability in all pH conditions (pH 1.2 and 7.4), and swelling ratio decreases with increasing genipin concentration. Microstructure study shows that cross-linking has enhanced the stability and structure of the beads network. Determination of diffusion coefficient for the release of encapsulated beta-carotene indicates less diffusivity when beads are cross-linked. Swelling models using adaptive neuro fuzzy show that using genipin as a cross-linker in the kC/NaCMC hydrogels affects the transport mechanism. The model shows very good agreement with the experimental data that indicates that applying ANFIS modelling is an accurate, rapid and simple way to model in such a case for controlled release applications.
    Matched MeSH terms: Drug Compounding/methods*
  8. Wong TW, Nurulaini H
    Drug Dev Ind Pharm, 2012 Dec;38(12):1417-27.
    PMID: 22309449 DOI: 10.3109/03639045.2011.653364
    Alginate-chitosan pellets prepared by extrusion-spheronization technique exhibited fast drug dissolution.
    Matched MeSH terms: Drug Compounding/methods*
  9. Chew SC, Tan CP, Nyam KL
    J Food Sci, 2018 Sep;83(9):2288-2294.
    PMID: 30074623 DOI: 10.1111/1750-3841.14291
    Kenaf seed oil is prone to undergo oxidation due to its high content of unsaturated fatty acids, thus microencapsulation stands as an alternative to protect kenaf seed oil from the adverse environment. This study primarily aimed to evaluate the oxidative stability of microencapsulated refined kenaf seed oil (MRKSO) by the use of gum arabic, β-cyclodextrin, and sodium caseinate as the wall materials by spray drying. Bulk refined kenaf seed oil (BRKSO) and MRKSO were kept at 65 °C for 24 days to evaluate its oxidative stability, changes of tocopherol and tocotrienol contents, phytosterol content, and fatty acid profile. The results showed that the peroxide value, p-Anisidine value, and total oxidation value of BRKSO were significantly higher than the MRKSO at day 24. The total tocopherol and tocotrienol contents were reduced 66.1% and 56.8% in BRKSO and MRKSO, respectively, upon the storage. There was a reduction of 71.7% and 23.5% of phytosterol content in BRKSO and MRKSO, respectively, upon the storage. The degradation rate of polyunsaturated fatty acids in BRKSO was higher than that of MRKSO. This study showed that the current microencapsulation technique is a feasible way to retard the oxidation of kenaf seed oil.

    PRACTICAL APPLICATION: There is increasing research on the functional properties of crude kenaf seed oil, but the crude kenaf seed oil is not edible. This study offered in developing of microencapsulated refined kenaf seed oil by spray drying, which is suitable for food application. The microencapsulation of refined kenaf seed oil with healthier wall materials is beneficial in developing a diversity of functional food products and supplements.

    Matched MeSH terms: Drug Compounding/methods*
  10. Ito T, Okada K, Leong KH, Hirai D, Hayashi Y, Kumada S, et al.
    Chem Pharm Bull (Tokyo), 2019;67(3):271-276.
    PMID: 30828004 DOI: 10.1248/cpb.c18-00888
    The different states of water incorporated in wet granules were studied by a low-field benchtop 1H-NMR time-domain NMR (TD-NMR) instrument. Wet granules consisting different fillers [cornstarch (CS), microcrystalline cellulose (MCC), and D-mannitol (MAN)] with different water contents were prepared using a high-speed granulator, and then their spin-spin relaxation time (T2) was measured using the NMR relaxation technique. The experimental T2 relaxation curves were analyzed by the two-component curve fitting, and then the individual T2 relaxation behaviors of solid and water in wet granules were identified. According to the observed T2 values, it was confirmed that the molecular mobility of water in CS and MCC granules was more restricted than that in the MAN granule. The state of water appeared to be associated with the drying efficiency and moisture absorption capacity of wet granules. Thus, it was confirmed that the state of water significantly affected the wet granulation process and the characteristics of the resultant granules. In the final phase of this study, the effects of binders on the molecular mobility of water in granulation fluids and wet granules were examined. The state of water in granulation fluids was substantially changed by changing the binders. The difference was still detected in wet granules prepared by addition of these fluids to the fillers. In conclusion, TD-NMR can offer valuable knowledge on wet granulation from the viewpoint of molecular mobility of water.
    Matched MeSH terms: Drug Compounding/methods*
  11. Chellappan DK, Hansbro PM, Dua K, Hsu A, Gupta G, Ng ZY, et al.
    Pharm Nanotechnol, 2017;5(4):250-254.
    PMID: 28786351 DOI: 10.2174/2211738505666170808094635
    BACKGROUND: Vesicular systems like nanotechnology and liposomes are gaining tremendous attention lately in the field of respiratory diseases. These formulations enhance bioavailability of the drug candidate, which could be achieved through a novel drug delivery mechanism. Moreover, the therapeutic potential achieved through these systems is highly controllable over long durations of time providing better efficacy and patient compliance.

    OBJECTIVE: The objective of this paper is to review the recent literature on vesicular drug delivery systems containing curcumin.

    METHODS: We have collated and summarized various recent attempts made to develop different controlled release drug delivery systems containing curcumin which would be of great interest for herbal, formulation and biological scientists. There are several vesicular nanotechnological techniques involving curcumin which have been studied recently, targeting pulmonary diseases.

    RESULTS: Different vesicular systems containing curcumin are being studied for their therapeutic potential in different respiratory diseases. There has been a renewed interest in formulations containing curcumin recently, primarily owing to the broad spectrum therapeutic potential of this miracle substance. Various types of formulations, containing curcumin, targeting different bodily systems have recently emerged and, nevertheless, the search for newer frontiers with this drug goes on.

    CONCLUSION: This mini review, in this direction, tries to highlight the key research interventions employing vesicular systems of drug delivery with curcumin.

    Matched MeSH terms: Drug Compounding/methods
  12. Aziz HA, Tan YT, Peh KK
    AAPS PharmSciTech, 2012 Mar;13(1):35-45.
    PMID: 22101965 DOI: 10.1208/s12249-011-9707-x
    Microencapsulation of water-soluble drugs using coacervation-phase separation method is very challenging, as these drugs partitioned into the aqueous polymeric solution, resulting in poor drug entrapment. For evaluating the effect of ovalbumin on the microencapsulation of drugs with different solubility, pseudoephedrine HCl, verapamil HCl, propranolol HCl, paracetamol, and curcuminoid were used. In addition, drug mixtures comprising of paracetamol and pseudoephedrine HCl were also studied. The morphology, encapsulation efficiency, particle size, and in vitro release profile were investigated. The results showed that the solubility of the drug determined the ratio of ovalbumin to be used for successful microencapsulation. The optimum ratios of drug, ovalbumin, and gelatin for water-soluble (pseudoephedrine HCl, verapamil HCl, and propranolol HCl), sparingly water-soluble (paracetamol), and water-insoluble (curcuminoid) drugs were found to be 1:1:2, 2:3:5, and 1:3:4. As for the drug mixture, the optimum ratio of drug, ovalbumin, and gelatin was 2:3:5. Encapsulated particles prepared at the optimum ratios showed high yield, drug loading, entrapment efficiency, and sustained release profiles. The solubility of drug affected the particle size of the encapsulated particle. Highly soluble drugs resulted in smaller particle size. In conclusion, addition of ovalbumin circumvented the partitioning effect, leading to the successful microencapsulation of water-soluble drugs.
    Matched MeSH terms: Drug Compounding/methods*
  13. Liew KB, Peh KK
    Arch Pharm Res, 2021 Aug;44(8):1-10.
    PMID: 25579848 DOI: 10.1007/s12272-014-0542-y
    Orally disintegrating tablet (ODT) is a user friendly and convenient dosage form. The study aimed to investigate the effect of polymers and wheat starch on the tablet properties of lyophilized ODT, with dapoxetine as model drug. Three polymers (hydroxypropylmethyl cellulose, carbopol 934P and Eudragit® EPO) and wheat starch were used as matrix forming materials in preparation of lyophilized ODT. The polymeric dispersion was casted into a mould and kept in a freezer at -20 °C for 4 h before freeze dried for 12 h. It was found that increasing in HPMC and Carbopol 934P concentrations produced tablets with higher hardness and longer disintegration time. In contrast, Eudragit® EPO was unable to form tablet with sufficient hardness at various concentrations. Moreover, HPMC seems to have a stronger effect on tablet hardness compared to Carbopol 934P at the same concentration level. ODT of less friable was obtained. Wheat starch acted as binder which strengthen the hardness of ODTs and prolonged the disintegration time. ODT comprising of HPMC and wheat starch at ratio of 2:1 was found to be optimum based upon the tablet properties. The optimum formulation was palatable and 80 % of the drug was released within 30 min in the dissolution study.
    Matched MeSH terms: Drug Compounding/methods
  14. Ali ZA, Roslan MA, Yahya R, Wan Sulaiman WY, Puteh R
    IET Nanobiotechnol, 2017 Mar;11(2):152-156.
    PMID: 28476997 DOI: 10.1049/iet-nbt.2015.0123
    In this study, larvicidal activity of silver nanoparticles (AgNPs) synthesised using apple extract against fourth instar larvae of Aedes aegypti was determined. As a result, the AgNPs showed moderate larvicidal effects against Ae. aegypti larvae (LC50 = 15.76 ppm and LC90 = 27.7 ppm). In addition, comparison of larvicidal activity performance of AgNPs at high concentration prepared using two different methods showed that Ae. aegypti larvae was fully eliminated within the duration of 2.5 h. From X-ray diffraction, the AgNP crystallites were found to exhibit face centred cubic structure. The average size of these AgNPs as estimated by particle size distribution was in the range of 50-120 nm. The absorption maxima of the synthesised Ag showed characteristic Ag surface plasmon resonance peak. This green synthesis provides an economic, eco-friendly and clean synthesis route to Ag.
    Matched MeSH terms: Drug Compounding/methods
  15. Arbain NH, Salim N, Wui WT, Basri M, Rahman MBA
    J Oleo Sci, 2018 Aug 01;67(8):933-940.
    PMID: 30012897 DOI: 10.5650/jos.ess17253
    In this research, the palm oil ester (POE)- based nanoemulsion formulation containing quercetin for pulmonary delivery was developed. The nanoemulsion formulation was prepared by high energy emulsification method and then further optimized using D-optimal mixture design. The concentration effects of the mixture of POE:ricinoleic acid (RC), ratio 1:1 (1.50-4.50 wt.%), lecithin (1.50-2.50 wt.%), Tween 80 (0.50-1.00 wt.%), glycerol (1.50-3.00 wt.%), and water (88.0-94.9 wt.%) towards the droplet size were investigated. The results showed that the optimum formulation with 1.50 wt.% POE:RC, 1.50 wt.% lecithin, 1.50 wt.% Tween 80, 1.50 wt.% glycerol and 93.90 % water was obtained. The droplet size, polydispersity index (PDI) and zeta potential of the optimized formulation were 110.3 nm, 0.290 and -37.7 mV, respectively. The formulation also exhibited good stability against storage at 4℃ for 90 days. In vitro aerosols delivery evaluation showed that the aerosols output, aerosols rate and median mass aerodynamic diameter of the optimized nanoemulsion were 99.31%, 0.19 g/min and 4.25 µm, respectively. The characterization of physical properties and efficiency for aerosols delivery results suggest that POE- based nanoemulsion containing quercetin has the potential to be used for pulmonary delivery specifically for lung cancer treatment.
    Matched MeSH terms: Drug Compounding/methods*
  16. Fareez IM, Lim SM, Zulkefli NAA, Mishra RK, Ramasamy K
    Probiotics Antimicrob Proteins, 2018 09;10(3):543-557.
    PMID: 28493103 DOI: 10.1007/s12602-017-9284-8
    The susceptibility of probiotics to low pH and high temperature has limited their use as nutraceuticals. In this study, enhanced protection of probiotics via microencapsulation was achieved. Lactobacillus plantarum LAB12 were immobilised within polymeric matrix comprised of alginate (Alg) with supplementation of cellulose derivatives (methylcellulose (MC), sodium carboxymethyl cellulose (NaCMC) or hydroxypropyl methylcellulose (HPMC)). L. plantarum LAB12 encapsulated in Alg-HPMC(1.0) and Alg-MC(1.0) elicited improved survivability (91%) in simulated gastric conditions and facilitated maximal release (∼100%) in simulated intestinal condition. Alg-HPMC(1.0) and Alg-MC(1.0) significantly reduced (P 7 log CFU g-1. Alg-MC and Alg-HPMC improved the survival of LAB12 against simulated gastric condition (9.24 and 9.55 log CFU g-1, respectively), temperature up to 90 °C (9.54 and 9.86 log CFU g-1, respectively) and 4-week of storage at 4 °C (8.61 and 9.23 log CFU g-1, respectively) with sustained release of probiotic in intestinal condition (>9 log CFU g-1). These findings strongly suggest the potential of cellulose derivatives supplemented Alg bead as protective micro-transport for probiotic strains. They can be safely incorporated into new functional food or nutraceutical products.
    Matched MeSH terms: Drug Compounding/methods*
  17. Hanafi A, Nograles N, Abdullah S, Shamsudin MN, Rosli R
    J Pharm Sci, 2013 Feb;102(2):617-26.
    PMID: 23192729 DOI: 10.1002/jps.23389
    Cellulose acetate phthalate (CAP) microcapsules were formulated to deliver plasmid DNA (pDNA) to the intestines. The microcapsules were characterized and were found to have an average diameter of 44.33 ± 30.22 μm, and were observed to be spherical with smooth surface. The method to extract pDNA from CAP was modified to study the release profile of the pDNA. The encapsulated pDNA was found to be stable. Exposure to the acidic and basic pH conditions, which simulates the pH environment in the stomach and the intestines, showed that the release occurred in a stable manner in the former, whereas it was robust in the latter. The loading capacity and encapsulation efficiency of the microcapsules were low but the CAP recovery yield was high which indicates that the microcapsules were efficiently formed but the loading of pDNA can be improved. In vitro transfection study in 293FT cells showed that there was a significant percentage of green-fluorescent-protein-positive cells as a result of efficient transfection from CAP-encapsulated pDNA. Biodistribution studies in BALB/c mice indicate that DNA was released at the stomach and intestinal regions. CAP microcapsules loaded with pDNA, as described in this study, may be useful for potential gene delivery to the intestines for prophylactic or therapeutic measures for gastrointestinal diseases.
    Matched MeSH terms: Drug Compounding/methods*
  18. Lukman SK, Al-Ashwal RH, Sultana N, Saidin S
    Chem Pharm Bull (Tokyo), 2019;67(5):445-451.
    PMID: 31061369 DOI: 10.1248/cpb.c18-00847
    Electrodeposition is commonly used to deposit ceramic or metal coating on metallic implants. Its utilization in depositing polymer microcapsule coating is currently being explored. However, there is no encapsulation of drug within polymer microcapsules that will enhance its chemical and biological properties. Therefore, in this study, ginseng which is known for its multiple therapeutic effects was encapsulated inside biodegradable poly(lactic-co-glycolic acid) (PLGA) microcapsules to be coated on pre-treated medical grade stainless steel 316L (SS316L) using an electrodeposition technique. Polyaniline (PANI) was incorporated within the microcapsules to drive the formation of microcapsule coating. The electrodeposition was performed at different current densities (1-3 mA) and different deposition times (20-60 s). The chemical composition, morphology and wettability of the microcapsule coatings were characterized through attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) and contact angle analyses. The changes of electrolyte colors, before and after the electrodeposition were also observed. The addition of PANI has formed low wettability and uniform microcapsule coatings at 2 mA current density and 40 s deposition time. Reduction in the current density or deposition time caused less attachment of microcapsule coatings with high wettability records. While prolonging either one parameter has led to debris formation and melted microcapsules with non-uniform wettability measurements. The color of electrolytes was also changed from milky white to dark yellow when the current density and deposition time increased. The application of tolerable current density and deposition time is crucial to obtain a uniform microcapsule coating, projecting a controlled release of encapsulated drug.
    Matched MeSH terms: Drug Compounding/methods
  19. Tamilvanan S, Kumar BA, Senthilkumar SR, Baskar R, Sekharan TR
    AAPS PharmSciTech, 2010 Jun;11(2):904-9.
    PMID: 20496017 DOI: 10.1208/s12249-010-9455-3
    The objectives of the present work were to prepare castor oil-based nano-sized emulsion containing cationic droplets stabilized by poloxamer-chitosan emulgator film and to assess the kinetic stability of the prepared cationic emulsion after subjecting it to thermal processing and freeze-thaw cycling. Presence of cryoprotectants (5%, w/w, sucrose +5%, w/w, sorbitol) improved the stability of emulsions to droplet aggregation during freeze-thaw cycling. After storing the emulsion at 4 degrees C, 25 degrees C, and 37 degrees C over a period of up to 6 months, no significant change was noted in mean diameter of the dispersed oil droplets. However, the emulsion stored at the highest temperature did show a progressive decrease in the pH and zeta potential values, whereas the emulsion kept at the lowest temperatures did not. This indicates that at 37 degrees C, free fatty acids were formed from the castor oil, and consequently, the liberated free fatty acids were responsible for the reduction in the emulsion pH and zeta potential values. Thus, the injectable castor oil-based nano-sized emulsion could be useful for incorporating various active pharmaceutical ingredients that are in size from small molecular drugs to large macromolecules such as oligonucleotides.
    Matched MeSH terms: Drug Compounding/methods
  20. Patil J, Pawde DM, Bhattacharya S, Srivastava S
    AAPS PharmSciTech, 2024 Apr 25;25(5):91.
    PMID: 38664316 DOI: 10.1208/s12249-024-02813-x
    Addressing poor solubility and permeability issues associated with synthetic drugs and naturally occurring active compounds is crucial for improving bioavailability. This review explores the potential of phospholipid complex formulation technology to overcome these challenges. Phospholipids, as endogenous molecules, offer a viable solution, with drugs complexed with phospholipids demonstrating a similar absorption mechanism. The non-toxic and biodegradable nature of the phospholipid complex positions it as an ideal candidate for drug delivery. This article provides a comprehensive exploration of the mechanisms underlying phospholipid complexes. Special emphasis is placed on the solvent evaporation method, with meticulous scrutiny of formulation aspects such as the phospholipid ratio to the drug and solvent. Characterization techniques are employed to understand structural and functional attributes. Highlighting the adaptability of the phospholipid complex, the review discusses the loading of various nanoformulations and emulsion systems. These strategies aim to enhance drug delivery and efficacy in various malignancies, including breast, liver, lung, cervical, and pancreatic cancers. The broader application of the drug phospholipid complex is showcased, emphasizing its adaptability in diverse oncological settings. The review not only explores the mechanisms and formulation aspects of phospholipid complexes but also provides an overview of key clinical studies and patents. These insights contribute to the intellectual and translational advancements in drug phospholipid complexes.
    Matched MeSH terms: Drug Compounding/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links