Displaying publications 21 - 40 of 114 in total

Abstract:
Sort:
  1. Ngan CL, Basri M, Tripathy M, Abedi Karjiban R, Abdul-Malek E
    ScientificWorldJournal, 2014;2014:219035.
    PMID: 25165736 DOI: 10.1155/2014/219035
    Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer. Oil-in-water (O/W) nanoemulsions with particle sizes in the range of 70-160 nm were formed. The rheological characteristics of colloidal systems exhibited shear thinning behavior which fitted well into the power law model. The effect of xanthan gum (0.2-1.0%, w/w) and beeswax (1-3%, w/w) in the estimation of thermodynamics was further studied. From the energetic parameters calculated for the viscous flow, a moderate energy barrier for transport process was observed. Thermodynamic study showed that the enthalpy was positive in all xanthan gum and beeswax concentrations indicating that the formation of nanoemulsions could be endothermic in nature. Fullerene nanoemulsions with 0.6% or higher xanthan gum content were found to be stable against creaming and flocculation when exposed to extreme environmental conditions.
    Matched MeSH terms: Drug Delivery Systems/methods*
  2. Dorniani D, Kura AU, Hussein-Al-Ali SH, bin Hussein MZ, Fakurazi S, Shaari AH, et al.
    ScientificWorldJournal, 2014;2014:972501.
    PMID: 24895684 DOI: 10.1155/2014/972501
    The coating of an active drug, 6-mercaptopurine, into the iron oxide nanoparticles-polyethylene glycol (FNPs-PEG) in order to form a new nanocomposite, FPEGMP-2, was accomplished using coprecipitation technique. The resulting nanosized with a narrow size distribution magnetic polymeric particles show the superparamagnetic properties with 38.6 emu/g saturation magnetization at room temperature. Fourier transform infrared spectroscopy and the thermal analysis study supported the formation of the nanocomposite and the enhancement of thermal stability in the resulting nanocomposite comparing with its counterpart in free state. The loading of 6-mercaptopurine (MP) in the FPEGMP-2 nanocomposite was estimated to be about 5.6% and the kinetic experimental data properly correlated with the pseudo-second order model. Also, the release of MP from the FPEGMP-2 nanocomposite shows the sustained release manner which is remarkably lower in phosphate buffered solution at pH 7.4 than pH 4.8, due to different release mechanism. The maximum percentage release of MP from the nanocomposite reached about 60% and 97% within about 92 and 74 hours when exposed to pH 7.4 and 4.8, respectively.
    Matched MeSH terms: Drug Delivery Systems/methods*
  3. Manickam B, Sreedharan R, Elumalai M
    Curr Drug Deliv, 2014;11(1):139-45.
    PMID: 24041312
    One of the popular approaches in controlling drug delivery from the polymeric carriers is suitably achieved by the inclusion of crosslinking agents into the formulations at different concentrations. Nevertheless, addition of the chemical crosslinkers such as glutaraldehyde, formaldehyde etc, used in the drug delivery systems causes very serious cytotoxic reactions. These chemical crosslinking agents did not offer any significant advantageous effects when compared to the natural crosslinking agents for instance genipin, which is quite less toxic, biocompatible and offers very stable crosslinked products. Based on the earlier reports the safety of this particular natural crosslinker is very well established, since it has been widely used as a Chinese traditional medicine for long-time, isolated from fruits of the plant Gardenia jasminoides Ellis. This concise article largely portrayed the value of this unique natural crosslinker, utilized in controlling the drug delivery from the various formulations.
    Matched MeSH terms: Drug Delivery Systems/methods*
  4. Waran V, Sek K, Bahuri NF, Narayanan P, Chandran H
    Minim Invasive Neurosurg, 2011 Oct;54(5-6):279-81.
    PMID: 22278798 DOI: 10.1055/s-0031-1297997
    In endoscopic neurosurgery problems with haemostasis due to poor access exist. We have developed a system which allows the delivery of a variety of haemostatic agents in a more efficacious manner. The system has been used successfully in endoscopic skull base surgery and endoscopic surgery within the parenchyma of the brain using tube systems.
    Matched MeSH terms: Drug Delivery Systems/methods
  5. Jalil MA, Innate K, Suwanpayak N, Yupapin PP, Ali J
    PMID: 21999106 DOI: 10.3109/10731199.2011.618134
    By using a pair of tweezers to generate the intense optical vortices within the PANDA ring resonator, the required molecules (drug volumes) can be trapped and moved dynamically within the molecular bus networks, in which the required diagnosis or drug delivery targets can be performed within the network. The advantage of the proposed system is that the proposed diagnostic method can perform within the tiny system (thin film device or circuit), which can be available for a human embedded device for diagnostic use. The channel spacing of the trapped volumes (molecules) within the bus molecular networks can be provided.
    Matched MeSH terms: Drug Delivery Systems/methods*
  6. Kalani M, Yunus R, Abdullah N
    Int J Nanomedicine, 2011;6:1101-5.
    PMID: 21698077 DOI: 10.2147/IJN.S18979
    The aim of this study was to optimize the different process parameters including pressure, temperature, and polymer concentration, to produce fine small spherical particles with a narrow particle size distribution using a supercritical antisolvent method for drug encapsulation. The interaction between different process parameters was also investigated.
    Matched MeSH terms: Drug Delivery Systems/methods*
  7. Jalil MA, Suwanpayak N, Kulsirirat K, Suttirak S, Ali J, Yupapin PP
    Int J Nanomedicine, 2011;6:2925-32.
    PMID: 22131837 DOI: 10.2147/IJN.S26266
    A novel nanomicro syringe system was proposed for drug storage and delivery using a PANDA ring resonator and atomic buffer. A PANDA ring is a modified optical add/drop filter, named after the well known Chinese bear. In principle, the molecule/drug is trapped by the force generated by different combinations of gradient fields and scattering photons within the PANDA ring. A nanomicro needle system can be formed by optical vortices in the liquid core waveguide which can be embedded on a chip, and can be used for long-term treatment. By using intense optical vortices, the required genes/molecules can be trapped and transported dynamically to the intended destinations via the nanomicro syringe, which is available for drug delivery to target tissues, in particular tumors. The advantage of the proposed system is that by confining the treatment area, the effect can be decreased. The use of different optical vortices for therapeutic efficiency is also discussed.
    Matched MeSH terms: Drug Delivery Systems/methods
  8. Elyagoby A, Layas N, Wong TW
    J Pharm Sci, 2013 Feb;102(2):604-16.
    PMID: 23225084 DOI: 10.1002/jps.23388
    Conventional fluid-bed and immersion film coating of hydrophilic zinc pectinate pellets by hydrophobic ethylcellulose is met with fast drug release. This study explored in situ intracapsular pellet coating for colon-specific delivery of 5-fluorouracil (5-FU). The solid coating powder constituted ethylcellulose and pectin in weight ratios of 11:0 to 2:9. Its weight ratio to pellets varied between 2:3 and 3:2. Pectin was used as excipient of core pellets and coating powder in view of its potential use in colon cancer treatment. Delayed 5-FU release and core pectin dissolution were attainable when the weight ratio of solid coating powder to pellets was kept at 3:2, and weight ratio of ethylcellulose and pectin in coating powder was kept at 8:3 with particle size of ethylcellulose reduced to 22 μm. In situ intracapsular wetting of pectin coat by dissolution medium resulted in the formation of ethylcellulose plug interconnecting with pellets through the binding action of pectin. Less than 25% of drug was released at the upper gastrointestinal tract. The majority of drug was released upon prolonged dissolution and in response to colonic enzyme pectinase, which digested core pellets.
    Matched MeSH terms: Drug Delivery Systems/methods*
  9. Pathak M, Coombes AGA, Turner MS, Palmer C, Wang D, Steadman KJ
    J Pharm Sci, 2015 Dec;104(12):4217-4222.
    PMID: 26398713 DOI: 10.1002/jps.24652
    Polycaprolactone (PCL) matrices loaded with doxycycline were produced by rapidly cooling suspensions of the drug powder in PCL solution in acetone. Drug loadings of 5%, 10%, and 15% (w/w) of the PCL content were achieved. Exposure of doxycycline powder to matrix processing conditions in the absence of PCL revealed an endothermic peak at 65°C with the main peak at 167°C, suggesting solvatomorph formation. Rapid "burst release" of 24%-32% was measured within 24 h when matrices were immersed in simulated vaginal fluid (SVF) at 37°C, because of the presence of drug at or close to the matrix surface, which is further confirmed by scanning electron microscopy. Gradual release of 66%-76% of the drug content occurred over the following 14 days. SVF containing doxycycline released from drug-loaded PCL matrices retained 81%-90% antimicrobial activity compared with the nonformulated drug. The concentrations of doxycycline predicted to be released into vaginal fluid from a PCL matrix in the form of an intravaginal ring would be sufficient to kill Neisseria gonorrhoea and many other pathogens. These results indicate that PCL may be a suitable polymer for controlled intravaginal delivery of doxycycline for the treatment of sexually transmitted infections.
    Matched MeSH terms: Drug Delivery Systems/methods
  10. Ansary RH, Rahman MM, Awang MB, Katas H, Hadi H, Doolaanea AA
    Drug Deliv Transl Res, 2016 06;6(3):308-18.
    PMID: 26817478 DOI: 10.1007/s13346-016-0278-y
    The purpose of this study was to fabricate insulin-loaded double-walled and single-polymer poly(lactide-co-glycolide) (PLGA) microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA), and a moderate degrading carboxyl-terminated PLGA polymers. A modified water-in-oil-in-oil-in-water (w/o/o/w) emulsion solvent evaporation technique was employed to prepare double-walled microspheres, whereas single-polymer microspheres were fabricated by a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The effect of fabrication techniques and polymer characteristics on microspheres size, morphology, encapsulation efficiency, in vitro release, and insulin stability was evaluated. The prepared double-walled microspheres were essentially non-porous, smooth surfaced, and spherical in shape, whereas single-polymer microspheres were highly porous. Double-walled microspheres exhibited a significantly reduced initial burst followed by sustained and almost complete release of insulin compared to single-polymer microspheres. Initial burst release was further suppressed from double-walled microspheres when the mass ratio of the component polymers was increased. In conclusion, double-walled microspheres made of Glu-PLGA and PLGA can be a potential delivery system of therapeutic insulin.
    Matched MeSH terms: Drug Delivery Systems/methods
  11. Mousavi SM, Zarei M, Hashemi SA, Ramakrishna S, Chiang WH, Lai CW, et al.
    Drug Metab Rev, 2020 05;52(2):299-318.
    PMID: 32150480 DOI: 10.1080/03602532.2020.1734021
    Gold Nanostars (GNS) have attracted tremendous attention toward themselves owing to their multi-branched structure and unique properties. These state of the art metallic nanoparticles possess intrinsic features like remarkable optical properties and exceptional physiochemical activities. These star-shaped gold nanoparticles can predominantly be utilized in biosensing, photothermal therapy, imaging, surface-enhanced Raman spectroscopy and target drug delivery applications due to their low toxicity and extraordinary optical features. In the current review, recent approaches in the matter of GNS in case of diagnosis, bioimaging and biomedical applications were summarized and reported. In this regard, first an overview about the structure and general properties of GNS were reported and thence detailed information regarding the diagnostic, bioimaging, photothermal therapy, and drug delivery applications of such novel nanomaterials were presented in detail. Summarized information clearly highlighting the superior capability of GNS as potential multi-functional materials for biomedical applications.
    Matched MeSH terms: Drug Delivery Systems/methods
  12. Das S, Rajalingham S
    Pain, 2012 Jan;153(1):250-251.
    PMID: 22119339 DOI: 10.1016/j.pain.2011.10.039
    Matched MeSH terms: Drug Delivery Systems/methods*
  13. Haque ST, Chowdhury EH
    Curr Drug Deliv, 2018;15(4):485-496.
    PMID: 29165073 DOI: 10.2174/1567201814666171120114034
    BACKGROUND: Delivery of conventional small molecule drugs and currently evolving nucleic acid-based therapeutics, such as small interfering RNAs (siRNAs) and genes, and contrast agents for high resolution imaging, to the target site of action is highly demanding to increase the therapeutic and imaging efficacy while minimizing the off-target effects of the delivered molecules, as well as develop novel therapeutic and imaging approaches.

    METHODS: We have undertaken a structured search for peer-reviewed research and review articles predominantly indexed in PubMed focusing on the organic-inorganic hybrid nanoparticles with evidence of their potent roles in intracellular delivery of therapeutic and imaging agents in different animal models.

    RESULTS: Organic-inorganic hybrid nanoparticles offer a number of advantages by combining the unique properties of the organic and inorganic counterparts, thus improving the pharmacokinetic behavior and targetability of drugs and contrast agents, and conferring the exclusive optical and magnetic properties for both therapeutic and imaging purposes. Different polymers, lipids, dendrimers, peptides, cell membranes, and small organic molecules are attached via covalent or non-covalent interactions with diverse inorganic nanoparticles of gold, mesoporous silica, magnetic iron oxide, carbon nanotubes and quantum dots for efficient drug delivery and imaging purposes.

    CONCLUSION: We have thus highlighted here the progress made so far in utilizing different organicinorganic hybrid nanoparticles for in vivo delivery of anti-cancer drugs, siRNA, genes and imaging agents.

    Matched MeSH terms: Drug Delivery Systems/methods*
  14. Pandey M, Mohamad N, Amin MC
    Mol Pharm, 2014 Oct 6;11(10):3596-608.
    PMID: 25157890 DOI: 10.1021/mp500337r
    The objective of this study is to synthesize and evaluate acute toxicity of the bacterial cellulose (BC)/acrylamide (Am) hydrogels as noncytotoxic and biocompatible oral drug delivery vehicles. A novel series of solubilized BC/Am hydrogels were synthesized using a microwave irradiation method. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), swelling ratio, porosity, drug release, and in vitro and in vivo biocompatibility experiments. FTIR spectra revealed that the BC crystallinity and gel fraction decreased as the NaOH concentration increased from 2% to 10% w/v, whereas the optical transparency, pH sensitivity, and porosity were enhanced with increasing alkali concentration. Theophylline was used as a model drug for drug loading and release studies. The percentage of drug released was higher at pH 7.4 compared to pH 1.5. In vitro cytotoxicity and hemolytic tests indicated that the BC/Am hydrogel is noncytotoxic and hemocompatible. Results of acute oral toxicity tests on ICR mice suggested that the hydrogels are nontoxic up to 2000 mg/kg when administered orally, as no toxic response or histopathological changes were observed in comparison to control mice. The results of this study demonstrated that the pH-sensitive smart hydrogel makes it a possible safe carrier for oral drug delivery.
    Matched MeSH terms: Drug Delivery Systems/methods*
  15. Shi W, Ching YC, Chuah CH
    Int J Biol Macromol, 2021 Feb 15;170:751-767.
    PMID: 33412201 DOI: 10.1016/j.ijbiomac.2020.12.214
    Spherical aerogels are not easily broken during use and are easier to transport and store which can be used as templates for drug delivery. This review summarizes the possible approaches for the preparation of aerogel beads and microspheres based on chitosan and cellulose, an overview to the methods of manufacturing droplets is presented, afterwards, the transition mechanisms from sol to a spherical gel are reviewed in detail followed by different drying processes to obtain spherical aerogels with porous structures. Additionally, a specific focus is given to aerogel beads and microspheres to be regarded as drug delivery carriers. Furthermore, a core/shell architecture of aerogel beads and microspheres for controlled drug release is described and subjected to inspire readers to create novel drug release system. Finally, the conclusions and outlooks of aerogel beads and microspheres for drug delivery are summarized.
    Matched MeSH terms: Drug Delivery Systems/methods
  16. Sabri AH, Ogilvie J, Abdulhamid K, Shpadaruk V, McKenna J, Segal J, et al.
    Eur J Pharm Biopharm, 2019 Jul;140:121-140.
    PMID: 31059780 DOI: 10.1016/j.ejpb.2019.05.001
    Since the first patent for microneedles was filed in the 1970s, research on utilising microneedles as a drug delivery system has progressed significantly. In addition to the extensive research on microneedles for improving transdermal drug delivery, there is a growing interest in using these devices to manage dermatological conditions. This review aims to provide the background on microneedles, the clinical benefits, and challenges of the device along with the potential dermatological conditions that may benefit from the application of such a drug delivery system. The first part of the review provides an outline on benefits and challenges of translating microneedle-based drug delivery systems into clinical practice. The second part of the review covers the application of microneedles in treating dermatological conditions. The efficacy of microneedles along with the limitations of such a strategy to treat diseased skin shall be addressed.
    Matched MeSH terms: Drug Delivery Systems/methods
  17. Abrami M, Golob S, Pontelli F, Chiarappa G, Grassi G, Perissutti B, et al.
    Int J Pharm, 2019 Mar 25;559:373-381.
    PMID: 30716402 DOI: 10.1016/j.ijpharm.2019.01.055
    Bacterial infections represent an important drawback in the orthopaedic field, as they can develop either immediately after surgery procedures or after some years. Specifically, in case of implants, they are alleged to be troublesome as their elimination often compels a surgical removal of the infected implant. A possible solution strategy could involve a local coating of the implant by an antibacterial system, which requires to be easily applicable, biocompatible and able to provide the desired release kinetics for the selected antibacterial drug. Thus, this work focusses on a biphasic system made up by a thermo-reversible gel matrix (Poloxamer 407/water system) hosting a dispersed phase (PLGA micro-particles), containing a model antibacterial drug (vancomycin hydrochloride). In order to understand the key parameters ruling the performance of this delivery system, we developed a mathematical model able to discriminate the drug diffusion inside micro-particles and within the gel phase, eventually providing to predict the drug release kinetics. The model reliability was confirmed by fitting to experimental data, proposing as a powerful theoretical approach to design and optimize such in situ delivery systems.
    Matched MeSH terms: Drug Delivery Systems/methods
  18. Gupta M, Aina A, Boukari Y, Doughty S, Morris A, Billa N
    Pharm Dev Technol, 2018 Feb;23(2):207-210.
    PMID: 28290217 DOI: 10.1080/10837450.2017.1304415
    Poly(lactic-co-glycolic acid) (PLGA) is a well-studied biodegradable polymer used in drug delivery and other medical applications such as in tissue regeneration. It is often necessary to impart porosity within the scaffold (microparticles) in order to promote the growth of tissue during the regeneration process. Sodium chloride and ammonium bicarbonate have been extensively used as porogens in the generation of porous microstructure. In this study, we compared the effect of volumes (250 μl, 500 μl and 750 μl) of two porogens, sodium chloride (1.71 M) and ammonium bicarbonate (1.71 M), on the porosity of PLGA microparticles.
    Matched MeSH terms: Drug Delivery Systems/methods
  19. Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y
    Int J Nanomedicine, 2017;12:2957-2978.
    PMID: 28442906 DOI: 10.2147/IJN.S127683
    This review discusses the impact of green and environmentally safe chemistry on the field of nanotechnology-driven drug delivery in a new field termed "green nanomedicine". Studies have shown that among many examples of green nanotechnology-driven drug delivery systems, those receiving the greatest amount of attention include nanometal particles, polymers, and biological materials. Furthermore, green nanodrug delivery systems based on environmentally safe chemical reactions or using natural biomaterials (such as plant extracts and microorganisms) are now producing innovative materials revolutionizing the field. In this review, the use of green chemistry design, synthesis, and application principles and eco-friendly synthesis techniques with low side effects are discussed. The review ends with a description of key future efforts that must ensue for this field to continue to grow.
    Matched MeSH terms: Drug Delivery Systems/methods*
  20. Dong J, Tao L, Abourehab MAS, Hussain Z
    Int J Biol Macromol, 2018 Sep;116:1268-1281.
    PMID: 29782984 DOI: 10.1016/j.ijbiomac.2018.05.116
    Osteoporosis is a medical condition of fragile bones with an increased susceptibility to fracture. Despite having availability of a wide range of pharmacological agents, prevalence of osteoporosis is continuously escalating. Owing to excellent biomedical achievements of nanomedicines in the last few decades, we aimed combo-delivery of bone anti-resorptive agent, alendronate (ALN), and bone density enhancing drug, curcumin (CUR) in the form of polymeric nanoparticles. To further optimize the therapeutic efficacy, the prepared ALN/CUR nanoparticles (NPs) were decorated with hyaluronic acid (HA) which is a well-documented biomacromolecule having exceptional bone regenerating potential. The optimized nanoformulation was then evaluated for bone regeneration efficacy by assessing time-mannered modulation in the proliferation, differentiation, and mineralization of MC3T3-E1 cells, a pre-osteoblastic model. Moreover, the time-mannered expression of various bone-forming protein biomarkers such as bone morphogenetic protein, runt related transcription factor 2, and osteocalcin were assessed in the cell lysates. Results revealed that HA-ALN/CUR NPs provoke remarkable increase in the proliferation, differentiation, and mineralization in the ECM of MC3T3-E1 cells which ultimately leads to enhanced bone formation. This new strategy of employing simultaneous delivery of anti-resorptive and bone forming agents would open new horizons for scientists as an efficient alternative pharmacotherapy for the management of osteoporosis.
    Matched MeSH terms: Drug Delivery Systems/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links