Displaying publications 21 - 40 of 118 in total

Abstract:
Sort:
  1. Angelopoulou E, Paudel YN, Piperi C
    Transl Oncol, 2019 Jul 25;12(10):1357-1363.
    PMID: 31352198 DOI: 10.1016/j.tranon.2019.07.001
    Gliomas present the most common type of brain tumors in adults, characterized by high morbidity and mortality. In search of potential molecular targets, members of paired box (PAX) family have been found expressed in neural crest cells, regulating their proliferation, apoptosis, migration and differentiation. Recently, PAX3 overexpression has been implicated in glioma tumorigenesis by enhancing proliferation, increasing invasiveness and inducing resistance to apoptosis of glioma cells, while maintaining brain glioma stem cells (BGSCs) stemness. Although the oncogenic potential of PAX3 in gliomas is still under investigation, experimental evidence suggests that PAX3 function is mainly mediated through the canonical and non-canonical Wnt signaling pathway as well as through its interaction with GFAP and p53 proteins. In addition, PAX3 may contribute to the chemoresistance of glioma cells and modulates the effectiveness of novel experimental therapies. Further evidence indicates that PAX3 may represent a novel diagnostic and prognostic biomarker for gliomas, facilitating personalized treatment. This review addresses the emerging role of PAX3 in glioma diagnosis, prognosis and treatment, aiming to shed more light on the underlying molecular mechanisms that could lead to more effective treatment approaches.
    Matched MeSH terms: Drug Resistance, Neoplasm
  2. Mai CW, Yaeghoobi M, Abd-Rahman N, Kang YB, Pichika MR
    Eur J Med Chem, 2014 Apr 22;77:378-87.
    PMID: 24675137 DOI: 10.1016/j.ejmech.2014.03.002
    In the present study, a series of 46 chalcones were synthesised and evaluated for antiproliferative activities against the human TRAIL-resistant breast (MCF-7, MDA-MB-231), cervical (HeLa), ovarian (Caov-3), lung (A549), liver (HepG2), colorectal (HT-29), nasopharyngeal (CNE-1), erythromyeloblastoid (K-562) and T-lymphoblastoid (CEM-SS) cancer cells. The chalcone 38 containing an amino (-NH2) group on ring A was the most potent and selective against cancer cells. The effects of the chalcone 38 on regulation of 43 apoptosis-related markers in HT-29 cells were determined. The results showed that 20 apoptotic markers (Bad, Bax, Bcl-2, Bcl-w, Bid, Bim, CD40, Fas, HSP27, IGF-1, IGFBP-4, IGFBP-5, Livin, p21, Survivin, sTNF-R2, TRAIL-R2, XIAP, caspase-3 and caspase-8) were either up regulated or down regulated.
    Matched MeSH terms: Drug Resistance, Neoplasm/drug effects*
  3. Loh HY, Norman BP, Lai KS, Rahman NMANA, Alitheen NBM, Osman MA
    Int J Mol Sci, 2019 Oct 06;20(19).
    PMID: 31590453 DOI: 10.3390/ijms20194940
    MicroRNAs (miRNAs) are small non-coding RNA molecules which function as critical post-transcriptional gene regulators of various biological functions. Generally, miRNAs negatively regulate gene expression by binding to their selective messenger RNAs (mRNAs), thereby leading to either mRNA degradation or translational repression, depending on the degree of complementarity with target mRNA sequences. Aberrant expression of these miRNAs has been linked etiologically with various human diseases including breast cancer. Different cellular pathways of breast cancer development such as cell proliferation, apoptotic response, metastasis, cancer recurrence and chemoresistance are regulated by either the oncogenic miRNA (oncomiR) or tumor suppressor miRNA (tsmiR). In this review, we highlight the current state of research into miRNA involved in breast cancer, with particular attention to articles published between the years 2000 to 2019, using detailed searches of the databases PubMed, Google Scholar, and Scopus. The post-transcriptional gene regulatory roles of various dysregulated miRNAs in breast cancer and their potential as therapeutic targets are also discussed.
    Matched MeSH terms: Drug Resistance, Neoplasm*
  4. Ngai SC
    Curr Drug Targets, 2020;21(9):849-854.
    PMID: 32116190 DOI: 10.2174/1389450121666200302124426
    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a natural protein expressed in a wide range of tissues in our body. It is a promising anti-cancer agent due to its selective killing of cancer cells, rendering normal cells unharmed. However, resistance occurs either intrinsically or develops over the course of TRAIL treatment. In view of its specificity to cancer cells, there is a pushing need to overcome TRAIL resistance. Curcumin (Cur), a natural active constituent of turmeric, has been evidenced to have anti-cancer properties. However, it is limited by its sparing solubility and low bioavailability. Combinational therapy is one of the most frequently used strategies to overcome these limitations, which has been proved to be more effective than monotherapy by achieving synergistic effects and reducing toxicity. This review aims to discuss TRAIL and its underlying apoptotic mechanisms, the combinational treatment of Cur and TRAIL in view of their respective limitations, and the underlying apoptotic mechanisms activated by the sensitization of cancers by Cur towards TRAIL-induced apoptosis. Finally, this review discusses the research gap and the author's insight into this research area in bridging the research gap from bench to bedside.
    Matched MeSH terms: Drug Resistance, Neoplasm/drug effects
  5. Phuah NH, Azmi MN, Awang K, Nagoor NH
    Mol Cells, 2017 Apr;40(4):291-298.
    PMID: 28401751 DOI: 10.14348/molcells.2017.2285
    MicroRNAs (miRNAs) are short non-coding RNAs that regulate genes posttranscriptionally. Past studies have reported that miR-210 is up-regulated in many cancers including cervical cancer, and plays a pleiotropic role in carcinogenesis. However, its role in regulating response towards anti-cancer agents has not been fully elucidated. We have previously reported that the natural compound 1'S-1'-acetoxychavicol acetate (ACA) is able to induce cytotoxicity in various cancer cells including cervical cancer cells. Hence, this study aims to investigate the mechanistic role of miR-210 in regulating response towards ACA in cervical cancer cells. In the present study, we found that ACA down-regulated miR-210 expression in cervical cancer cells, and suppression of miR-210 expression enhanced sensitivity towards ACA by inhibiting cell proliferation and promoting apoptosis. Western blot analysis showed increased expression of mothers against decapentaplegic homolog 4 (SMAD4), which was predicted as a target of miR-210 by target prediction programs, following treatment with ACA. Luciferase reporter assay confirmed that miR-210 binds to sequences in 3'UTR of SMAD4. Furthermore, decreased in SMAD4 protein expression was observed when miR-210 was overexpressed. Conversely, SMAD4 protein expression increased when miR-210 expression was suppressed. Lastly, we demonstrated that overexpression of SMAD4 augmented the anti-proliferative and apoptosis-inducing effects of ACA. Taken together, our results demonstrated that down-regulation of miR-210 conferred sensitivity towards ACA in cervical cancer cells by targeting SMAD4. These findings suggest that combination of miRNAs and natural compounds could provide new strategies in treating cervical cancer.
    Matched MeSH terms: Drug Resistance, Neoplasm/drug effects*
  6. Hasanpourghadi M, Pandurangan AK, Karthikeyan C, Trivedi P, Mustafa MR
    Oncotarget, 2017 Apr 25;8(17):28840-28853.
    PMID: 28392503 DOI: 10.18632/oncotarget.16263
    Microtubule Targeting Agents (MTAs) induce cell death through mitotic arrest, preferentially affecting rapidly dividing cancer cells over slowly proliferating normal cells. Previously, we showed that Methyl 2-(-5-fluoro-2-hydroxyphenyl)-1H-benzo[d]imidazole-5-carboxylate (MBIC) acts as a potential MTA. In this study, we demonstrated that MBIC exhibits greater toxicity towards non-aggressive breast cancer cell-line, MCF-7 (IC50 = 0.73 ± 0.0 μM) compared to normal fibroblast cell-line, L-cells (IC50 = 59.6 ± 2.5 μM). The IC50 of MBIC against the aggressive breast cancer cell-line, MDA-MB-231 was 20.4 ± 0.2 μM. We hypothesized that the relatively high resistance of MDA-MB-231 cells to MBIC is associated with p53 mutation. We investigated p53 and three of its downstream proteins: survivin, cyclin dependent kinase (Cdk1) and cyclin B1. Following treatment with MBIC, survivin co-immunoprecipitated with caspases with higher affinity in MDA-MB-231 compared to MCF-7 cells. Furthermore, silencing survivin caused a 4.5-fold increase in sensitivity of MDA-MB-231 cells to MBIC (IC50 = 4.4 ± 0.3). In addition, 4 weeks of MBIC administration in MDA-MB-231 cells inoculated BALB/c nude mice resulted in 79.7% reduction of tumor volume compared to the untreated group with no severe sign of toxicity. Our results demonstrated MBIC has multiple anti-tumor actions and could be a potential drug in breast cancer therapy.
    Matched MeSH terms: Drug Resistance, Neoplasm
  7. Gobe GC, Ng KL, Small DM, Vesey DA, Johnson DW, Samaratunga H, et al.
    Biochem Biophys Res Commun, 2016 Apr 22;473(1):47-53.
    PMID: 26995091 DOI: 10.1016/j.bbrc.2016.03.048
    Apoptosis repressor with caspase recruitment domain (ARC), an endogenous inhibitor of apoptosis, is upregulated in a number of human cancers, thereby conferring drug resistance and giving a rationale for the inhibition of ARC to overcome drug resistance. Our hypothesis was that ARC would be similarly upregulated and targetable for therapy in renal cell carcinoma (RCC). Expression of ARC was assessed in 85 human RCC samples and paired non-neoplastic kidney by qPCR and immunohistochemistry, as well as in four RCC cell lines by qPCR, Western immunoblot and confocal microscopy. Contrary to expectations, ARC was significantly decreased in the majority of clear cell RCC and in three (ACHN, Caki-1 and 786-0) of the four RCC cell lines compared with the HK-2 non-cancerous human proximal tubular epithelial cell line. Inhibition of ARC with shRNA in the RCC cell line (SN12K1) that had shown increased ARC expression conferred resistance to Sunitinib, and upregulated interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF). We therefore propose that decreased ARC, particularly in clear cell RCC, confers resistance to targeted therapy through restoration of tyrosine kinase-independent alternate angiogenesis pathways. Although the results are contrary to expectations from other cancer studies, they were confirmed here with multiple analytical methods. We believe the highly heterogeneous nature of cancers like RCC predicate that expression patterns of molecules must be interpreted in relation to respective matched non-neoplastic regions. In the current study, this procedure indicated that ARC is decreased in RCC.
    Matched MeSH terms: Drug Resistance, Neoplasm*
  8. Lim YY, Zaidi AMA, Miskon A
    Molecules, 2023 Mar 24;28(7).
    PMID: 37049685 DOI: 10.3390/molecules28072920
    Due to its built-up chemoresistance after prolonged usage, the demand for replacing platinum in metal-based drugs (MBD) is rising. The first MBD approved by the FDA for cancer therapy was cisplatin in 1978. Even after nearly four and a half decades of trials, there has been no significant improvement in osteosarcoma (OS) therapy. In fact, many MBD have been developed, but the chemoresistance problem raised by platinum remains unresolved. This motivates us to elucidate the possibilities of the copper and zinc (CuZn) combination to replace platinum in MBD. Thus, the anti-chemoresistance properties of CuZn and their physiological functions for OS therapy are highlighted. Herein, we summarise their chelators, main organic solvents, and ligand functions in their structures that are involved in anti-chemoresistance properties. Through this review, it is rational to discuss their ligands' roles as biosensors in drug delivery systems. Hereafter, an in-depth understanding of their redox and photoactive function relationships is provided. The disadvantage is that the other functions of biosensors cannot be elaborated on here. As a result, this review is being developed, which is expected to intensify OS drugs with higher cure rates. Nonetheless, this advancement intends to solve the major chemoresistance obstacle towards clinical efficacy.
    Matched MeSH terms: Drug Resistance, Neoplasm
  9. Abdel-Sattar OE, Allam RM, Al-Abd AM, Avula B, Katragunta K, Khan IA, et al.
    Sci Rep, 2023 Feb 15;13(1):2683.
    PMID: 36792619 DOI: 10.1038/s41598-023-29566-0
    The members of the genus Phyllanthus have long been used in the treatment of a broad spectrum of diseases. They exhibited antiproliferative activity against various human cancer cell lines. Breast cancer is the most diagnosed cancer and a leading cause of cancer death among women. Doxorubicin (DOX) is an anticancer agent used to treat breast cancer despite its significant cardiotoxicity along with resistance development. Therefore, this study was designed to assess the potential cytotoxicity of P. niruri extracts (and fractions) alone and in combination with DOX against naïve (MCF-7) and doxorubicin-resistant breast cancer cell lines (MCF-7ADR). The methylene chloride fraction (CH2Cl2) showed the most cytotoxic activity among all tested fractions. Interestingly, the CH2Cl2-fraction was more cytotoxic against MCF-7ADR than MCF-7 at 100 µg/mL. At sub-cytotoxic concentrations, this fraction enhanced the cytotoxic effect of DOX against the both cell lines under investigation (IC50 values of 0.054 µg/mL and 0.14 µg/mL vs. 0.2 µg/mL for DOX alone against MCF-7) and (1.2 µg/mL and 0.23 µg/mL vs. 9.9 µg/mL for DOX alone against MCF-7ADR), respectively. Further, TLC fractionation showed that B2 subfraction in equitoxic combination with DOX exerted a powerful synergism (IC50 values of 0.03 µg/mL vs. 9.9 µg/mL for DOX alone) within MCF-7ADR. Untargeted metabolite profiling of the crude methanolic extract (MeOH) and CH2Cl2 fraction exhibiting potential cytotoxicity was conducted using liquid chromatography diode array detector-quadrupole time-of-flight mass spectrometry (LC-DAD-QTOF). Further studies are needed to separate the active compounds from the CH2Cl2 fraction and elucidate their mechanism(s) of action.
    Matched MeSH terms: Drug Resistance, Neoplasm
  10. Aldawsari HM, Gorain B, Alhakamy NA, Md S
    J Drug Target, 2020 02;28(2):166-175.
    PMID: 31339380 DOI: 10.1080/1061186X.2019.1648478
    Tumour-associated macrophages (TAMs) represent as much as 50% of the solid mass in different types of human solid tumours including lung, breast, ovarian and pancreatic adenocarcinomas. The tumour microenvironment (TME) plays an important role in the polarisation of macrophages into the M1 phenotype, which is tumour-suppressive, or M2 phenotype, which is tumour promoting. Preclinical and clinical evidences suggest that TAMs are predominantly of the M2 phenotype that supports immune suppression, tumour growth, angiogenesis, metastasis and therapeutic resistance. Hence, significant attention has been focussed on the development of strategies for the modification of TAMs to halt lung cancer progression. The promotion of repolarisation from the M2 to the M1 subtype, or the prevention of M2 polarisation of TAMs in the stromal environment is potential approaches to reduce progression and metastasis of lung cancer. The focus of this article is an introduction to the development and evaluation of therapeutic agents that may halt lung cancer progression via the manipulation of macrophage polarisation. This article will address recent advances in the therapeutic efficacy of nanomedicine exploiting surface functionalisation of nanoparticles and will also consider future perspectives.
    Matched MeSH terms: Drug Resistance, Neoplasm
  11. Madden SF, Cremona M, Farrelly AM, Low WH, McBryan J
    Cancer Gene Ther, 2023 Feb;30(2):324-334.
    PMID: 36266450 DOI: 10.1038/s41417-022-00548-0
    To prevent the development of endocrine-resistant breast cancer, additional targeted therapies are increasingly being trialled in combination with endocrine therapy. The molecular mechanisms facilitating cancer cell survival during endocrine treatment remain unknown but could help direct selection of additional targeted therapies. We present a novel proteomic timecourse dataset, profiling potential drug targets in a population of MCF7 cells during 1 year of tamoxifen treatment. Reverse phase protein arrays profiled >70 proteins across 30 timepoints. A biphasic response to tamoxifen was evident, which coincided with changes in growth rate. Tamoxifen strongly impeded cell growth for the first 160 days, followed by gradual growth recovery and eventual resistance development. The growth-impeded phase was distinguished by the phosphorylation of Stat3 (y705) and Src (y527). Tumour tissue from patients treated with neo-adjuvant endocrine therapy (<4 months) also displayed increased Stat3 and Src signalling. Inhibitors of Stat3 (napabucasin) and Src (dasatinib), were effective at killing tamoxifen-treated MCF7 and T47D cells. Sensitivity to both drugs was significantly enhanced once tamoxifen had induced the growth-impeded phase. This novel proteomic resource identifies key mechanisms enabling cell survival during tamoxifen treatment. It provides valuable insight into potential drug combinations and timing that may prevent the development of endocrine resistance.
    Matched MeSH terms: Drug Resistance, Neoplasm
  12. Aggarwal T, Wadhwa R, Gupta R, Paudel KR, Collet T, Chellappan DK, et al.
    PMID: 32342824 DOI: 10.2174/1871530320666200428113051
    Regardless of advances in detection and treatment, breast cancer affects about 1.5 million women all over the world. Since the last decade, genome-wide association studies (GWAS) have been extensively conducted for breast cancer to define the role of miRNA as a tool for diagnosis, prognosis and therapeutics. MicroRNAs are small, non-coding RNAs that are associated with the regulation of key cellular processes such as cell multiplication, differentiation, and death. They cause a disturbance in the cell physiology by interfering directly with the translation and stability of a targeted gene transcript. MicroRNAs (miRNAs) constitute a large family of non-coding RNAs, which regulate target gene expression and protein levels that affect several human diseases and are suggested as the novel markers or therapeutic targets, including breast cancer. MicroRNA (miRNA) alterations are not only associated with metastasis, tumor genesis but also used as biomarkers for breast cancer diagnosis or prognosis. These are explained in detail in the following review. This review will also provide an impetus to study the role of microRNAs in breast cancer.
    Matched MeSH terms: Drug Resistance, Neoplasm
  13. Abdullah NA, Inman M, Moody CJ, Storr SJ, Martin SG
    Invest New Drugs, 2021 10;39(5):1232-1241.
    PMID: 33768386 DOI: 10.1007/s10637-021-01106-5
    Radiotherapy is an effective treatment modality for breast cancer but, unfortunately, not all patients respond fully with a significant number experiencing local recurrences. Overexpression of thioredoxin and thioredoxin reductase has been reported to cause multidrug and radiation resistance - their inhibition may therefore improve therapeutic efficacy. Novel indolequinone compounds have been shown, in pancreatic cancer models, to inhibit thioredoxin reductase activity and exhibit potent anticancer activity. The present study evaluates, using in vitro breast cancer models, the efficacy of a novel indolequinone compound (IQ9) as a single agent and in combination with ionising radiation using a variety of endpoint assays including cell proliferation, clonogenic survival, enzyme activity, and western blotting. Three triple-negative breast cancer (MDA-MB-231, MDA-MB-468, and MDA-MB-436) and two luminal (MCF-7 and T47D) breast cancer cell lines were used. Results show that treatment with IQ9 significantly inhibited thioredoxin reductase activity, and inhibited cell growth and colony formation of breast cancer cells with IC50 values in the low micromolar ranges. Enhanced radiosensitivity of triple-negative breast cancer cells was observed, with sensitiser enhancement ratios of 1.20-1.43, but with no evident radiosensitisation of luminal breast cancer cell lines. IQ9 upregulated protein expression of thioredoxin reductase in luminal but not in triple-negative breast cancer cells which may explain the observed differential radiosensitisation. This study provides important evidence of the roles of the thioredoxin system as an exploitable radiobiological target in breast cancer cells and highlights the potential therapeutic value of indolequinones as radiosensitisers.***This study was not part of a clinical trial. Clinical trial registration number: N/A.
    Matched MeSH terms: Drug Resistance, Neoplasm/drug effects*
  14. Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, et al.
    Cells, 2019 Sep 20;8(10).
    PMID: 31547193 DOI: 10.3390/cells8101118
    Epithelial-to-Mesenchymal Transition (EMT) has been shown to be crucial in tumorigenesis where the EMT program enhances metastasis, chemoresistance and tumor stemness. Due to its emerging role as a pivotal driver of tumorigenesis, targeting EMT is of great therapeutic interest in counteracting metastasis and chemoresistance in cancer patients. The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin, and this process is regulated by a complex network of signaling pathways and transcription factors. In this review, we summarized the recent understanding of the roles of E- and N-cadherins in cancer invasion and metastasis as well as the crosstalk with other signaling pathways involved in EMT. We also highlighted a few natural compounds with potential anti-EMT property and outlined the future directions in the development of novel intervention in human cancer treatments. We have reviewed 287 published papers related to this topic and identified some of the challenges faced in translating the discovery work from bench to bedside.
    Matched MeSH terms: Drug Resistance, Neoplasm
  15. Abubakar IB, Loh HS
    J Pharm Pharmacol, 2016 Apr;68(4):423-32.
    PMID: 26887962 DOI: 10.1111/jphp.12523
    OBJECTIVES: Tabernaemontana is a genus from the plant family, Apocynaceae with vast medicinal application and widespread distribution in the tropics and subtropics of Africa, Americas and Asia. The objective of this study is to critically evaluate the ethnobotany, medicinal uses, pharmacology and phytochemistry of the species, Tabernaemontana corymbosa (Roxb. ex Wall.) and provide information on the potential future application of alkaloids isolated from different parts of the plant.

    KEY FINDINGS: T. corymbosa (Roxb. ex Wall.) parts are used as poultice, boiled juice, decoctions and infusions for treatment against ulceration, fracture, post-natal recovery, syphilis, fever, tumours and orchitis in Malaysia, China, Thailand and Bangladesh. Studies recorded alkaloids as the predominant phytochemicals in addition to phenols, saponins and sterols with vast bioactivities such as antimicrobial, analgesic, anthelmintic, vasorelaxation, antiviral and cytotoxicity.

    SUMMARY: An evaluation of scientific data and traditional medicine revealed the medicinal uses of different parts of T. corymbosa (Roxb. ex Wall.) across Asia. Future studies exploring the structure-bioactivity relationship of alkaloids such as jerantinine and vincamajicine among others could potentially improve the future application towards reversing anticancer drug resistance.

    Matched MeSH terms: Drug Resistance, Neoplasm/drug effects
  16. Ariffin H, Muthukkumaran T, Stanslas J, Sabariah AR, Veerasekaran N, Lin HP
    Leuk Lymphoma, 2005 Aug;46(8):1233-7.
    PMID: 16085568
    We report the clinical features and in vitro chemosensitivity assay findings of a 13-year-old girl who developed secondary B-cell acute lymphoblastic leukemia (ALL) 7 years after a diagnosis of Wilms' tumor. The patient was treated using the Berlin - Frankfurt - Muenster (BFM) ALL chemotherapy protocol with poor response to initial therapy before succumbing to sepsis. An in vitro chemosensitivity assay on her peripheral blood lymphoblasts was performed while she was undergoing induction therapy and showed a high level of resistance to drugs commonly used for ALL therapy, e.g. steroids, anthracyclines, vincristine and L-asparaginase. The mechanism of chemoresistance was not elicited, but was probably not related to P-glycoprotein (P-gp) over-expression. We believe that the in vitro chemosensitivity assay is a good indicator of cellular response to chemotherapy and may provide reliable information for the basis of the selection of drugs to be used for the treatment of similarly rare patients rather than relying on "standard" protocols.
    Matched MeSH terms: Drug Resistance, Neoplasm
  17. Gao Y, Zhang W, Liu C, Li G
    Sci Rep, 2019 12 11;9(1):18844.
    PMID: 31827114 DOI: 10.1038/s41598-019-54289-6
    Resistance to tamoxifen is a major clinical challenge. Research in recent years has identified epigenetic changes as mediated by dysregulated miRNAs that can possibly play a role in resistance to tamoxifen in breast cancer patients expressing estrogen receptor (ER). We report here elevated levels of EMT markers (vimentin and ZEB1/2) and reduced levels of EMT-regulating miR-200 (miR-200b and miR-200c) in ER-positive breast cancer cells, MCF-7, that were resistant to tamoxifen, in contrast with the naïve parental MCF-7 cells that were sensitive to tamoxifen. Further, we established regulation of c-MYB by miR-200 in our experimental model. C-MYB was up-regulated in tamoxifen resistant cells and its silencing significantly decreased resistance to tamoxifen and the EMT markers. Forced over-expression of miR-200b/c reduced c-MYB whereas reduced expression of miR-200b/c resulted in increased c-MYB We further confirmed the results in other ER-positive breast cancer cells T47D cells where forced over-expression of c-MYB resulted in induction of EMT and significantly increased resistance to tamoxifen. Thus, we identify a novel mechanism of tamoxifen resistance in breast tumor microenvironment that involves miR-200-MYB signaling.
    Matched MeSH terms: Drug Resistance, Neoplasm*
  18. Tan BS, Tiong KH, Choo HL, Chung FF, Hii LW, Tan SH, et al.
    Cell Death Dis, 2015;6:e1826.
    PMID: 26181206 DOI: 10.1038/cddis.2015.191
    p53 is the most frequently mutated tumor-suppressor gene in human cancers. Unlike other tumor-suppressor genes, p53 mutations mainly occur as missense mutations within the DNA-binding domain, leading to the expression of full-length mutant p53 protein. Mutant p53 proteins not only lose their tumor-suppressor function, but may also gain new oncogenic functions and promote tumorigenesis. Here, we showed that silencing of endogenous p53-R273H contact mutant, but not p53-R175H conformational mutant, reduced AKT phosphorylation, induced BCL2-modifying factor (BMF) expression, sensitized BIM dissociation from BCL-XL and induced mitochondria-dependent apoptosis in cancer cells. Importantly, cancer cells harboring endogenous p53-R273H mutant were also found to be inherently resistant to anoikis and lack BMF induction following culture in suspension. Underlying these activities is the ability of p53-R273H mutant to suppress BMF expression that is dependent on constitutively active PI3K/AKT signaling. Collectively, these findings suggest that p53-R273H can specifically drive AKT signaling and suppress BMF expression, resulting in enhanced cell survivability and anoikis resistance. These findings open the possibility that blocking of PI3K/AKT will have therapeutic benefit in mutant p53-R273H expressing cancers.
    Matched MeSH terms: Drug Resistance, Neoplasm/genetics
  19. Liew K, Yu GQS, Wei Pua LJ, Wong LZ, Tham SY, Hii LW, et al.
    Cancer Lett, 2021 Apr 28;504:81-90.
    PMID: 33587980 DOI: 10.1016/j.canlet.2021.02.006
    Despite recent in advances in the management of nasopharyngeal carcinoma (NPC), development of targeted therapy remains challenging particularly in patients with recurrent or metastatic disease. To search for clinically relevant targets for the treatment of NPC, we carried out parallel genome-wide functional screens to identified essential genes that are required for NPC cells proliferation and cisplatin resistance. We identified lymphocyte-specific protein tyrosine kinase (LCK) as a key vulnerability of both proliferation and cisplatin resistance. Depletion of endogenous LCK or treatment of cells with LCK inhibitor induced tumor-specific cell death and synergized cisplatin sensitivity in EBV-positive C666-1 and EBV-negative SUNE1 cells. Further analyses demonstrated that LCK is regulating the proliferation and cisplatin resistance through activation of signal transducer and activator of transcription 5 (STAT5). Taken together, our study provides a molecular basis for targeting LCK and STAT5 signaling as potential druggable targets for the management of NPC.
    Matched MeSH terms: Drug Resistance, Neoplasm/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links