Displaying publications 21 - 40 of 157 in total

Abstract:
Sort:
  1. Bhat R, Khalil HP, Karim AA
    C. R. Biol., 2009 Sep;332(9):827-31.
    PMID: 19748457 DOI: 10.1016/j.crvi.2009.05.004
    This study was conducted to evaluate the potential antioxidant activity of lignin obtained from black liquor, a hazardous waste product generated during the extraction of palm oil. Antioxidant potential of the extracted lignin was evaluated by dissolving the extracted samples in 2 different solvent systems, namely, 2-methoxy ethanol and DMSO. Results revealed high percent inhibition of the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical in the lignin sample dissolved in 2-methoxy ethanol over DMSO (concentration range of 1-100 microg/ml). Lignin extracted in 2-methoxy ethanol exhibited higher inhibition percentage (at 50 microg/ml, 84.2%), whereas a concentration of 100 microg/ml was found to be effective in the case of the DMSO solvent (69.8%). Fourier transform infrared (FTIR) spectrometry revealed that the functional groups from the extracted lignin and commercial lignin were highly similar, indicating the purity of the lignin extracted from black liquor. These results provide a strong basis for further applications of lignin in the food industry and also illustrate an eco-friendly approach to utilize oil palm black liquor.
    Matched MeSH terms: Free Radical Scavengers/pharmacology; Free Radical Scavengers/chemistry
  2. Kho YS, Vikineswary S, Abdullah N, Kuppusamy UR, Oh HI
    J Med Food, 2009 Feb;12(1):167-74.
    PMID: 19298211 DOI: 10.1089/jmf.2007.0568
    Auricularia auricula-judae is currently grown in Malaysia. In the present study, the methanolic extracts from fruit bodies (fresh, oven-dried, and freeze-dried) and mycelium of A. auricula-judae were evaluated for their antioxidant capacities based on 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and ferric reducing antioxidant power (FRAP) assay. The total phenolic content in the extracts were also measured. The extract of freeze-dried fruit bodies of A. auricula-judae had potent DPPH free radical scavenging activity with a 50% effective concentration of 2.87 mg/mL, whereas the FRAP value of A. auricula-judae mycelium was 5.22 micromol of FeSO(4).7H(2)O equivalents/g of mycelium sample. Further, a positive correlation (R(2) = 0.7668) between FRAP level of A. auricula-judae extracts and the total phenolic contents was observed. Thus the method of processing of fresh fruit bodies had an effect on the antioxidant potential of A. auricula-judae.
    Matched MeSH terms: Free Radical Scavengers/isolation & purification; Free Radical Scavengers/pharmacology*
  3. Ahmad NA, Jumbri K, Ramli A, Abd Ghani N, Ahmad H, Lim JW
    Molecules, 2018 Dec 05;23(12).
    PMID: 30563037 DOI: 10.3390/molecules23123201
    The antiradical efficiency (AE) and kinetic behavior of a new ferulate-based protic ionic liquids (PILs) were described using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay. The reduction of the DPPH free radical (DPPH•) was investigated by measuring the decrease in absorbance at 517 nm. The time to reach steady state for the reaction of parent acid (ferulic acid) and synthesized PILs with DPPH• was continuously recorded for 1 h. Results revealed that the AE of 2-butylaminoethanol ferulate (2BAEF), 3-dimethylaminopropanol ferulate (3DMAPF) and 3-diethylaminopropanol ferulate (3DEAPF) PILs have improved compared to ferulic acid (FA) as the reaction class changes from low to medium. This attributed to the strong hydrogen abstraction occurred in the PILs. Furthermore, these PILs were found to have a good kinetic behavior compared to FA due to the high rate constant (k₂) (164.17, 242.84 and 244.73 M-1 s-1, respectively). The alkyl chain length and more alkyl substituents on the nitrogen atom of cation were believed to reduce the cation-anion interaction and speed up the hydrogen atom transfer (HAT) and electron transfer (ET) mechanisms; hence, increased rate constant was observed leading to a strong antioxidant activity of the synthesized PILs.
    Matched MeSH terms: Free Radical Scavengers/pharmacology; Free Radical Scavengers/chemistry*
  4. Shafie MH, Yusof R, Gan CY
    Carbohydr Polym, 2019 Jul 15;216:303-311.
    PMID: 31047070 DOI: 10.1016/j.carbpol.2019.04.007
    The Box-Behnken design was applied to optimize the extraction of pectin from Averrhoa bilimbi (ABP) using deep eutectic solvents (DES). The four variables of extraction were percentage of DES (X1), extraction time (X2), temperature (X3), and molar ratio of DES components (X4). The quadratic regression equation was established as a predicted model with R2 value of 0.9375. The optimal condition was X1 = 3.74% (w/v), X2 = 2.5 h, X3 = 80 °C, and X4 = 1:1. No significant difference between the predicted (14.70%) and experimental (14.44%) maximum yield of sample was noted. Characterization of physico-chemical properties characterization of ABP was performed. The main components of ABP were galacturonic acids, arabinoses, and xyloses. ABP also showed good functional properties such as water holding capacity (3.70 g/g), oil holding capacity (2.40 g/g), and foaming capacity (133.33%). The results also showed that ABP exhibited free radical scavenging activity (41.46%) and ferric reducing antioxidant power (1.15 mM).
    Matched MeSH terms: Free Radical Scavengers/isolation & purification; Free Radical Scavengers/chemistry*
  5. Ghasemzadeh A, Baghdadi A, Z E Jaafar H, Swamy MK, Megat Wahab PE
    Molecules, 2018 Jul 26;23(8).
    PMID: 30049990 DOI: 10.3390/molecules23081863
    Recently, the quality-by-design concept has been widely implemented in the optimization of pharmaceutical processes to improve batch-to-batch consistency. As flavonoid compounds in pigmented rice bran may provide natural antioxidants, extraction of flavonoid components from red and brown rice bran was optimized using central composite design (CCD) and response surface methodology (RSM). Among the solvents tested, ethanol was most efficient for extracting flavonoids from rice bran. The examined parameters were temperature, solvent percentage, extraction time, and solvent-to-solid ratio. The highest total flavonoid content (TFC) in red rice bran was predicted as 958.14 mg quercetin equivalents (QE)/100 g dry matter (DM) at 58.5 °C, 71.5% (v/v), 36.2 min, and 7.94 mL/g, respectively, whereas the highest TFC in brown rice bran was predicted as 782.52 mg QE/100 g DM at 56.7 °C, 74.4% (v/v), 36.9 min, and 7.18 mL/g, respectively. Verification experiment results under these optimized conditions showed that the TFC values for red and brown rice bran were 962.38 and 788.21 mg QE/100 g DM, respectively. No significant differences were observed between the predicted and experimental TFC values, indicating that the developed models are accurate. Analysis of the extracts showed that apigenin and p-coumaric acid are abundant in red and brown rice bran. Further, red rice bran with its higher flavonoid content exhibited higher nitric oxide and 2,2-diphenyl-1-picrylhydrazyl scavenging activities (EC50 values of 41.3 and 33.6 μg/mL, respectively) than brown rice bran. In this study, an extraction process for flavonoid compounds from red and brown rice bran was successfully optimized. The accuracy of the developed models indicated that the approach is applicable to larger-scale extraction processes.
    Matched MeSH terms: Free Radical Scavengers/pharmacology; Free Radical Scavengers/chemistry
  6. Pachaiappan R, Tamboli E, Acharya A, Su CH, Gopinath SCB, Chen Y, et al.
    PLoS One, 2018;13(3):e0193717.
    PMID: 29494663 DOI: 10.1371/journal.pone.0193717
    Enzyme hydrolysates (trypsin, papain, pepsin, α-chymotrypsin, and pepsin-pancreatin) of Tinospora cordifolia stem proteins were analyzed for antioxidant efficacy by measuring (1) 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging activity, (2) 2,20-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radical scavenging capacity, and (3) Fe2+ chelation. Trypsin hydrolysate showed the strongest DPPH• scavenging, while α-chymotrypsin hydrolysate exhibited the highest ABTS+ scavenging and Fe2+ chelation. Undigested protein strongly inhibited the gastrointestinal enzymes, trypsin (50% inhibition at enzyme/substrate ratio = 1:6.9) and α-chymotrypsin (50% inhibition at enzyme/substrate ratio = 1:1.82), indicating the prolonged antioxidant effect after ingestion. Furthermore, gel filtration purified peptide fractions of papain hydrolysates exhibited a significantly higher ABTS+ and superoxide radical scavenging as compared to non-purified digests. Active fraction 9 showing the highest radical scavenging ability was further purified and confirmed by MALDI-TOF MS followed by MS/MS with probable dominant peptide sequences identified are VLYSTPVKMWEPGR, VITVVATAGSETMR, and HIGININSR. The obtained results revealed that free radical scavenging capacity of papain hydrolysates might be related to its consistently low molecular weight hydrophobic peptides.
    Matched MeSH terms: Free Radical Scavengers/analysis*; Free Radical Scavengers/chemistry
  7. Ali A, Chong CH, Mah SH, Abdullah LC, Choong TSY, Chua BL
    Molecules, 2018 Feb 23;23(2).
    PMID: 29473847 DOI: 10.3390/molecules23020484
    The phenolic constituents in Piper betle are well known for their antioxidant potential; however, current literature has very little information on their stability under the influence of storage factors. Present study evaluated the stability of total phenolic content (TPC) and antioxidant activity together with individual phenolic constituents (hydroxychavicol, eugenol, isoeugenol and allylpyrocatechol 3,4-diacetate) present in dried Piper betle's extract under different storage temperature of 5 and 25 °C with and without light for a period of six months. Both light and temperature significantly influenced TPC and its corresponding antioxidant activity over time. More than 95% TPC and antioxidant activity was retained at 5 °C in dark condition after 180 days of storage. Hydroxychavicol demonstrated the best stability with no degradation while eugenol and isoeugenol displayed moderate stability in low temperature (5 °C) and dark conditions. 4-allyl-1,2-diacetoxybenzene was the only compound that underwent complete degradation. A new compound, 2,4-di-tert-butylphenol, was detected after five weeks of storage only in the extracts exposed to light. Both zero-order and first-order kinetic models were adopted to describe the degradation kinetics of the extract's antioxidant activity. Zero-order displayed better fit with higher correlation coefficients (R² = 0.9046) and the half-life was determined as 62 days for the optimised storage conditions (5 °C in dark conditions).
    Matched MeSH terms: Free Radical Scavengers/pharmacology; Free Radical Scavengers/chemistry
  8. Batool T, Rasool N, Gull Y, Noreen M, Nasim FU, Yaqoob A, et al.
    PLoS One, 2014;9(12):e115457.
    PMID: 25545159 DOI: 10.1371/journal.pone.0115457
    A highly convenient method has been developed for the synthesis of (prop-2-ynyloxy) benzene and its derivatives. Differently substituted phenol and aniline derivatives were allowed to react with propargyl bromide in the presence of K2CO3 base and acetone as solvent. The compounds were synthesized in good yields (53-85%). Low cost, high yields and easy availability of compounds helped in the synthesis. Electron withdrawing groups favor the formation of stable phenoxide ion thus in turn favors the formation of product while electron donating groups do not favor the reaction. Phenol derivatives gave good yields as compared to that of aniline. As aprotic polar solvents favor SN2 type reactions so acetone provided best solvation for the reactions. K2CO3 was proved to be good for the synthesis. Antibacterial, Antiurease and NO scavenging activity of synthesized compounds were also examined. 4-bromo-2-chloro-1-(prop-2-ynyloxy)benzene 2a was found most active compound against urease enzyme with a percentage inhibition of 82.00±0.09 at 100 µg/mL with IC50 value of 60.2. 2-bromo-4-methyl-1-(prop-2-ynyloxy)benzene 2d was found potent antibacterial against Bacillus subtillus showing excellent inhibitory action with percentage inhibition of 55.67±0.26 at 100 µg/ml wih IC50 value of 79.9. Based on results, it can be concluded that some of the synthesized compounds may have potential antiurease and antibacterial effects against several harmful substances.
    Matched MeSH terms: Free Radical Scavengers/chemical synthesis*; Free Radical Scavengers/pharmacology
  9. Omar NF, Hassan SA, Yusoff UK, Abdullah NA, Wahab PE, Sinniah U
    Molecules, 2012;17(3):2378-87.
    PMID: 22370524 DOI: 10.3390/molecules17032378
    A field study was conducted to determine the effect of organic and mineral-based fertilizers on phytochemical contents in the tubers of two cassava varieties. Treatments were arranged in a split plot design with three replicates. The main plot was fertilizer source (vermicompost, empty fruit bunch compost and inorganic fertilizer) and sub-plot was cassava variety (Medan and Sri Pontian). The amount of fertilizer applied was based on 180 kg K(2)O ha-1. The tubers were harvested and analyzed for total flavonoids, total phenolics, antioxidant activity and cyanogenic glucoside content. Total phenolic and flavonoid compounds were determined using the Folin-Ciocalteu assay and aluminium chloride colorimetric method, respectively. Different sources of fertilizer, varieties and their interactions were found to have a significant effect on phytochemical content. The phenolic and flavonoid content were significantly higher (p < 0.01) in the vermicompost treatment compared to mineral fertilizer and EFB compost. The total flavonoids and phenolics content of vermicompost treated plants were 39% and 38% higher, respectively, than those chemically fertilized. The antioxidant activity determined using the DPPH and FRAP assays were high with application of organic fertilizer. Cyanogenic glycoside levels were decreased with the application of organic fertilizer. Among the two types of compost, vermicompost resulted in higher nutritional value of cassava tubers. Medan variety with application of vermicompost showed the most promising nutritional quality. Since the nutritional quality of cassava can be improved by organic fertilization, organic fertilizer should be used in place of chemical fertilizer for environmentally sustainable production of better quality cassava.
    Matched MeSH terms: Free Radical Scavengers/isolation & purification; Free Radical Scavengers/chemistry*
  10. Zarei M, Ebrahimpour A, Abdul-Hamid A, Anwar F, Saari N
    Int J Mol Sci, 2012;13(7):8097-111.
    PMID: 22942692 DOI: 10.3390/ijms13078097
    The aim of this study was to produce a valuable protein hydrolysate from palm kernel cake (PKC) for the development of natural antioxidants. Extracted PKC protein was hydrolyzed using different proteases (alcalase, chymotrypsin, papain, pepsin, trypsin, flavourzyme, and bromelain). Subsequently, antioxidant activity and degree of hydrolysis (DH) of each hydrolysate were evaluated using DPPH• radical scavenging activity and O-phthaldialdehyde spectrophotometric assay, respectively. The results revealed a strong correlation between DH and radical scavenging activity of the hydrolysates, where among these, protein hydrolysates produced by papain after 38 h hydrolysis exhibited the highest DH (91 ± 0.1%) and DPPH• radical scavenging activity (73.5 ± 0.25%) compared to the other hydrolysates. In addition, fractionation of the most effective (potent) hydrolysate by reverse phase high performance liquid chromatography indicated a direct association between hydrophobicity and radical scavenging activity of the hydrolysates. Isoelectric focusing tests also revealed that protein hydrolysates with basic and neutral isoelectric point (pI) have the highest radical scavenging activity, although few fractions in the acidic range also exhibited good antioxidant potential.
    Matched MeSH terms: Free Radical Scavengers/isolation & purification; Free Radical Scavengers/chemistry*
  11. Saha K, Lajis NH, Israf DA, Hamzah AS, Khozirah S, Khamis S, et al.
    J Ethnopharmacol, 2004 Jun;92(2-3):263-7.
    PMID: 15138010
    Methanol extracts of seven Malaysian medicinal plants were screened for antioxidant and nitric oxide inhibitory activities. Antioxidant activity was measured by using FTC, TBA and DPPH free radical scavenging methods and Griess assay was used for the measurement of nitric oxide inhibition in lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma)-treated RAW 264.7 cells. All the extracts showed strong antioxidant activity comparable to or higher than that of alpha-tocopherol, BHT and quercetin in FTC and TBA methods. The extracts from Leea indica and Spermacoce articularis showed strong DPPH free radical scavenging activity comparable with quercetin, BHT and Vit C. Spermacoce exilis showed only moderate activity but other species were weak as compared to the standards. In the Griess assay Lasianthus oblongus, Chasalia chartacea, Hedyotis verticillata, Spermacoce articularis and Leea indica showed strong inhibitory activity on nitric oxide production in LPS and IFN-gamma-induced RAW 264.7 cells. Extracts from Psychotria rostrata and Spermacoce exilis also inhibited NO production but this was due to their cytotoxic effects upon cells during culture.
    Matched MeSH terms: Free Radical Scavengers/isolation & purification; Free Radical Scavengers/pharmacology*
  12. Mohamad H, Abas F, Permana D, Lajis NH, Ali AM, Sukari MA, et al.
    Z Naturforsch C J Biosci, 2005 1 26;59(11-12):811-5.
    PMID: 15666539
    The methanol extract of the dried ripe fruits of Alpinia rafflesiana was investigated for its DPPH free radical scavenger constituents. 2',3',4',6'-Tetrahydroxychalcone (7), which has never been isolated from natural sources was found to be most active as a DPPH free radical scavenger with the IC50 value of 55 microM. Other known compounds isolated from this species include 5,6-dehydrokawain (1), flavokawin B (2). 1,7-diphenyl-5-hydroxy-6-hepten-3-one (3), (-)-pinocembrin (4), cardamonin (5) and (-)-pinostrobin (6). The DPPH free radical scavenger compounds were detected using TLC autographic analysis. The percentage inhibition of DPPH free radical scavenging activity was measured on isolates (5-7) using colorimetric analysis.
    Matched MeSH terms: Free Radical Scavengers/isolation & purification; Free Radical Scavengers/pharmacology*
  13. Alhawarri MB, Dianita R, Razak KNA, Mohamad S, Nogawa T, Wahab HA
    Molecules, 2021 Apr 29;26(9).
    PMID: 33946788 DOI: 10.3390/molecules26092594
    Despite being widely used traditionally as a general tonic, especially in South East Asia, scientific research on Cassia timoriensis, remains scarce. In this study, the aim was to evaluate the in vitro activities for acetylcholinesterase (AChE) inhibitory potential, radical scavenging ability, and the anti-inflammatory properties of different extracts of C. timoriensis flowers using Ellman's assay, a DPPH assay, and an albumin denaturation assay, respectively. With the exception of the acetylcholinesterase activity, to the best of our knowledge, these activities were reported for the first time for C. timoriensis flowers. The phytochemical analysis confirmed the existence of tannins, flavonoids, saponins, terpenoids, and steroids in the C. timoriensis flower extracts. The ethyl acetate extract possessed the highest phenolic and flavonoid contents (527.43 ± 5.83 mg GAE/g DW and 851.83 ± 10.08 mg QE/g DW, respectively) as compared to the other extracts. In addition, the ethyl acetate and methanol extracts exhibited the highest antioxidant (IC50 20.12 ± 0.12 and 34.48 ± 0.07 µg/mL, respectively), anti-inflammatory (92.50 ± 1.38 and 92.22 ± 1.09, respectively), and anti-AChE (IC50 6.91 ± 0.38 and 6.40 ± 0.27 µg/mL, respectively) activities. These results suggest that ethyl acetate and methanol extracts may contain bioactive compounds that can control neurodegenerative disorders, including Alzheimer's disease, through high antioxidant, anti-inflammatory, and anti-AChE activities.
    Matched MeSH terms: Free Radical Scavengers/pharmacology; Free Radical Scavengers/chemistry
  14. Salar U, Khan KM, Chigurupati S, Syed S, Vijayabalan S, Wadood A, et al.
    Med Chem, 2019;15(1):87-101.
    PMID: 30179139 DOI: 10.2174/1573406414666180903162243
    BACKGROUND: Despite many side effects associated, there are many drugs which are being clinically used for the treatment of type-II diabetes mellitus (DM). In this scenario, there is still need to develop new therapeutic agents with more efficacy and less side effects. By keeping in mind the diverse spectrum of biological potential associated with coumarin and thiazole, a hybrid class based on these two heterocycles was synthesized.

    METHOD: Hydrazinyl thiazole substituted coumarins 4-20 were synthesized via two step reaction. First step was the acid catalyzed reaction of 3-formyl/acetyl coumarin derivatives with thiosemicarbazide to form thiosemicarbazone intermediates 1-3, followed by the reaction with different phenacyl bromides to afford products 4-20. All the synthetic analogs 4-20 were characterized by different spectroscopic techniques such as EI-MS, HREI-MS, 1H-NMR and 13C-NMR. Stereochemical assignment of the iminic double bond was carried out by the NOESY experiments. Elemental analysis was found in agreement with the calculated values.

    RESULTS: Compounds 4-20 were screened for α-amylase inhibitory activity and showed good activity in the range of IC50 = 1.829 ± 0.102-3.37 ± 0.17 µM as compared to standard acarbose (IC50 = 1.819 ± 0.19 µM). Compounds were also investigated for their DPPH and ABTS radical scavenging activities and displayed good radical scavenging potential. In addition to that molecular modelling study was conducted on all compounds to investigate the interaction details of compounds 4- 20 (ligands) with active site (receptor) of enzyme.

    CONCLUSION: The newly identified hybrid class may serve as potential lead candidates for the management of diabetes mellitus.

    Matched MeSH terms: Free Radical Scavengers/chemical synthesis; Free Radical Scavengers/chemistry*
  15. Abedin MZ, Karim AA, Latiff AA, Gan CY, Ghazali FC, Barzideh Z, et al.
    Nat Prod Res, 2014;28(16):1302-5.
    PMID: 24670209 DOI: 10.1080/14786419.2014.900617
    The molecular mass distribution, amino acid composition and radical-scavenging activity of collagen hydrolysates prepared from collagen isolated from the sea cucumber Stichopus vastus were investigated. β and α1 chains of the collagen were successfully hydrolysed by trypsin. The molecular mass distribution of the hydrolysates ranged from 5 to 25 kDa, and they were rich in glycine, alanine, glutamate, proline and hydroxyproline residues. The hydrolysates exhibited excellent radical-scavenging activity. These results indicate that collagen hydrolysates from S. vastus can be used as a functional ingredient in food and nutraceutical products.
    Matched MeSH terms: Free Radical Scavengers/isolation & purification*; Free Radical Scavengers/pharmacology*; Free Radical Scavengers/chemistry
  16. Mediani A, Abas F, Ping TC, Khatib A, Lajis NH
    Plant Foods Hum Nutr, 2012 Dec;67(4):344-50.
    PMID: 23054393 DOI: 10.1007/s11130-012-0317-x
    The impact of tropical seasons (dry and wet) and growth stages (8, 10 and 12 weeks) of Cosmos caudatus on the antioxidant activity (AA), total phenolic content (TPC) as well as the level of bioactive compounds were evaluated using high performance liquid chromatography (HPLC). The plant morphology (plant height) also showed variation between the two seasons. Samples planted from June to August (during the dry season) exhibited a remarkably higher bioactivity and height than those planted from October to December (during the wet season). The samples that were harvested at eight weeks of age during the dry season showed the highest bioactivity with values of 26.04 g GAE/100 g and 22.1 μg/ml for TPC and IC₅₀, respectively. Identification of phytochemical constituents in the C. caudatus extract was carried out by liquid chromatography coupled with diode array detection and electrospray tandem mass (LC-DAD-ESIMS/MS) technique and the confirmation of constituents was achieved by comparison with literature data and/or co-chromatography with authentic standards. Six compounds were indentified including quercetin 3-O-rhamnoside, quercetin 3-O-glucoside, rutin, quercetin 3-O-arabinofuranoside, quercetin 3-O-galactoside and chlorogenic acid. Their concentrations showed significant variance among the 8, 10 and 12-week-old herbs during both seasons.
    Matched MeSH terms: Free Radical Scavengers/analysis; Free Radical Scavengers/isolation & purification; Free Radical Scavengers/metabolism
  17. Grace-Lynn C, Darah I, Chen Y, Latha LY, Jothy SL, Sasidharan S
    Molecules, 2012 Sep 19;17(9):11185-98.
    PMID: 22992785
    Lantadenes are pentacyclic triterpenoids present in the leaves of the plant Lantana camara. In the present study, in vitro antioxidant activity and free radical scavenging capacity of lantadene A was evaluated using established in vitro models such as ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picryl-hydrazyl (DPPH•), hydroxyl radical (OH•), nitric oxide radical (NO•), superoxide anion scavenging activities and ferrous ion chelating assay. Interestingly, lantadene A showed considerable in vitro antioxidant, free radical scavenging capacity activities in a dose dependant manner when compared with the standard antioxidant in nitric oxide scavenging, superoxide anion radical scavenging and ferrous ion chelating assay. These findings show that the lantadene A possesses antioxidant activity with different mechanism of actions towards the different free radicals tested. Since lantadene A is a very popular drug in modern medicine, it is a promising candidate for use as an antioxidant and hepatoprotective agent.
    Matched MeSH terms: Free Radical Scavengers/pharmacology; Free Radical Scavengers/toxicity; Free Radical Scavengers/chemistry
  18. Lee KH, Ab Aziz FH, Syahida A, Abas F, Shaari K, Israf DA, et al.
    Eur J Med Chem, 2009 Aug;44(8):3195-200.
    PMID: 19359068 DOI: 10.1016/j.ejmech.2009.03.020
    A series of 46 curcumin related diarylpentanoid analogues were synthesized and evaluated for their anti-inflammatory, antioxidant and anti-tyrosinase activities. Among these compounds 2, 13 and 33 exhibited potent NO inhibitory effect on IFN-gamma/LPS-activated RAW 264.7 cells as compared to L-NAME and curcumin. However, these series of diarylpentanoid analogues were not significantly inhibiting NO scavenging, total radical scavenging and tyrosinase enzyme activities. The results revealed that the biological activity of these diarylpentanoid analogues is most likely due to their action mainly upon inflammatory mediator, inducible nitric oxide synthase (iNOS). The present results showed that compounds 2, 13 and 33 might serve as a useful starting point for the design of improved anti-inflammatory agents.
    Matched MeSH terms: Free Radical Scavengers/chemical synthesis*; Free Radical Scavengers/pharmacology*; Free Radical Scavengers/chemistry
  19. Ibrahim MM, Al-Refai M, Al-Fawwaz A, Ali BF, Geyer A, Harms K, et al.
    J Fluoresc, 2018 Mar;28(2):655-662.
    PMID: 29680927 DOI: 10.1007/s10895-018-2227-2
    Furopyridine III, namely 1-(3-amino-4-(4-(tert-butyl)phenyl)-6-(p-tolyl)furo[2,3-b]pyridin-2-yl)ethan-1-one, synthesized from 4-(4-(tert-butyl)phenyl)-2-oxo-6-(p-tolyl)-1,2-dihydropyridine-3-carbonitrile I in two steps. The title compound is characterized by NMR, MS and its X-ray structure. The molecular structure consists of planar furopyridine ring with both phenyl rings being inclined from the furopyridine scaffold to a significant different extent. There are three intramolecular hydrogen bonds within the structure. The lattice is stabilized by N-H…O, H2C-H …π and π…π intermolecular interactions leading to three-dimensional network. Compound III exhibits fluorescent properties, which are investigated. Antimicrobial potential and antioxidant activity screening studies for the title compound III and the heterocyclic derivatives, I and II, show no activity towards neither bacterial nor fungal strains, while they exhibited weak to moderate antioxidant activity compared to reference.
    Matched MeSH terms: Free Radical Scavengers/chemical synthesis; Free Radical Scavengers/pharmacology; Free Radical Scavengers/chemistry
  20. Sirimahachai R, Harome H, Wongnawa S
    Sains Malaysiana, 2017;46:1393-1399.
    AgCl/BiYO3
    composite was successfully synthesized via the aqueous precipitation method followed by calcination. The
    varied amount of AgCl (10, 20 and 30%) was mixed into BiYO3
    via sonochemical-assisted method. The structures and
    morphologies of the as-prepared AgCl/BiYO3
    composite were characterized by x-ray diffraction (XRD), scanning electron
    microscopy (SEM) and UV-vis diffused reflectance spectroscopy (UV-vis DRS). The optical absorption spectrum of AgCl/
    BiYO3
    composite showed strong absorption in visible region. The photocatalytic activity of AgCl/BiYO3
    composite was
    evaluated by the photodegradation of reactive orange16 (RO16), which was selected to represent the dye pollutants,
    under UV and visible light irradiation. The results indicated that 20% AgCl/BiYO3 photocatalyst was the most capable
    photocatalyst in this series in the degradation of RO16 under both UV and visible light illumination within 1 h. Moreover,
    the mechanism of photocatalytic degradation of AgCl/BiYO3
    was elucidated using three types of free radical scavengers.
    The significant enhancement was attributed to the formation of AgCl/BiYO3
    heterojunction resulting in the low electronhole
    pair recombination rate.
    Matched MeSH terms: Free Radical Scavengers
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links