Displaying publications 21 - 40 of 133 in total

Abstract:
Sort:
  1. Lee SK, Wagiran H, Ramli AT, Apriantoro NH, Wood AK
    J Environ Radioact, 2009 May;100(5):368-74.
    PMID: 19299052 DOI: 10.1016/j.jenvrad.2009.01.001
    Natural background gamma radiation and radioactivity concentrations were investigated from 2003 to 2005 in Kinta District, Perak, Malaysia. Sample locations were distant from any 'amang' processing plants. The external gamma dose rates ranged from 39 to 1039 nGy h(-1). The mean external gamma dose rate was 222+/-191 nG yh(-1). Small areas of relatively enhanced activity were located having external gamma dose rates of up to 1039+/-104 nGy h(-1). The activity concentrations of (238)U, (232)Th and (40)K were analyzed by using a high-resolution co-axial HPGe detector system. The activity concentration ranges were 12-426 Bq kg(-1) for (238)U, 19-1377 Bq kg(-1) for (232)Th and <19-2204 Bq kg(-1) for (40)K. Based on the radioactivity levels determined, the gamma-absorbed dose rates in air at 1m above the ground were calculated. The calculated dose rates and measured dose rates had a good correlation coefficient, R of 0.94. To evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity, the gamma-absorbed dose rate and the mean population weighted dose rate were calculated. An isodose map for the Kinta District was also produced.
    Matched MeSH terms: Gamma Rays*
  2. Mohamed M, Sirajudeen K, Swamy M, Yaacob NS, Sulaiman SA
    Afr J Tradit Complement Altern Med, 2009 Oct 15;7(1):59-63.
    PMID: 21304614
    Honey has been used since ancient times for its nutritional as well as curative properties. Tualang honey is collected from wild honey bees' hives on Tualang trees found in the Malaysian rain forest. It has been used traditionally for the treatment of various diseases, where its therapeutic value has partly been related to its antioxidant properties. This study therefore assessed the colour intensity, total phenolic content, antioxidant activity and antiradical activity of gamma irradiated Tualang Honey. The colour intensity at ABS₄₅₀ was 489.5 ± 1.7 mAU, total phenolic content was 251.7 ± 7.9 mg (gallic acid) /Kg honey, total antioxidant activity by FRAP assay was 322.1 ± 9.7 (µM Fe(II)) and the antiradical activity by DPPH assay was 41.30 ± 0.78 (% inhibition). The data confirms that the antioxidant properties of gamma irradiated Tualang honey are similar to other types of honeys reported in the literature.
    Matched MeSH terms: Gamma Rays
  3. Bhat R, Sridhar KR, Karim AA, Young CC, Arun AB
    J Agric Food Chem, 2009 Oct 28;57(20):9524-31.
    PMID: 19778060 DOI: 10.1021/jf902287e
    In the present study, we investigated the physicochemical and functional properties of lotus seed flour exposed to low and high doses of gamma-radiation (0-30 kGy; the dose recommended for quarantine and hygienic purposes). The results indicated raw seed flour to be rich in nutrients with minimal quantities of antinutritional factors. Irradiation resulted in a dose-dependent increase in some of the proximal constituents. The raw and gamma-irradiated seeds meet the Food and Agricultural Organization-World Health Organization recommended pattern of essential amino acids. Some of the antinutritional factors (phytic acid, total phenolics, and tannins) were lowered with gamma-irradiation, while the seed flours were devoid of lectins, L-3,4-dihydroxyphenylalanine, and polonium-210. The functional properties of the seed flour were significantly improved with gamma-radiation. gamma-radiation selectively preserved or improved the desired nutritional and functional traits of lotus seeds, thus ensuring a safe production of appropriate nutraceutically valued products.
    Matched MeSH terms: Gamma Rays
  4. Bhat R, Karim AA
    Int J Food Sci Nutr, 2009;60 Suppl 4:9-20.
    PMID: 19462319 DOI: 10.1080/09637480802241626
    Radiation processing has been employed successfully for value addition of food and agricultural products. Preliminary studies were undertaken to evaluate the changes induced by ionizing radiation (up to 30 kGy), in the form of gamma irradiation and electron beam irradiation, on some quality attributes and nutritive values of nutraceutically valued lotus seeds. Significant loss in seed firmness was recorded between control and irradiated seeds, irrespective of radiation source. Similarly, the specific viscosity of irradiated lotus seeds decreased significantly up to a dose of 7.5 kGy. Starch increased after exposure to gamma or electron beam irradiation, whereas the total phenolic contents were decreased. Gamma irradiation revealed an enhancement in protein, while the electron beam showed a decrease. Partial oxidation of the seeds during radiation treatments might have occurred as evidenced from the decomposition profiles (thermogravimetry) during heating. It is evident that ionizing radiation brought about significant and variable changes in the quality and nutritive values of lotus seed. Further exploration of this technology for safety and quality is warranted.
    Matched MeSH terms: Gamma Rays
  5. Mohd Adzahan, N., Mat Hashim, D., Muhammad, K., Abdul Rahman, R., Ghazali, Z., Hashim, K.
    MyJurnal
    Changes to the physicochemical properties of wheat, sago and tapioca starches subjected to gamma ray, electron beam and microwave irradiations and the conditions that lead to wheat starch having leaching behaviour similar to sago or tapioca starch were studied. The properties were characterised through swelling and leaching behaviours of the starch granules and retrogradation following pasting. The leaching of wheat starch increased tremendously and resulted in amylose to amylopectin ratios in the leachate similar to that of native sago and tapioca starches. This observation is significant as wheat starch is known to have a leachate composition of mostly amylose. This opens up the possibility of utilising wheat starch in snacks where tapioca and sago starch are commonly used. It was observed that the required conditions for such changes were exposure to microwave for 8 and 10 minutes, electron beam at 5 and 10 kGy and gamma ray at 5 kGy.
    Matched MeSH terms: Gamma Rays
  6. Wagiran, Husin, Supramaniam, Thiagu, Azali Mohamad, Abdul Aziz Mohamed, Faridah M. Idris
    MyJurnal
    Neutron aperture is one of the collimator components in a neutron radiography facility. The optimum design of neutron aperture is very importance in order to obtain largest L/D ratio with highest thermal neutron flux and low gamma-rays at the image plane. In this study, the optimization of neutron aperture parameters were done using Monte Carlo N-Particle Transport Code, version five (MCNP5). This code has a capability to simulate the neutron, photon, and electron or coupled of neutron/photon/electron transport, including the capability to calculate eigen values for critical system. The aperture parameters concerned in this study are the selection of best aperture material, aperture thickness, aperture position and aperture center hole diameter. In these simulations, vacuum beam port medium was applied.
    Matched MeSH terms: Gamma Rays
  7. Omar, M.
    MyJurnal
    The interference of 235 U on 226 Ra concentration measured directly using the γ-ray energy of 186 keV and the interference of 228 Ac on the 40 K analysis by gamma-spectrometry system were highlighted and discussed. The interference of 235 U was demonstrated to be very significant, i.e. 45% of the 226 Ra concentration measured directly at 186 keV in natural samples containing uranium series in equilibrium. The interference of 228 Ac on 40 K concentration was particularly significant for samples containing high concentration of 228 Ac ( 228 Ra) such as radioactive minerals. Another important aspect discussed is the assignment of the right emission probability of the 583 keV and 2614 keV of the 208 Tl for the purpose of estimating the concentration of 232 Th or other radionuclides in the thorium series. Extra cautions are required in the interpretation of the measured 208 Tl concentration in samples of various natures. It is suggested that the emission probability used for 208 Tl be reported for comparison and verification.
    Matched MeSH terms: Gamma Rays
  8. Shameli K, Ahmad MB, Yunus WM, Ibrahim NA, Gharayebi Y, Sedaghat S
    Int J Nanomedicine, 2010 Dec 01;5:1067-77.
    PMID: 21170354 DOI: 10.2147/IJN.S15033
    Silver nanoparticles (Ag-NPs) were synthesized into the interlamellar space of montmorillonite (MMT) by using the γ-irradiation technique in the absence of any reducing agent or heat treatment. Silver nitrate and γ-irradiation were used as the silver precursor and physical reducing agent in MMT as a solid support. The MMT was suspended in the aqueous AgNO(3) solution, and after the absorption of silver ions, Ag(+) was reduced using the γ-irradiation technique. The properties of Ag/MMT nanocomposites and the diameters of Ag-NPs were studied as a function of γ-irradiation doses. The interlamellar space limited particle growth (d-spacing [d(s)] = 1.24-1.42 nm); powder X-ray diffraction and transmission electron microscopy (TEM) measurements showed the production of face-centered cubic Ag-NPs with a mean diameter of about 21.57-30.63 nm. Scanning electron microscopy images indicated that there were structure changes between the initial MMT and Ag/MMT nanocomposites under the increased doses of γ-irradiation. Furthermore, energy dispersive X-ray fluorescence spectra for the MMT and Ag/ MMT nanocomposites confirmed the presence of elemental compounds in MMT and Ag-NPs. The results from ultraviolet-visible spectroscopy and TEM demonstrated that increasing the γ-irradiation dose enhanced the concentration of Ag-NPs. In addition, the particle size of the Ag-NPs gradually increased from 1 to 20 kGy. When the γ-irradiation dose increased from 20 to 40 kGy, the particle diameters decreased suddenly as a result of the induced fragmentation of Ag-NPs. Thus, Fourier transform infrared spectroscopy suggested that the interactions between Ag-NPs with the surface of MMT were weak due to the presence of van der Waals interactions. The synthesized Ag/MMT suspension was found to be stable over a long period of time (ie, more than 3 months) without any sign of precipitation.
    Matched MeSH terms: Gamma Rays*
  9. Zainudin Jaafar, Mukhlis Mokhtar, Abu Bakar Mhd Ghazali
    MyJurnal
    Personal computer (PC) based user interface for equipment control and data acquisition from the nuclear counting system to count nuclear radiation energy from radioactive sources have been developed at Malaysian Nuclear Agency. Effort is made to ensure a good reliability of the system for nuclear counting, especially neutrons particles and gamma rays. It will be used in laboratory for testing and maintenance of nuclear spectrometry instruments. Personal computer is used to control the operation of equipment and data acquisition from counter/timer module. Control and data communication between PC and the Counter/ Timer is made through the USB' to RS 232 converter terminal. The program for this system was written using Labview 8.6 software on Windows XP environment. This system has been successfully tested using a pulse generator to simulate the detector signal for calibration and then followed by actual measurement using HE-3 detector.
    Matched MeSH terms: Gamma Rays
  10. Zalina Rahmat, Ismail Bahari, Muhammad Samudi Yasir, Redzuwan Yahaya, Amran Ab. Majid
    MyJurnal
    Concentrations of Natural Occurring Radioactive Material (NORM) and terrestrial gamma radiation have been shown to be associated with certain lithology and soil types. An attempt was made to statistically predict and validate environmental gamma radiation dose rates based on limited number of actual field measurements using sodium iodide (NaI(Tl)) detector. Statistical analysis including the correlations between the actual and predicted dose were made based on 32 different lithology and soil type combinations. Results of field measurements, have shown that more than 50% of the predicted data were not significantly different from the actual measured data. The interpolation method in GIS was used to produce an isodose map based on the prediction equation. A correlation of multiple regression on the predicted versus lithology and soils dose rates gave relationships of DP = 0.35 DL + 0.82 DS – 0.02, r2 = 0.736. A predicted isodose map was subsequently plotted base on 4 dose rates classes, ranging from 0.1 – 0.3 μSvhr-1.
    Matched MeSH terms: Gamma Rays
  11. Moghaddam SS, Jaafar H, Ibrahim R, Rahmat A, Aziz MA, Philip E
    Molecules, 2011 Jun 17;16(6):4994-5007.
    PMID: 21694666 DOI: 10.3390/molecules16064994
    In the present study, two accessions of Centella asiatica (CA03 and CA23) were subjected to gamma radiation to examine the response of these accessions in terms of survival rate, flavonoid contents, leaf gas exchange and leaf mass. Radiation Sensitivity Tests revealed that based on the survival rate, the LD(50) (gamma doses that killed 50% of the plantlets) of the plantlets were achieved at 60 Gy for CA03 and 40 Gy for CA23. The nodal segments were irradiated with gamma rays at does of 30 and 40 Gy for Centella asiatica accession 'CA03' and 20 and 30 Gy for accession 'CA23. The nodal segment response to the radiation was evaluated by recording the flavonoid content, leaf gas exchange and leaf biomass. The experiment was designed as RCBD with five replications. Results demonstrated that the irradiated plantlets exhibited greater total flavonoid contents (in eight weeks) significantly than the control where the control also exhibited the highest total flavonoid contents in the sixth week of growth; 2.64 ± 0.02 mg/g DW in CA03 and 8.94 ± 0.04 mg/g DW in CA23. The total flavonoid content was found to be highest after eight weeks of growth, and this, accordingly, stands as the best time for leaf harvest. Biochemical differentiation based on total flavonoid content revealed that irradiated plantlets in CA23 at 20 and 30 Gy after eight weeks contained the highest total flavonoid concentrations (16.827 ± 0.02; 16.837 ± 0.008 mg/g DW, respectively) whereas in CA03 exposed to 30 and 40 Gy was found to have the lowest total flavonid content (5.83 ± 0.11; 5.75 ± 0.03 mg/g DW). Based on the results gathered in this study, significant differences were found between irradiated accessions and control ones in relation to the leaf gas. The highest PN and gs were detected in CA23 as control followed by CA23 irradiated to 20Gy (CA23G20) and CA23G30 and the lowest PN and gs were observed in CA03 irradiated to 40Gy (CA03G40). Moreover, there were no significant differences in terms of PN and gs among the irradiated plants in each accession. The WUE of both irradiated accessions of Centella asiatica were reduced as compared with the control plants (p < 0.01) while Ci and E were enhanced. There were no significant differences in the gas exchange parameters among radiated plants in each accession. Moreover, malondialdehyde (MDA) of accessions after gamma treatments were significantly higher than the control, however, flavonoids which were higher concentration in irradiated plants can scavenge surplus free radicals. Therefore, the findings of this study have proven an efficient method of in vitro mutagenesis through gamma radiation based on the pharmaceutical demand to create economically superior mutants of C. asiatica. In other words, the results of this study suggest that gamma irradiation on C. asiatica can produce mutants of agricultural and economical importance.
    Matched MeSH terms: Gamma Rays/adverse effects*
  12. Hussein SZ, Yusoff KM, Makpol S, Yusof YA
    Molecules, 2011 Jul 27;16(8):6378-95.
    PMID: 21796076 DOI: 10.3390/molecules16066378
    Two types of monofloral Malaysian honey (Gelam and Nenas) were analyzed to determine their antioxidant activities and total phenolic and flavonoid contents, with and without gamma irradiation. Our results showed that both types of honey can scavenge free radicals and exhibit high antioxidant-reducing power; however, Gelam honey exhibited higher antioxidant activity (p < 0.05) than Nenas honey, which is in good correlation (r = 0.9899) with its phenolic contents. Interestingly, we also noted that both irradiated honeys have higher antioxidant activities and total phenolic and flavonoid contents compared to nonirradiated honeys by Folin-Ciocalteu and UV-spectrophotometry methods, respectively. However, HPLC analysis for phenolic compounds showed insignificant increase between irradiated and nonirradiated honeys. The phenolic compounds such as: caffeic acid, chlorogenic acid, ellagic acid, p- coumaric acid, quercetin and hesperetin as indicated by HPLC method were found to be higher in Gelam honey versus Nenas honey. In conclusion, irradiation of honey causes enhanced antioxidant activities and flavonoid compounds.
    Matched MeSH terms: Gamma Rays
  13. Selambakkannu, Sarala, Bakar, Khomsaton Abu, Ming, Ting Teo, Jamaliah Sharif
    MyJurnal
    In this studies gamma and electron beam irradiation was used to treat textile waste water. Comparisons between both types of irradiation in terms of effectiveness to degrade the pollutants present in textile waste water were done. Prior to irradiation, the raw wastewater was diluted using distilled water to a target concentration of COD 400 mg/l. The sample was irradiated at selected doses between the ranges of 10 kGy to 100 kGy. The results showed that irradiation has significantly contributed in the reduction of the highly colored refractory organic pollutants. The COD removal at the lowest dose, 10 kGy was reduced to 390 mg/l for gamma and 400 mg/l for electron beam. Meanwhile, at the highest dose, 100 kGy, the COD was reduced to 125 mg/l for gamma and 144 mg/l for electron beam. The degree of removal is influenced by the dose introduced during the treatment process. As the dose increased, the higher the removal of organic pollutant was recorded. However, gamma irradiation is more effective although the differences are not significant between gamma and electron beam irradiation. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color also shows a gradual decrease as the dose increases for both types of irradiation.
    Matched MeSH terms: Gamma Rays
  14. Md Fakarudin Ab Rahman, M. Iqbal Saripan, Nor Pa’iza Mohamad Hasan, Ismail Mustapha
    MyJurnal
    The total mass attenuation coefficients (μ/ρ) of stainless steel (SS316L) and carbon steel (A516) that are widely used as petrochemical plant components, such as distillation column, heat exchanger, boiler and storage tank were measured at 662, 1073 and 1332 keV of photon energies. Measurements of radiation intensity for various thicknesses of steel were made by using transmission method. The γ-ray intensity were counted by using a Gamma spectrometer that contains a Hyper-pure Germanium (HPGe) detector connected with Multi Channel Analyzer (MCA). The effective numbers of atomic (Zeff) and electron (Neff) obtained experimentally were compared by those obtained through theoretical calculation. Both experimental and calculated values of Zeff and Neff were in good agreement.
    Matched MeSH terms: Gamma Rays
  15. Azhar Mohamad
    MyJurnal
    The Gamma Green House (GGH) is a chronic irradiation facility located at MINT Tech Park, Nuclear Malaysia, Jalan Dengkil. GGH is used for induction of mutation in plants and other biological samples with low dose radiation over period of time depending on the nature and sensitivity of the plant species. Gamma Greenhouse facility at Malaysian Nuclear Agency comprises an open topped
    irradiation area consisting of circular green house with 30 meters radius, control room and irradiator with interlock system. The irradiation source is a REVISS RSL6050 double encapsulated 800 Ci 137Cs (half-life 30.1 years for 137Cs) pencils and allowed to be exposed only when the entire 300 m diameter site is free from personnel. The irradiator system is secured by a sophisticated interlock system, which only allows the source to be exposed when all the prerequisite safety conditions are met, and automatically returns the source to the safe
    storage position if any safety device is compromised.
    Matched MeSH terms: Gamma Rays
  16. Khalil MI, Sulaiman SA, Alam N, Moniruzzaman M, Bai'e S, Man CN, et al.
    Molecules, 2012 Jan 11;17(1):674-87.
    PMID: 22237682 DOI: 10.3390/molecules17010674
    This study was conducted to evaluate the effects of evaporation, gamma irradiation and temperature on the total polyphenols, flavonoids and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activities of Tualang honey samples (n = 14) following storage over three, six or twelve months. The mean polyphenol concentrations of the six gamma irradiated honey samples at three, six and twelve months, respectively, were 96.13%, 98.01% and 102.03% higher than the corresponding values of the eight non-gamma irradiated samples. Similarly, the mean values for flavonoids at three, six and twelve months were 111.52%, 114.81% and 110.04% higher, respectively, for the gamma irradiated samples. The mean values for DPPH radical-scavenging activities at three, six and twelve months were also 67.09%, 65.26% and 44.65% higher, respectively, for the gamma irradiated samples. These data indicate that all gamma irradiated honey samples had higher antioxidant potential following gamma irradiation, while evaporation and temperature had minor effects on antioxidant potential.
    Matched MeSH terms: Gamma Rays*
  17. Foo Wong Y, Makahleh A, Al Azzam KM, Yahaya N, Saad B, Sulaiman SA
    Talanta, 2012 Aug 15;97:23-31.
    PMID: 22841043 DOI: 10.1016/j.talanta.2012.03.056
    A simple micellar electrokinetic chromatography (MEKC) method for the simultaneous determination of 2-furfural (2-F), 3-furfural (3-F), 5-methylfurfural (5-MF), 5-hydroxymethylfurfural (5-HMF), 2-furoic acid (2-FA) and 3-furoic acid (3-FA) in honey and vegetable oils is described. Parameters affecting the separation such as pH, buffer and surfactant concentrations, applied voltage, capillary temperature, injection time and capillary length were studied and optimized. The separation was carried out in normal polarity mode at 20 °C, 22 kV and using hydrodynamic injection (17 s). The separation was achieved in a bare fused-silica capillary (46 cm × 50 μm i.d.) with a background electrolyte of 75 mM phosphoric acid (pH 7.3), containing 200 mM of sodium dodecyl sulphate (SDS). The detection wavelengths were at 200 nm (2-FA and 3-FA) and 280 nm (2-F, 3-F, 5-MF, 5-HMF). The furfurals were well separated in less than 20 min. The method was validated in terms of linearity, limit of detection and quantitation, precision and recoveries. Calibration curves of the six furfurals were well correlated (r(2)>0.991) within the range 1-25 μg mL(-1). Relative standard deviations of intra- and inter-day migration times and corrected peak areas ≤9.96% were achieved. The limit of detection (signal:noise, 3) was 0.33-0.70 μg mL(-1) whereas the limit of quantitation (signal:noise, 10) was 1.00-2.12 μg mL(-1). The method was applied to the determination of furanic compounds in honeys and vegetable oils (palm, walnut, grape seed and rapeseed). The effects of thermal treatment and gamma irradiation on the formation of the furanic compounds in honey were also investigated.
    Matched MeSH terms: Gamma Rays
  18. Khandaker MU, Jojo PJ, Kassim HA, Amin YM
    Radiat Prot Dosimetry, 2012 Nov;152(1-3):33-7.
    PMID: 22887119 DOI: 10.1093/rpd/ncs145
    Concentrations of primordial radionuclides in common construction materials collected from the south-west coastal region of India were determined using a high-purity germanium gamma-ray spectrometer. Average specific activities (Bq kg(-1)) for (238)U((226)Ra) in cement, brick, soil and stone samples were obtained as 54 ± 13, 21 ± 4, 50 ± 12 and 46 ± 8, respectively. Respective values of (232)Th were obtained as 65 ± 10, 21 ± 3, 58 ± 10 and 57 ± 12. Concentrations of (40)K radionuclide in cement, brick, soil and stone samples were found to be 440 ± 91, 290 ± 20, 380 ± 61 and 432 ± 64, respectively. To evaluate the radiological hazards, radium equivalent activity, various hazard indices, absorbed dose rate and annual effective dose have been calculated, and compared with the literature values. Obtained data could be used as reference information to assess any radiological contamination due to construction materials in future.
    Matched MeSH terms: Gamma Rays
  19. Abedini A, Saion E, Larki F, Zakaria A, Noroozi M, Soltani N
    Int J Mol Sci, 2012;13(9):11941-53.
    PMID: 23109893 DOI: 10.3390/ijms130911941
    Colloidal Cu@CuAlO(2)-Al(2)O(3) bimetallic nanoparticles were prepared by a gamma irradiation method in an aqueous system in the presence of polyvinyl pyrrolidone (PVP) and isopropanol respectively as a colloidal stabilizer and scavenger of hydrogen and hydroxyl radicals. The gamma irradiation was carried out in a (60)Co gamma source chamber with different doses up to 120 kGy. The formation of Cu@CuAlO(2)-Al(2)O(3) nanoparticles was observed initially by the change in color of the colloidal samples from colorless to brown. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of bonds between polymer chains and the metal surface at all radiation doses. Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO(2)-Al(2)O(3) nanoparticles are in a core-shell structure. By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increased precursor concentration and decreased with increased dose. This is due to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation.
    Matched MeSH terms: Gamma Rays*
  20. Shakinah Salleh, Affrida Abu Hassan, Shuhaimi Shamsudin, Yahya Awang, Ab. Kahar Sandrang, Abdullah, Thohirah Lee
    MyJurnal
    Chrysanthemum morfolium is an important temperate cut flower and potted plant for Malaysian local market and exporter. Considering chrysanthemum as a popular vegetatively propagated ornamental plant, induce mutations for breeding purposes are more beneficial. Several of physical mutagens have been used in mutation breeding including x-rays, gamma rays and ion beams. Gamma rays and ion beams are from two different linear energy transfer (LET) which are low and high, respectively. The objective of this study was to compare the effectiveness of acute gamma and ion beam irradiation in generating flower colour mutations on nodal explants of Chrysanthemum morifblium cv. Reagan Red'. The nodal explants were irradiated with acute gamma (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110 and 120 Gy) and ion beam (0, 0.5, 1.0, 2.0, 3.0, 5.0, 8.0, 10, 15, 20 and 30 Gy). The optimal dose for in vitro shoot regeneration using acute gamma was in the range of 10 to .15.0Gy and for ion beam was between 3.5 to 4.OGv. Relative biological effectiveness for ion beam was found 3.75 higher than the acute gamma. The regenerated plantlets were planted in the greenhouse at MARDI, Cameron Highland for morphological screening. The highest frequency of flower colour mutation for acute gamma was 77.8% whilst for ion beam were between 42.3 to 58.3%.
    Matched MeSH terms: Gamma Rays
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links