Displaying publications 21 - 40 of 133 in total

Abstract:
Sort:
  1. Lah NAC, Gray R, Trigueros S
    Microb Cell Fact, 2021 Feb 17;20(1):46.
    PMID: 33596912 DOI: 10.1186/s12934-020-01478-y
    With the long-term goal of developing an ultra-sensitive microcantilever-based biosensor for versatile biomarker detection, new controlled bioreceptor-analytes systems are being explored to overcome the disadvantages of conventional ones. Gold (Au) microwires have been used as a probe to overcome the tolerance problem that occurs in response to changes in environmental conditions. However, the cytotoxicity of Au microwires is still unclear. Here, we examined the cytotoxicity of Au microwires systems using both commercial and as-synthesised Au microwires. In vitro experiments show that commercial Au microwires with an average quoted length of 5.6 µm are highly toxic against Gram-negative Escherichia coli (E. coli) at 50 µg/mL. However, this toxicity is due to the presence of CTAB surfactant not by the microwires. Conversely, the as-synthesised Au microwires show non-cytotoxicity even at the maximum viable concentration (330 µg/mL). These findings may lead to the development of potentially life-saving cytotoxicity-free biosensors for an early diagnostic of potential diseases.
    Matched MeSH terms: Gold/chemistry
  2. Zhao J, Chang W, Liu L, Xing X, Zhang C, Meng H, et al.
    J Immunol Methods, 2021 02;489:112942.
    PMID: 33333060 DOI: 10.1016/j.jim.2020.112942
    Highly sensitive and easy detection method for Alzheimer's disease (AD) with a suitable biomarker is mandatory for preventing the factors resulting from AD. This research reports a modified ELISA with graphene for the detection of AD biomarker amyloid beta (Aβ) oligomer. Gold nanoparticle (AuNP) conjugated aptamer was used as the capture probe and attached on ELISA-graphene oxide surface through the amine linker. Antibody was used as the detection molecule to reach the maximum detection of Aβ oligomer. Suitable level of APTMS (2%), size of AuNP (30 nm) and aptamer concentration (2 μM) were optimized. This sandwich pattern of aptamer-Aβ oligomer-antibody helps to reach the detection at 50 pM on the optimized ELISA surface and the control experiments in the absence of Aβ oligomer or anti-Aβ oligomer antibody did not show the significant optical detection at 492 nm, indicting the specific detection. Further, Aβ oligomer spiked artificial cerebrospinal fluid did not interfere the detection of Aβ oligomer, confirming the selective detection. This new and modified ELISA surface helps to reach the lower detection of Aβ oligomer and diagnose AD.
    Matched MeSH terms: Gold/chemistry*
  3. Mohd Azmi UZ, Yusof NA, Abdullah J, Alang Ahmad SA, Mohd Faudzi FN, Ahmad Raston NH, et al.
    Mikrochim Acta, 2021 01 06;188(1):20.
    PMID: 33404779 DOI: 10.1007/s00604-020-04669-x
    An early detection of Mycobacterium tuberculosis is very important to reduce the number of fatal cases and allow for fast recovery. However, the interpretation of the result from smear microscopy requires skilled personnel due to the propensity of the method to produce false-negative results. In this work, a portable, rapid, and simple sandwich-type immunosensor reader has been developed that is able to detect the presence of M. tuberculosis in sputum samples. By using sandwich-type immunosensor, an anti-CFP10-ESAT6 antibody was immobilized onto the graphene/polyaniline (GP/PANI)-modified gold screen-printed electrode. After incubation with the target CFP10-ESAT6 antigen, the iron/gold magnetic nanoparticles (Fe3O4/Au MNPs) conjugated with anti-CFP10-ESAT6 antibody were used to complete the sandwich format. Differential pulse voltammetry (DPV) technique was used to detect the CFP10-ESAT6 antigen at the potential range of 0.0-1.0 V. The detection time is less than 2 h. Under optimal condition, CFP10-ESAT6 antigen was detected in a linear range from 10 to 500 ng mL-1 with a limit of detection at 1.5 ng mL-1. The method developed from this process was then integrated into a portable reader. The performance of the sensor was investigated and compared with the standard methods (culture and smear microscopy). It provides a good correlation (100% sensitivity and 91.7% specificity) with both methods of detection for M. tuberculosis in sputum samples henceforth, demonstrating the potential of the device as a more practical screening tool.Graphical abstract.
    Matched MeSH terms: Gold/chemistry
  4. Qiu Z, Shen Q, Jiang C, Yao L, Sun X, Li J, et al.
    Int J Nanomedicine, 2021;16:2311-2322.
    PMID: 33776435 DOI: 10.2147/IJN.S302396
    Background: Alzheimer's disease (AD) is a neurodegenerative chronic disorder that causes dementia and problems in thinking, cognitive impairment and behavioral changes. Amyloid-beta (Aβ) is a peptide involved in AD progression, and a high level of Aβ is highly correlated with severe AD. Identifying and quantifying Aβ levels helps in the early treatment of AD and reduces the factors associated with AD.

    Materials and Methods: This research introduced a dual probe detection system involving aptamers and antibodies to identify Aβ. Aptamers and antibodies were attached to the gold (Au) urchin and hybrid on the carbon nanohorn-modified surface. The nanohorn was immobilized on the sensor surface by using an amine linker, and then a Au urchin dual probe was immobilized.

    Results: This dual probe-modified surface enhanced the current flow during Aβ detection compared with the surface with antibody as the probe. This dual probe interacted with higher numbers of Aβ peptides and reached the detection limit at 10 fM with R2=0.992. Furthermore, control experiments with nonimmune antibodies, complementary aptamer sequences and control proteins did not display the current responses, indicating the specific detection of Aβ.

    Conclusion: Aβ-spiked artificial cerebrospinal fluid showed a similar response to current changes, confirming the selective identification of Aβ.

    Matched MeSH terms: Gold/chemistry*
  5. Sil BK, Jamiruddin MR, Haq MA, Khondoker MU, Jahan N, Khandker SS, et al.
    Int J Nanomedicine, 2021;16:4739-4753.
    PMID: 34267520 DOI: 10.2147/IJN.S313140
    BACKGROUND: Serological tests detecting severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are widely used in seroprevalence studies and evaluating the efficacy of the vaccination program. Some of the widely used serological testing techniques are enzyme-linked immune-sorbent assay (ELISA), chemiluminescence immunoassay (CLIA), and lateral flow immunoassay (LFIA). However, these tests are plagued with low sensitivity or specificity, time-consuming, labor-intensive, and expensive. We developed a serological test implementing flow-through dot-blot assay (FT-DBA) for SARS-CoV-2 specific IgG detection, which provides enhanced sensitivity and specificity while being quick to perform and easy to use.

    METHODS: SARS-CoV-2 antigens were immobilized on nitrocellulose membrane to capture human IgG, which was then detected with anti-human IgG conjugated gold nanoparticle (hIgG-AuNP). A total of 181 samples were analyzed in-house. Within which 35 were further evaluated in US FDA-approved CLIA Elecsys SARS-CoV-2 assay. The positive panel consisted of RT-qPCR positive samples from patients with both <14 days and >14 days from the onset of clinical symptoms. The negative panel contained samples collected from the pre-pandemic era dengue patients and healthy donors during the pandemic. Moreover, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of FT-DBA were evaluated against RT-qPCR positive sera. However, the overall efficacies were assessed with sera that seroconverted against either nucleocapsid (NCP) or receptor-binding domain (RBD).

    RESULTS: In-house ELISA selected a total of 81 true seropositive and 100 seronegative samples. The sensitivity of samples with <14 days using FT-DBA was 94.7%, increasing to 100% for samples >14 days. The overall detection sensitivity and specificity were 98.8% and 98%, respectively, whereas the overall PPV and NPV were 99.6% and 99%. Moreover, comparative analysis between in-house ELISA assays and FT-DBA revealed clinical agreement of Cohen's Kappa value of 0.944. The FT-DBA showed sensitivity and specificity of 100% when compared with commercial CLIA kits.

    CONCLUSION: The assay can confirm past SARS-CoV-2 infection with high accuracy within 2 minutes compared to commercial CLIA or in-house ELISA. It can help track SARS-CoV-2 disease progression, population screening, and vaccination response. The ease of use of the assay without requiring any instruments while being semi-quantitative provides the avenue of its implementation in remote areas around the globe, where conventional serodiagnosis is not feasible.

    Matched MeSH terms: Gold/chemistry*
  6. Awaludin N, Abdullah J, Salam F, Ramachandran K, Yusof NA, Wasoh H
    Anal Biochem, 2020 12 01;610:113876.
    PMID: 32750357 DOI: 10.1016/j.ab.2020.113876
    The identification of rice bacterial leaf blight disease requires a simple, rapid, highly sensitive, and quantitative approach that can be applied as an early detection monitoring tool in rice health. This paper highlights the development of a turn-off fluorescence-based immunoassay for the early detection of Xanthomonas oryzae pv. oryzae (Xoo), a gram-negative bacterium that causes rice bacterial leaf blight disease. Antibodies against Xoo bacterial cells were produced as specific bio-recognition molecules and the conjugation of these antibodies with graphene quantum dots and gold nanoparticles was performed and characterized, respectively. The combination of both these bio-probes as a fluorescent donor and metal quencher led to changes in the fluorescence signal. The immunoreaction between AntiXoo-GQDs, Xoo cells, and AntiXoo-AuNPs in the immuno-aggregation complex led to the energy transfer in the turn-off fluorescence-based quenching system. The change in fluorescence intensity was proportional to the logarithm of Xoo cells in the range of 100-105 CFU mL-1. The limit of detection was achieved at 22 CFU mL-1 and the specificity test against other plant disease pathogens showed high specificity towards Xoo. The detection of Xoo in real plant samples was also performed in this study and demonstrated satisfactory results.
    Matched MeSH terms: Gold/chemistry
  7. Yusoh NA, Ahmad H, Gill MR
    ChemMedChem, 2020 Nov 18;15(22):2121-2135.
    PMID: 32812709 DOI: 10.1002/cmdc.202000391
    Platinum drugs are heavily used first-line chemotherapeutic agents for many solid tumours and have stimulated substantial interest in the biological activity of DNA-binding metal complexes. These complexes generate DNA lesions which trigger the activation of DNA damage response (DDR) pathways that are essential to maintain genomic integrity. Cancer cells exploit this intrinsic DNA repair network to counteract many types of chemotherapies. Now, advances in the molecular biology of cancer has paved the way for the combination of DDR inhibitors such as poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) and agents that induce high levels of DNA replication stress or single-strand break damage for synergistic cancer cell killing. In this review, we summarise early-stage, preclinical and clinical findings exploring platinum and emerging ruthenium anti-cancer complexes alongside PARPi in combination therapy for cancer and also describe emerging work on the ability of ruthenium and gold complexes to directly inhibit PARP activity.
    Matched MeSH terms: Gold/chemistry
  8. Ibau C, Arshad MKM, Gopinath SCB, Nuzaihan M N M, Fathil MFM, Shamsuddin SA
    Int J Biol Macromol, 2020 Nov 01;162:1924-1936.
    PMID: 32822729 DOI: 10.1016/j.ijbiomac.2020.08.125
    This work explores Electrochemical Impedance Spectroscopy (EIS) detection for a highly-sensitive quantification of prostate-specific antigen (PSA) in Faradaic (f-EIS) and non-Faradaic modes (nf-EIS). Immobilization of monoclonal antibody specific to PSA (anti-PSA) was performed using 1-ethyl-3-dimethylaminopropylcarbodiimide hydrochloride and N-hydroxysuccinimide crosslinking agents in order to conjugate carboxylic (-COOH) terminated group of 16-Mercaptoundecanoic acid with amine (-NH3+) on anti-PSA epitope. This approach offers simple and efficient approach to form a strong, covalently bound thiol-gold (SAu) for a reliable SAM layer formation. Studies on the topographic of pristine Au-IDE surface were performed by Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy techniques, meanwhile a 3-dimensional optical surface profiler, Atomic Force Microscopy and X-ray Photoelectron Spectroscopy techniques were used to validate the successful functionalization steps on the sensor transducer surface. Detection of PSA in f-EIS mode was carried out by measuring the response in charge transfer resistance (Rct) and impedance change (Z), meanwhile in nf-EIS mode, the changes in device capacitance was monitored. In f-EIS mode, the sensor reveals a logarithmic detection of PSA in a range of 100 ng/ml down to 0.01 ng/ml in Phosphate Buffered Saline with a recorded sensitivity of 2.412 kΩ/log10 ([PSA] ng/ml) and the limit of detection (LOD) down to 0.01 ng/ml. The nf-EIS detection mode yields a logarithmic detection range of 5000 ng/ml down to 0.5 ng/ml, with a sensitivity of 8.570 nF/log10 ([PSA] ng/ml) and an LOD of 0.5 ng/ml. The developed bio-assay yields great device stability, specificity to PSA and repeatability of detection that would pave its way for the future development into portable lab-on-chip bio-sensing system.
    Matched MeSH terms: Gold/chemistry
  9. Mohammed Modawe Alshik Edris N, Sulaiman Y
    Ecotoxicol Environ Saf, 2020 Oct 15;203:111026.
    PMID: 32888594 DOI: 10.1016/j.ecoenv.2020.111026
    The detection of phenolic compounds, i.e. resorcinol (RC) catechol (CC) and hydroquinone (HQ) are important due to their extremely hazardous impact and poor environmental degradation. In this work, a novel and sensitive composite of electrochemically reduced graphene oxide-poly(Procion Red MX-5B)/gold nanoparticles modified glassy carbon electrode (GCE/ERGO-poly(PR)/AuNPs) was assembled for voltammetric detection of benzenediol isomers (RC, CC, and HQ). The nanocomposite displayed high peak currents towards the oxidation of RC, HQ, and CC compared to non-modified GCE. The peak-to-peak separations were 0.44 and 0.10 V for RC-CC and CC-HQ, respectively. The limit of detections were 53, 53, and 79 nM for HQ, CC, and RC with sensitivities of 4.61, 4.38, and 0.56 μA/μM (S/N = 3), respectively. The nanocomposite displayed adequate reproducibility, besides good stability and acceptable recoveries for wastewater and cosmetic samples analyses.
    Matched MeSH terms: Gold/chemistry*
  10. Dalila NR, Arshad MKM, Gopinath SCB, Nuzaihan MNM, Fathil MFM
    Mikrochim Acta, 2020 10 05;187(11):588.
    PMID: 33015730 DOI: 10.1007/s00604-020-04562-7
    Nanofabricated gold nanoparticles (Au-NPs) on MoS2 nanosheets (Au-NPs/MoS2) in back-gated field-effect transistor (BG-FET) are presented, which acts as an efficient semiconductor device for detecting a low concentration of C-reactive protein (C-RP). The decorated nanomaterials lead to an enhanced electron conduction layer on a 100-μm-sized transducing channel. The sensing surface was characterized by Raman spectroscopy, ultraviolet-visible spectroscopy (UV-Vis), atomic force microscopy (AFM), scanning electron microscopy (SEM), and high-power microscopy (HPM). The BG-FET device exhibits an excellent limit of detection of 8.38 fg/mL and a sensitivity of 176 nA/g·mL-1. The current study with Au-NPs/MoS2 BG-FET displays a new potential biosensing technology; especially for integration into complementary metal oxide (CMOS) technology for hand-held future device application.
    Matched MeSH terms: Gold/chemistry
  11. Ibrahim I, Lim HN, Huang NM, Jiang ZT, Altarawneh M
    J Hazard Mater, 2020 06 05;391:122248.
    PMID: 32062348 DOI: 10.1016/j.jhazmat.2020.122248
    Nowadays, increasing the risk for copper leaching into the drinking water in homes, hotels and schools has become unresolved issues all around the countries such as Canada, the United States, and Malaysia. The leaching of copper in tap water is due to a combination of acidic water, damaged pipes, and corroded plumbing fixtures. To remedy this global problem, a triple interconnected structure of CdS/Au/GQDs was designed as a photo-to-electron conversion medium for a real time and selective visible-light-prompt photoelectrochemical (PEC) sensor for Cu2+ ions in real water samples. The synergistic interaction of the CdS/Au/GQDs enabled the smooth transportation of charge carriers to the charge collector and provided a channel to inhibit the charge recombination reaction. Thus, a detection limit of 2.27 nM was obtained, which is 10,000 fold lower than that of WHO's Guidelines for Drinking-water Quality (∼30 μM). The photocurrent reduction was negligible after 30 days of storage under ambient conditions, suggesting the high stability of photoelectrode. Moreover, the real-time monitoring of Cu2+ ions in real samples was performed with satisfactory results, confirming the capability of the investigated photoelectrode as the most practical detector for trace amounts of Cu2+ ions.
    Matched MeSH terms: Gold/chemistry
  12. Uppachai P, Srijaranai S, Poosittisak S, Md Isa I, Mukdasai S
    Molecules, 2020 May 29;25(11).
    PMID: 32485804 DOI: 10.3390/molecules25112528
    A new supramolecular electrochemical sensor for highly sensitive detection of dopamine (DA) was fabricated based on supramolecular assemblies of mixed two surfactants, tetra-butylammonium bromide (TBABr) and sodium dodecyl sulphate (SDS), on the electrodeposition of gold nanoparticles on graphene oxide modified on glassy carbon electrode (AuNPs/GO/GCE). Self-assembled mixed surfactants (TBABr/SDS) were added into the solution to increase the sensitivity for the detection of DA. All electrodes were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The supramolecular electrochemical sensor (TBABr/SDS⋅⋅⋅AuNPs/GO/GCE) showed excellent electrocatalytic activity toward the oxidation of DA. Under the optimum conditions, the concentration of DA was obtained in the range from 0.02 µM to 1.00 µM, with a detection limit of 0.01 µM (3s/b). The results displayed that TBABr/SDS⋅⋅⋅AuNPs/GO/GCE exhibited excellent performance, good sensitivity, and reproducibility. In addition, the proposed supramolecular electrochemical sensor was successfully applied to determine DA in human serum samples with satisfactory recoveries (97.26% to 104.21%).
    Matched MeSH terms: Gold/chemistry*
  13. Mousavi SM, Zarei M, Hashemi SA, Ramakrishna S, Chiang WH, Lai CW, et al.
    Drug Metab Rev, 2020 05;52(2):299-318.
    PMID: 32150480 DOI: 10.1080/03602532.2020.1734021
    Gold Nanostars (GNS) have attracted tremendous attention toward themselves owing to their multi-branched structure and unique properties. These state of the art metallic nanoparticles possess intrinsic features like remarkable optical properties and exceptional physiochemical activities. These star-shaped gold nanoparticles can predominantly be utilized in biosensing, photothermal therapy, imaging, surface-enhanced Raman spectroscopy and target drug delivery applications due to their low toxicity and extraordinary optical features. In the current review, recent approaches in the matter of GNS in case of diagnosis, bioimaging and biomedical applications were summarized and reported. In this regard, first an overview about the structure and general properties of GNS were reported and thence detailed information regarding the diagnostic, bioimaging, photothermal therapy, and drug delivery applications of such novel nanomaterials were presented in detail. Summarized information clearly highlighting the superior capability of GNS as potential multi-functional materials for biomedical applications.
    Matched MeSH terms: Gold/chemistry*
  14. Azri FA, Eissa S, Zourob M, Chinnappan R, Sukor R, Yusof NA, et al.
    Mikrochim Acta, 2020 04 12;187(5):266.
    PMID: 32279134 DOI: 10.1007/s00604-020-4218-7
    An electrochemical aptasensor is described for determination of the phytohormone of zearalenone (ZEA). The gold electrode was modified with ZEA via covalent attachment using cysteamine-hydrochloride and 1,4-phenylene diisocyanate linker. A truncated ZEA aptamer with a dissociation constant of 13.4 ± 2.1 nM was used in an aptasensor. The electrochemical property was investigated using square wave voltammetry for monitoring the change in the electron transfer using the ferro/ferricyanide system as redox probe. Under optimal experimental conditions, the response was best measured at a potential of 0.20 V (vs. Ag/AgCl). The signals depended on the competitive mechanism between the immobilised ZEA and free ZEA for the aptamer binding site. The aptasensor works in the range 0.01 to 1000 ng·mL-1 ZEA concentration, with a detection limit of 0.017 ng·mL-1. High degree of cross-reactivity with the other analogues of ZEA was observed, whereas none towards other mycotoxins. The aptasensor was further applied for the determination of ZEA in the extract of maize grain and showed good recovery percentages between 87 and 110%. Graphical abstract Schematic representation of the electrochemical determination of zearalenone based on indirect competitive assay. Step a Immobilisation of ZEA on the surface of gold electrode via covalent attachment, b competition for the ZEA aptamer binding site between immobilised and free ZEA, and c current signal of the binding event based on SWV technique.
    Matched MeSH terms: Gold/chemistry
  15. Jeningsih, Tan LL, Ulianas A, Heng LY, Mazlan NF, Jamaluddin ND, et al.
    Sensors (Basel), 2020 Mar 25;20(7).
    PMID: 32218202 DOI: 10.3390/s20071820
    A DNA micro-optode for dengue virus detection was developed based on the sandwich hybridization strategy of DNAs on succinimide-functionalized poly(n-butyl acrylate) (poly(nBA-NAS)) microspheres. Gold nanoparticles (AuNPs) with an average diameter of ~20 nm were synthesized using a centrifugation-based method and adsorbed on the submicrometer-sized polyelectrolyte-coated poly(styrene-co-acrylic acid) (PSA) latex particles via an electrostatic method. The AuNP-latex spheres were attached to the thiolated reporter probe (rDNA) by Au-thiol binding to functionalize as an optical gold-latex-rDNA label. The one-step sandwich hybridization recognition involved a pair of a DNA probe, i.e., capture probe (pDNA), and AuNP-PSA reporter label that flanked the target DNA (complementary DNA (cDNA)). The concentration of dengue virus cDNA was optically transduced by immobilized AuNP-PSA-rDNA conjugates as the DNA micro-optode exhibited a violet hue upon the DNA sandwich hybridization reaction, which could be monitored by a fiber-optic reflectance spectrophotometer at 637 nm. The optical genosensor showed a linear reflectance response over a wide cDNA concentration range from 1.0 × 10-21 M to 1.0 × 10-12 M cDNA (R2 = 0.9807) with a limit of detection (LOD) of 1 × 10-29 M. The DNA biosensor was reusable for three consecutive applications after regeneration with mild sodium hydroxide. The sandwich-type optical biosensor was well validated with a molecular reverse transcription polymerase chain reaction (RT-PCR) technique for screening of dengue virus in clinical samples, e.g., serum, urine, and saliva from dengue virus-infected patients under informed consent.
    Matched MeSH terms: Gold/chemistry
  16. Yuhana Ariffin E, Heng LY, Tan LL, Abd Karim NH, Hasbullah SA
    Sensors (Basel), 2020 Feb 26;20(5).
    PMID: 32111092 DOI: 10.3390/s20051279
    A novel label-free electrochemical DNA biosensor was constructed for the determination of Escherichia coli bacteria in environmental water samples. The aminated DNA probe was immobilized onto hollow silica microspheres (HSMs) functionalized with 3-aminopropyltriethoxysilane and deposited onto a screen-printed electrode (SPE) carbon paste with supported gold nanoparticles (AuNPs). The biosensor was optimized for higher specificity and sensitivity. The label-free E. coli DNA biosensor exhibited a dynamic linear response range of 1 × 10-10 µM to 1 × 10-5 µM (R2 = 0.982), with a limit of detection at 1.95 × 10-15 µM, without a redox mediator. The sensitivity of the developed DNA biosensor was comparable to the non-complementary and single-base mismatched DNA. The DNA biosensor demonstrated a stable response up to 21 days of storage at 4 ℃ and pH 7. The DNA biosensor response was regenerable over three successive regeneration and rehybridization cycles.
    Matched MeSH terms: Gold/chemistry
  17. Khalil I, Yehye WA, Muhd Julkapli N, Sina AA, Rahmati S, Basirun WJ, et al.
    Analyst, 2020 Feb 17;145(4):1414-1426.
    PMID: 31845928 DOI: 10.1039/c9an02106j
    Surface enhanced Raman scattering (SERS) DNA biosensing is an ultrasensitive, selective, and rapid detection technique with the ability to produce molecule-specific distinct fingerprint spectra. It supersedes the long amplicon based PCR assays, the fluorescence and spectroscopic techniques with their quenching and narrow spectral bandwidth, and the electrochemical detection techniques using multiplexing. However, the performance of the SERS DNA biosensor relies on the DNA probe length, platform composition, both the presence and position of Raman tags and the chosen sensing strategy. In this context, we herein report a SERS biosensor based on dual nanoplatforms with a uniquely designed Raman tag (ATTO Rho6G) intercalated short-length DNA probe for the sensitive detection of the pig species Sus scrofa. In the design of the signal probe (SP), a Raman tag was incorporated adjacent to the spacer arm, followed by a terminal thiol modifier, which consequently had a strong influence on the SERS signal enhancement. The detection strategy involves the probe-target DNA hybridization mediated coupling of the two platforms, i.e., the graphene oxide-gold nanorod (GO-AuNR) functionalized capture probe (CP) and SP-conjugated gold nanoparticles (AuNPs), consequently enhancing the SERS intensity by both the electromagnetic hot spots generated at the junctions or interstices of the two platforms and the chemical enhancement between the AuNPs and the adsorbed intercalated Raman tag. This dual platform based SERS DNA biosensor exhibited outstanding sensitivity in detecting pork DNA with a limit of detection (LOD) of 100 aM validated with DNA extracted from a pork sample (LOD 1 fM). Moreover, the fabricated SERS biosensor showed outstanding selectivity and specificity for differentiating the DNA sequences of six closely related non-target species from the target DNA sequences with single and three nucleotide base-mismatches. Therefore, the developed short-length DNA linked dual platform based SERS biosensor could replace the less sensitive traditional methods of pork DNA detection and be adopted as a universal detection approach for the qualitative and quantitative detection of DNA from any source.
    Matched MeSH terms: Gold/chemistry
  18. Sivaranjan K, Padmaraj O, Santhanalakshmi J, Sathuvan M, Sathiyaseelan A, Sagadevan S
    Sci Rep, 2020 02 13;10(1):2586.
    PMID: 32054936 DOI: 10.1038/s41598-020-59491-5
    Exploring the new catalytic systems for the reduction of organic and inorganic pollutants from an indispensable process in chemical, petrochemical, pharmaceutical and food industries, etc. Hence, in the present work, authors motivated to synthesize bare reduced graphene oxide (rGO), polyaniline (PANI), three different ratios of rGO-PANI(80:20,50:50, 10:90) composites and rGO-PANI(80:20,50:50, 10:90) supported mono (Pd) & bimetallic [Pd: Au(1:1,1:2, 2:1)] nanocomposite by a facile chemical reduction method. Also, it investigated their catalytic performances for the reduction of organic/inorganic pollutants and antimicrobial activities. All the freshly prepared bare rGO, PANI, three different ratios of rGO-PANI(80:20, 50:50,10:90) composites and rGO-PANI(80:20, 50:50,10:90)/Pd & Pd: Au(1:1, 1:2,2:1) nanocomposite hybrid catalysts were characterized using UV-Vis, FT-IR, SEM, FE-SEM, EDAX, HR-TEM, XRD, XPS and Raman spectroscopy analysis. Among them, an optimized best composition of rGO-PANI(80:20)/Pd: Au(1:1) bimetallic nanocomposite hybrid catalyst exhibits better catalytic reduction and antimicrobial activities than other composites, as a result of strong electrostatic interactions between rGO, PANI and bimetal (Pd: Au) NPs through a synergistic effect. Hence, an optimized rGO-PANI(80:20)/Pd:Au(1:1) bimetallic nanocomposite catalyst would be considered as a suitable catalyst for the reduction of different nitroarenes, organic dyes, heavy metal ions and also significantly inhibit the growth of S. aureus, S. Typhi as well as Candida albicans and Candida kruesi in wastewater.
    Matched MeSH terms: Gold/chemistry*
  19. Alomari G, Al-Trad B, Hamdan S, Aljabali A, Al-Zoubi M, Bataineh N, et al.
    Drug Deliv Transl Res, 2020 Feb;10(1):216-226.
    PMID: 31637677 DOI: 10.1007/s13346-019-00675-6
    Several recent studies have reported that gold nanoparticles (AuNPs) attenuate hyperglycemia in diabetic animal models without any observed side effects. The present study was intended to provide insight into the effects of 50-nm AuNPs on diabetic kidney disease. Adult male rats were divided into three groups (n = 7/group): control (non-diabetic, ND), diabetic (D), and diabetic treated intraperitoneally with 50-nm AuNPs (AuNPs + D; 2.5 mg/kg/day) for 7 weeks. Diabetes was induced by a single-dose injection of 55 mg/kg streptozotocin. The result showed that AuNP treatment prevented diabetes-associated increases in the blood glucose level. Reduction in 24-h urinary albumin excretion rate, glomerular basement membrane thickness, foot process width, and renal oxidative stress markers was also demonstrated in the AuNP-treated group. In addition, the results showed downregulation effect of AuNPs in renal mRNA or protein expression of transforming growth factor β1 (TGF-β1), fibronectin, collagen IV, tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor-A (VEGF-A). Moreover, the protein expression of nephrin and podocin, podocyte markers, in glomeruli was increased in the AuNPs + D group compared with the D group. These results provide evidence that 50-nm AuNPs can ameliorate renal damage in experimental models of diabetic nephropathy through improving the renal function and downregulating extracellular matrix protein accumulation, along with inhibiting renal oxidative stress and amelioration of podocyte injury.
    Matched MeSH terms: Gold/chemistry
  20. Che Sulaiman IS, Chieng BW, Osman MJ, Ong KK, Rashid JIA, Wan Yunus WMZ, et al.
    Mikrochim Acta, 2020 01 15;187(2):131.
    PMID: 31940088 DOI: 10.1007/s00604-019-3893-8
    This review (with 99 refs.) summarizes the progress that has been made in colorimetric (i.e. spectrophotometric) determination of organophosphate pesticides (OPPs) using gold and silver nanoparticles (NPs). Following an introduction into the field, a first large section covers the types and functions of organophosphate pesticides. Methods for colorimetric (spectrophotometric) measurements including RGB techniques are discussed next. A further section covers the characteristic features of gold and silver-based NPs. Syntheses and modifications of metal NPs are covered in section 5. This is followed by overviews on enzyme inhibition-based assays, aptamer-based assays and chemical (non-enzymatic) assays, and a discussion of specific features of colorimetric assays. Several Tables are presented that give an overview on the wealth of methods and materials. A concluding section addresses current challenges and discusses potential future trends and opportunities. Graphical abstractSchematic representation of organophosphate pesticide determinations based on aggregation of nanoparticles (particular silver or gold nanoparticles). This leads to a color change which can be determined visually and monitored by a red shift in the absorption spectrum.
    Matched MeSH terms: Gold/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links