Displaying publications 21 - 40 of 110 in total

Abstract:
Sort:
  1. Shameli K, Bin Ahmad M, Jaffar Al-Mulla EA, Ibrahim NA, Shabanzadeh P, Rustaiyan A, et al.
    Molecules, 2012 Jul 16;17(7):8506-17.
    PMID: 22801364 DOI: 10.3390/molecules17078506
    Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extract has been reported. Characterizations of nanoparticles were done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDXF) spectrometry, zeta potential measurements and Fourier transform infrared (FT-IR) spectroscopy. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 456 nm. The TEM study showed that mean diameter and standard deviation for the formation of silver nanoparticles were 12.40 ± 3.27 nm. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The most needed outcome of this work will be the development of value added products from Callicarpa maingayi for biomedical and nanotechnology based industries.
    Matched MeSH terms: Green Chemistry Technology/methods*
  2. Darroudi M, Ahmad MB, Abdullah AH, Ibrahim NA
    Int J Nanomedicine, 2011;6:569-74.
    PMID: 21674013 DOI: 10.2147/IJN.S16867
    Silver nanoparticles (Ag-NPs) have been successfully prepared with simple and "green" synthesis method by reducing Ag(+) ions in aqueous gelatin media with and in the absence of glucose as a reducing agent. In this study, gelatin was used for the first time as a reducing and stabilizing agent. The effect of temperature on particle size of Ag-NPs was also studied. It was found that with increasing temperature the size of nanoparticles is decreased. It was found that the particle size of Ag-NPs obtained in gelatin solutions is smaller than in gelatin-glucose solutions, which can be related to the rate of reduction reaction. X-ray diffraction, ultraviolet-visible spectra, transmission electron microscopy, and atomic force microscopy revealed the formation of monodispersed Ag-NPs with a narrow particle size distribution.
    Matched MeSH terms: Green Chemistry Technology/methods*
  3. Tay CC, Liew HH, Redzwan G, Yong SK, Surif S, Abdul-Talib S
    Water Sci Technol, 2011;64(12):2425-32.
    PMID: 22170837 DOI: 10.2166/wst.2011.805
    The potential of Pleurotus ostreatus spent mushroom compost (PSMC) as a green biosorbent for nickel (II) biosorption was investigated in this study. A novel approach of using the half-saturation concentration of biosorbent to rapidly determine the uptake, kinetics and mechanism of biosorption was employed together with cost per unit uptake analysis to determine the potential of this biosorbent. Fifty per cent nickel (II) biosorption was obtained at a half-saturation constant of 0.7 g biosorbent concentration, initial pH in the range of 4-8, 10 min contact time, 50 mL 50 mg/L nickel (II) initial concentration. The experimental data were well fitted with the Langmuir isotherm model and the maximum nickel (II) biosorption was 3.04 mg/g. The results corresponded well to a second pseudo order kinetic model with the coefficient of determination value of 0.9999. Based on FTIR analysis, the general alkyl, hydroxyl or amino, aliphatic alcohol and carbonyl functional groups of biosorbent were involved in the biosorption process. Therefore, biosorption of nickel (II) must involve several mechanisms simultaneously such as physical adsorption, chemisorption and ion exchange. Cost comparison for PSMC with Amberlite IRC-86 ion exchange resin indicates that the biosorbent has the potential to be developed into a cost effective and environmentally friendly treatment system.
    Matched MeSH terms: Green Chemistry Technology*
  4. Ahmad AL, Oh PC, Abd Shukor SR
    Biotechnol Adv, 2009 May-Jun;27(3):286-96.
    PMID: 19500550 DOI: 10.1016/j.biotechadv.2009.01.003
    Over the past decade, L-homophenylalanine is extensively used in the pharmaceutical industry as a precursor for production of angiotensin-converting enzyme (ACE) inhibitor, which possesses significant clinical application in the management of hypertension and congestive heart failure (CHF). A number of chemical methods have been reported thus far for the synthesis of L-homophenylalanine. However, chemical methods generally suffer from process complexity, high cost, and environmental pollution. On the other hand, enantiomerically pure L-homophenylalanine can be obtained elegantly and efficiently by employing biocatalytic methods, where it appears to be the most attractive process in terms of potential industrial applications, green chemistry and sustainability. Herein we review the biocatalytic synthesis of vital L-homophenylalanine as potentially useful intermediate in the production of pharmaceutical drugs in environmentally friendly conditions, using membrane bioreactor for sustainable biotransformation process. One envisages the future prospects of developing an integrated membrane bioreactor system with improved performance for L-homophenylalanine production.
    Matched MeSH terms: Green Chemistry Technology/methods*
  5. Shameli K, Ahmad MB, Zamanian A, Sangpour P, Shabanzadeh P, Abdollahi Y, et al.
    Int J Nanomedicine, 2012;7:5603-10.
    PMID: 23341739 DOI: 10.2147/IJN.S36786
    Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries.
    Matched MeSH terms: Green Chemistry Technology/methods*
  6. Ghanbariasad A, Taghizadeh SM, Show PL, Nomanbhay S, Berenjian A, Ghasemi Y, et al.
    Bioengineered, 2019 12;10(1):390-396.
    PMID: 31495263 DOI: 10.1080/21655979.2019.1661692
    FeOOH nanoparticles are commonly synthesized at very high temperature and pressure that makes the process energy consuming and non-economic. Recently, novel approaches were developed for the fabrication of these particles at room temperature. But, the main problem with these methods is that the prepared structures are aggregates of ultra-small nanoparticles where no intact separate nanoparticles are formed. In this study, for the first time, secretory compounds from Chlorella vulgaris cells were employed for the controlled synthesis of FeOOH nanoparticles at room atmosphere. Obtained particles were found to be goethite (α-FeO(OH)) crystals. Controlled synthesis of FeOOH nanoparticles resulted in uniform spherical nanoparticles ranging from 8 to 17 nm in diameter with 12.8 nm mean particle size. Fourier-transform infrared and elemental analyses were indicated that controlled synthesized nanoparticles have not functionalized with secretory compounds of C. vulgaris, and these compounds just played a controlling role over the synthesis reaction.
    Matched MeSH terms: Green Chemistry Technology*
  7. Gorjian H, Raftani Amiri Z, Mohammadzadeh Milani J, Ghaffari Khaligh N
    Food Chem, 2021 Apr 16;342:128342.
    PMID: 33092927 DOI: 10.1016/j.foodchem.2020.128342
    Nanoliposome and nanoniosome formulations containing myrtle extract were prepared without using cholesterol and toxic organic solvents for the first time. The formulations had different concentrations of lecithin (5, 7, and 9% w/w) and Hydrophilic-Lipophilic Balance (HLB) values (6.76, 8.40, and 9.59). The physicochemical characterization results showed a nearly spherical shape for the prepared nanosamples. The particle sizes, zeta potentials and encapsulation efficiencies for the prepared nanoliposomes and nanoniosomes were at a range of 260-293 nm and 224-520 nm; -33.16 to - 31.16 mV and - 33.3 to - 10.36 mV; and 68-73% and 79-83%, respectively. The formulated nanoniosomes showed better stability during storage time. Besides, the encapsulation efficiency and in vitro release rate of myrtle extract could be controlled by adjusting the lecithin concentration and HLB value. The release of myrtle extract from nanovesicles showed a pH-responsive character. The FTIR analysis confirmed that the myrtle extract was encapsulated in nanovesicles physically.
    Matched MeSH terms: Green Chemistry Technology/methods*
  8. Yan LP, Gopinath SCB, Anbu P, Kasim FH, Zulhaimi HI, Yaakub ARW
    Prep Biochem Biotechnol, 2020;50(10):1053-1062.
    PMID: 32597353 DOI: 10.1080/10826068.2020.1783678
    This research comprehends iron-oxide nanoparticle (IONP) production, the apparent metallic nanostructure with unique superparamagnetic properties. Durian-rind-extract was utilized to synthesize IONP and the color of reaction mixture becomes dark brown, indicated the formation of IONPs and the peak was observed at ∼330 nm under UV-visible spectroscopy. The morphological observation under high-resolution microscopies has revealed the spherical shape and the average size (∼10 nm) of IONP. The further support was rendered by EDX-analysis showing apparent iron and oxygen peaks. XRD results displayed the crystalline planes with (110) and (300) planes at 2θ of 35.73° and 63.53°, respectively. XPS-data has clearly demonstrated the presence of Fe2P and O1s peaks. The IONPs were successfully capped by the polyphenol compounds from durian-rind-extract as evidenced by the representative peaks between 1633 and 595 cm-1 from FTIR analysis. The antimicrobial potentials of IONPs were evidenced by the disk-diffusion assay. The obtained results have abundant attention and being actively explored owing to their beneficial applications.
    Matched MeSH terms: Green Chemistry Technology*
  9. Andra S, Balu SK, Jeevanandham J, Muthalagu M, Vidyavathy M, Chan YS, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2019 07;392(7):755-771.
    PMID: 31098696 DOI: 10.1007/s00210-019-01666-7
    Developments in nanotechnology field, specifically, metal oxide nanoparticles have attracted the attention of researchers due to their unique sensing, electronic, drug delivery, catalysis, optoelectronics, cosmetics, and space applications. Physicochemical methods are used to fabricate nanosized metal oxides; however, drawbacks such as high cost and toxic chemical involvement prevail. Recent researches focus on synthesizing metal oxide nanoparticles through green chemistry which helps in avoiding the involvement of toxic chemicals in the synthesis process. Bacteria, fungi, and plants are the biological sources that are utilized for the green nanoparticle synthesis. Due to drawbacks such as tedious maintenance and the time needed for the nanoparticle formation, plant extracts are widely used in nanoparticle production. In addition, plants are available all over the world and phytosynthesized nanoparticles show comparatively less toxicity towards mammalian cells. Secondary metabolites including flavonoids, terpenoids, and saponins are present in plant extracts, and these are highly responsible for nanoparticle formation and reduction of toxicity. Hence, this article gives an overview of recent developments in the phytosynthesis of metal oxide nanoparticles and their toxic analysis in various cells and animal models. Also, their possible mechanism in normal and cancer cells, pharmaceutical applications, and their efficiency in disease treatment are also discussed.
    Matched MeSH terms: Green Chemistry Technology/methods*
  10. Letchumanan D, Sok SPM, Ibrahim S, Nagoor NH, Arshad NM
    Biomolecules, 2021 04 12;11(4).
    PMID: 33921379 DOI: 10.3390/biom11040564
    Plants are rich in phytoconstituent biomolecules that served as a good source of medicine. More recently, they have been employed in synthesizing metal/metal oxide nanoparticles (NPs) due to their capping and reducing properties. This green synthesis approach is environmentally friendly and allows the production of the desired NPs in different sizes and shapes by manipulating parameters during the synthesis process. The most commonly used metals and oxides are gold (Au), silver (Ag), and copper (Cu). Among these, Cu is a relatively low-cost metal that is more cost-effective than Au and Ag. In this review, we present an overview and current update of plant-mediated Cu/copper oxide (CuO) NPs, including their synthesis, medicinal applications, and mechanisms. Furthermore, the toxic effects of these NPs and their efficacy compared to commercial NPs are reviewed. This review provides an insight into the potential of developing plant-based Cu/CuO NPs as a therapeutic agent for various diseases in the future.
    Matched MeSH terms: Green Chemistry Technology/methods
  11. Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y
    Int J Nanomedicine, 2017;12:2957-2978.
    PMID: 28442906 DOI: 10.2147/IJN.S127683
    This review discusses the impact of green and environmentally safe chemistry on the field of nanotechnology-driven drug delivery in a new field termed "green nanomedicine". Studies have shown that among many examples of green nanotechnology-driven drug delivery systems, those receiving the greatest amount of attention include nanometal particles, polymers, and biological materials. Furthermore, green nanodrug delivery systems based on environmentally safe chemical reactions or using natural biomaterials (such as plant extracts and microorganisms) are now producing innovative materials revolutionizing the field. In this review, the use of green chemistry design, synthesis, and application principles and eco-friendly synthesis techniques with low side effects are discussed. The review ends with a description of key future efforts that must ensue for this field to continue to grow.
    Matched MeSH terms: Green Chemistry Technology/methods*
  12. Liang H, Qin X, Tan CP, Li D, Wang Y
    J Agric Food Chem, 2018 Nov 21;66(46):12361-12367.
    PMID: 30394748 DOI: 10.1021/acs.jafc.8b04804
    Docosahexaenoyl and eicosapentaenoyl ethanolamides (DHEA and EPEA) have physiological functions, including immunomodulation, brain development, and anti-inflammation, but their efficient production is still unresolved. In this study, choline-chloride-based natural deep eutectic solvents are used as media to improve the production of DHEA and EPEA. The water content showed a key effect on the reactant conversion. Adding water to choline chloride-glucose (CG, molar ratio of 5:2) led to a significant increase (13.03% for EPEA and 27.95% for DHEA) in the yields after 1 h. The high yields of EPEA (96.84%) and DHEA (90.06%) were obtained under the optimized conditions [fish oil ethyl esters/ethanolamine molar ratio of 1:2, temperature of 60 °C, 1 h, enzyme loading of 2195 units, and CG containing 8.50% water of 43.30% (w/w, relative to total reactants)]. The products could be easily separated using centrifugation. In summary, the research has the potential to produce fatty acyl ethanolamides.
    Matched MeSH terms: Green Chemistry Technology/methods*
  13. Devasvaran K, Lim V
    Pharm Biol, 2021 Dec;59(1):494-503.
    PMID: 33905665 DOI: 10.1080/13880209.2021.1910716
    CONTEXT: Pectin is a plant heteropolysaccharide that is biocompatible and biodegradable, enabling it to be an excellent reducing agent (green synthesis) for metallic nanoparticles (MNPs). Nevertheless, in the biological industry, pectin has been left behind in synthesising MNPs, for no known reason.

    OBJECTIVE: To systematically review the biological activities of pectin synthesised MNPs (Pe-MNPs).

    METHODS: The databases Springer Link, Scopus, ScienceDirect, Google Scholar, PubMed, Mendeley, and ResearchGate were systematically searched from the date of their inception until 10th February 2020. Pectin, green synthesis, metallic nanoparticles, reducing agent and biological activities were among the key terms searched. The data extraction was focussed on the biological activities of Pe-MNPs and reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations for systematic reviews.

    RESULTS: A total of 15 studies outlined 7 biological activities of Pe-MNPs in the only three metals that have been explored, namely silver (Ag), gold (Au) and cerium oxide (CeO2). The activities reported from the in vitro and in vivo studies were antimicrobial (9 studies), anticancer (2 studies), drug carrier (3 studies), non-toxic (4 studies), antioxidant (2 studies), wound healing (1 study) and anti-inflammation (1 study).

    CONCLUSIONS: This systematic review demonstrates the current state of the art of Pe-MNPs biological activities, suggesting that Ag and Au have potent antibacterial and anticancer/chemotherapeutic drug carrier activity, respectively. Further in vitro, in vivo, and clinical research is crucial for a better understanding of the pharmacological potential of pectin synthesised MNPs.

    Matched MeSH terms: Green Chemistry Technology/methods*
  14. Mishra V, Nayak P, Singh M, Tambuwala MM, Aljabali AA, Chellappan DK, et al.
    Anticancer Agents Med Chem, 2021;21(12):1490-1509.
    PMID: 32951580 DOI: 10.2174/1871520620666200918111024
    BACKGROUND: Silver nanoparticles (AgNPs) are among the most investigated nanostructures in recent years, which exhibit more challenging and promising qualities in different biomedical applications. The AgNPs synthesized by the green approach provide potential healthcare benefits over chemical approaches, including improvement of tissue restoration, drug delivery, diagnosis, being environmentally friendly, and a boon to cancer treatment.

    OBJECTIVE: In the current scenario, the development of safe and effective drug delivery systems is the utmost concern of formulation development scientists as well as clinicians.

    METHODS: Google, Web of Science, and PubMed portals have been searched for potentially relevant literature to get the latest developments and updated information related to different aspects of green synthesized AgNPs along with their biomedical applications, especially in the treatment of different types of cancers.

    RESULTS: The present review highlights the latest published research regarding the different green approaches for the synthesis of AgNPs, their characterization techniques as well as various biomedical applications, particularly in cancer treatment. In this context, environment-friendly AgNPs are proving themselves as better candidates in terms of size, drug loading and release efficiency, targeting efficiency, minimal drug-associated side effects, pharmacokinetic profiling, and biocompatibility issues.

    CONCLUSION: With continuous efforts by multidisciplinary team approaches, nanotechnology-based AgNPs will shed new light on diagnostics and therapeutics in various disease treatments. However, the toxicity issues of AgNPs need greater attention as unanticipated toxic effects must be ruled out for their diversified applications.

    Matched MeSH terms: Green Chemistry Technology*
  15. Brza MA, Aziz SB, Anuar H, Al Hazza MHF
    Int J Mol Sci, 2019 Aug 11;20(16).
    PMID: 31405255 DOI: 10.3390/ijms20163910
    The present work proposed a novel approach for transferring high-risk heavy metals tometal complexes via green chemistry remediation. The method of remediation of heavy metals developed in the present work is a great challenge for global environmental sciences and engineering because it is a totally environmentally friendly procedure in which black tea extract solution is used. The FTIR study indicates that black tea contains enough functional groups (OH and NH), polyphenols and conjugated double bonds. The synthesis of copper complex was confirmed by the UV-vis, XRD and FTIR spectroscopic studies. The XRD and FTIR analysis reveals the formation of complexation between Cu metal complexes and Poly (Vinyl Alcohol) (PVA) host matrix. The study of optical parameters indicates that PVA-based hybrids exhibit a small optical band gap, which is close to inorganic-based materials. It was noted that the absorption edge shifted to lower photon energy. When Cu metal complexes were added to PVA polymer, the refractive index was significantly tuned. The band gap shifts from 6.2 eV to 1.4 eV for PVA incorporated with 45 mL of Cu metal complexes. The nature of the electronic transition in hybrid materials was examined based on the Taucs model, while a close inspection of the optical dielectric loss was also performed in order to estimate the optical band gap. The obtained band gaps of the present work reveal that polymer hybrids with sufficient film-forming capability could be useful to overcome the drawbacks associated with conjugated polymers. Based on the XRD results and band gap values, the structure-property relationships were discussed in detail.
    Matched MeSH terms: Green Chemistry Technology/methods
  16. Chia SR, Show PL, Phang SM, Ling TC, Ong HC
    J Biosci Bioeng, 2018 Aug;126(2):220-225.
    PMID: 29673988 DOI: 10.1016/j.jbiosc.2018.02.015
    In this present study, alcohol/salt liquid biphasic system was used to extract phlorotannin from brown macroalgae. Liquid biphasic system is a new green technology that integrated with various processes into one-step, by concentrating, separating and purifying the bioproduct in a unit operation. The solvent used is non-toxic and there is potential for solvent recovery which is beneficial to the environment. Phlorotannin is a bioactive compound that has gained much attention due to its health beneficial effect. Therefore, the isolation of phlorotannin is lucrative as it contains various biological activities that are capable to be utilised into food and pharmaceutical application. By using 2-propanol/ammonium sulphate system, the highest recovery of phlorotannin was 76.1% and 91.67% with purification factor of 2.49 and 1.59 from Padina australis and Sargassum binderi, respectively. A recycling study was performed and the salt phase of system was recycled where maximum salt recovery of 41.04% and 72.39% could be obtained from systems containing P. australis and S. binderi, respectively. Similar recovery of phlorotannin was observed after performing two cycles of the system, this concludes that the system has good recyclability and eco-friendly.
    Matched MeSH terms: Green Chemistry Technology/methods*
  17. Wibawa PJ, Nur M, Asy'ari M, Wijanarka W, Susanto H, Sutanto H, et al.
    Molecules, 2021 Jun 22;26(13).
    PMID: 34206375 DOI: 10.3390/molecules26133790
    This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO3) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers. The successful AgNPs-ACNPs incorporation and its particle size analysis was performed using Transmission Electron Microscope (TEM). The brown color suspension generation and UV-Vis's spectra maximum wavelength at around 480 nm confirmed the existence of AgNPs. The particle sizes of the produced AgNPs were about 5 to 10 nm in the majority number, which collectively surrounded the aloe vera extract secondary metabolites formed core-shell like nanostructure of 8.20 ± 2.05 nm in average size, while ACNPs themselves were about 20.10 ± 1.52 nm in average size formed particles cluster, and 48.00 ± 8.37 nm in average size as stacking of other particles. The antibacterial activity of the synthesized AgNPs and AgNPs-immobilized ACNPs was 57.58% and 63.64%, respectively (for E. coli); 61.25%, and 93.49%, respectively (for S. aureus). In addition, when the AgNPs-immobilized ACNPs material was coated on the cotton and polyester fabrics, the antibacterial activity of the materials changed, becoming 19.23% (cotton; E. coli), 31.73% (polyester; E. coli), 13.36% (cotton; S. aureus), 21.15% (polyester; S. aureus).
    Matched MeSH terms: Green Chemistry Technology*
  18. Anis SN, Nurhezreen MI, Sudesh K, Amirul AA
    Appl Biochem Biotechnol, 2012 Jun;167(3):524-35.
    PMID: 22569781 DOI: 10.1007/s12010-012-9677-9
    A simple, efficient and economical method for the recovery of P(3HB-co-3HHx) was developed using various chemicals and parameters. The initial content of P(3HB-co-3HHx) in bacterial cells was 50-60 wt%, whereas the monomer composition of 3HHx used in this experiments was 3-5 mol%. It was found that sodium hydroxide (NaOH) was the most effective chemical for the recovery of biodegradable polymer. High polyhydroxyalkanoate purity and recovery yield both in the range of 80-90 wt% were obtained when 10-30 mg/ml of cells were incubated in NaOH at the concentration of 0.1 M for 60-180 min at 30 °C and polished using 20 % (v/v) of ethanol.
    Matched MeSH terms: Green Chemistry Technology/economics; Green Chemistry Technology/methods*
  19. Sulaiman S, Mokhtar MN, Naim MN, Baharuddin AS, Sulaiman A
    Appl Biochem Biotechnol, 2015 Feb;175(4):1817-42.
    PMID: 25427594 DOI: 10.1007/s12010-014-1417-x
    Nanobiocatalysis is a new frontier of emerging nanosized material support in enzyme immobilization application. This paper is about a comprehensive review on cellulose nanofibers (CNF), including their structure, surface modification, chemical coupling for enzyme immobilization, and potential applications. The CNF surface consists of mainly -OH functional group that can be directly interacted weakly with enzyme, and its binding can be improved by surface modification and interaction of chemical coupling that forms a strong and stable covalent immobilization of enzyme. The knowledge of covalent interaction for enzyme immobilization is important to provide more efficient interaction between CNF support and enzyme molecule. Enzyme immobilization onto CNF is having potential for improving enzymatic performance and production yield, as well as contributing toward green technology and sustainable sources.
    Matched MeSH terms: Green Chemistry Technology
  20. Chang SH, Teng TT, Ismail N
    J Hazard Mater, 2010 Sep 15;181(1-3):868-72.
    PMID: 20638965 DOI: 10.1016/j.jhazmat.2010.05.093
    Various types of vegetable oil-based organic solvents (VOS), i.e. vegetable oils (corn, canola, sunflower and soybean oils) with and without extractants (di-2-ethylhexylphosphoric acid (D2EHPA) and tributylphosphate (TBP)), were investigated into their potentiality as greener substitutes for the conventional petroleum-based organic solvents to extract Cu(II) from aqueous solutions. The pH-extraction isotherms of Cu(II) using various vegetable oils loaded with both D2EHPA and TBP were investigated and the percentage extraction (%E) of Cu(II) achieved by different types of VOS was determined. Vegetable oils without extractants and those loaded with TBP alone showed a poor extractability for Cu(II). Vegetable oils loaded with both D2EHPA and TBP were found to be the most effective VOS for Cu(II) extraction and, thus, are potential greener substitutes for the conventional petroleum-based organic solvents.
    Matched MeSH terms: Green Chemistry Technology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links