Displaying publications 21 - 40 of 133 in total

Abstract:
Sort:
  1. Seyedi SS, Tan SG, Namasivayam P, Yong CSY
    Sains Malaysiana, 2016;45:717-727.
    The Hibiscus sabdariffa var. UMKL (Roselle) investigated here may potentially be used as an alternative fibre source. To
    the best of our knowledge, there was no study focusing on the genetics underlying the cellulose biosynthesis machinery
    in Roselle thus far. This paper presents the results of the first isolation of the cellulose synthase gene, HsCesA1 from this
    plant, which is fundamental for working towards understanding the functions of CesA genes in the cellulose biosynthesis
    of Roselle. A full-length HsCesA1 cDNA of 3528 bp in length (accession no: KJ608192) encoding a polypeptide of 974
    amino acid was isolated. The full-length HsCesA1 gene of 5489 bp length (accession no: KJ661223) with 11-introns
    and a promoter region of 737 bp was further isolated. Important and conserved characteristics of a CesA protein were
    identified in the HsCesA1 deduced amino acid sequence, which strengthened the prediction that the isolated gene being
    a cellulose synthase belonging to the processive class of the 2-glycosyltransferase family 2A. Relative gene expression
    analysis by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) on young leaf and stem tissues
    found that HsCesA1 had similar levels of gene expression in both tissues. Phylogenetic and Blast analyses also supported
    the prediction that the isolated HsCesA1 may play roles in the cell wall depositions in both leaf and stem tissues.
    Matched MeSH terms: Hibiscus
  2. Satirah Zainalabidin, Siti Nor Farhanah Sh Nor Shabidin, Siti Balkis Budin
    Sains Malaysiana, 2016;45:207-214.
    Nicotine has been identified as one of the causal factor for oxidative stress, hypertension and hyperlipidemia. Roselle has been widely studied for its potential as an antioxidant, antihyperlipidemic and antihypertensive. However, no studies have been done to investigate if roselle could diminish the oxidative stress caused by nicotine which could further lead to cardiac damages. Thus, this study was aimed to investigate the effect of roselle extract (HSE) on blood pressure, serum lipid profile, oxidative stress marker levels and histological changes to the heart in nicotine-treated rats. A total of 21 Sprague-Dawley rats were randomly divided into 3 groups (n=7 per group): Control group received normal saline (0.5 mL/day, i.p); nicotine group received 0.6 mg/kg/BW nicotine (i.p); and treated group received 100 mg/kg/b.w HSE through oral force feeding followed with 0.6 mg/kg/b.w nicotine (i.p) for 21 consecutive days. The results showed that HSE significantly (p>0.05) reduced the heart rate but no effect to the blood pressure. For lipid profile study, HSE increased the high-density lipoprotein concentration significantly (p<0.05) in rats given with nicotine, without any significant changes in total cholesterol, triglyceride and low-density lipoprotein (LDL) concentration. Besides, HSE treatment was also found to reverse malondialdehyde (MDA) level, superoxide dimustase (SOD) enzyme activity and protein concentration significantly (p<0.05) in nicotine-treated rats. In summary, these results indicated that HSE is an effective antioxidant against oxidative damage in heart caused by nicotine, but not as antihyperlipidemic and antihypertensive agent in this rat model.
    Matched MeSH terms: Hibiscus
  3. Samanthi P, Mohd Puad A, Suhaimi N, Kumar S, Nor Aini A
    Sains Malaysiana, 2013;42:1505-1510.
    Kenaf (Hibiscus cannabinus L.) is a versatile plant with multiuse ranging from animal feed to a wide variety of biocomposite products such as pulp and paper and fibre reinforce plastic. Therefore genetically improved planting materials are needed to tailor made requirement of the industry. Thus, development of plant regeneration through callus is important for in vitro genetic manipulation of kenaf. Currently development of successful genetic transformation of kenaf is through in planta transformation means. In vitro shoot regeneration was conducted using leaf explants from varieties V36 and G4 treated to three different combinations of N6 Benzyl adenine (BA) and Indole-3-butyric acid (IBA). High percentage of healthy callus induction was produced in MS medium supplemented with combination of 1.5 mgL-1 BA and 0.5 mgL-1 IBA. In addition 68.7% plant regeneration was obtained in MS medium supplemented with 0.3 mgL-1 GA3. All plantlets produced roots in hormone free medium. There was no significant difference among varieties in terms of callus induction (number of callus) and plant regeneration (number of plantlets). This protocol is useful to be used for the development of gene transformation protocol of kenaf through callus.
    Matched MeSH terms: Hibiscus
  4. Salem MA, Michel HE, Ezzat MI, Okba MM, El-Desoky AM, Mohamed SO, et al.
    Molecules, 2020 May 14;25(10).
    PMID: 32422967 DOI: 10.3390/molecules25102307
    Hibiscus species (Malvaceae) have been long used as an antihypertensive folk remedy. The aim of our study was to specify the optimum solvent for extraction of the angiotensin-converting enzyme inhibiting (ACEI) constituents from Hibiscus sabdariffa L. The 80% methanol extract (H2) showed the highest ACEI activity, which exceeds that of the standard captopril (IC50 0.01255 ± 0.00343 and 0.210 ± 0.005 µg/mL, respectively). Additionally, in a comprehensive metabolomics approach, an ultra-performance liquid chromatography (UPLC) coupled to the high resolution tandem mass spectrometry (HRMS) method was used to trace the metabolites from each extraction method. Interestingly, our comprehensive analysis showed that the 80% methanol extract was predominated with secondary metabolites from all classes including flavonoids, anthocyanins, phenolic and organic acids. Among the detected metabolites, phenolic acids such as ferulic and chlorogenic acids, organic acids such as citrate derivatives and flavonoids such as kaempferol have been positively correlated to the antihypertensive potential. These results indicates that these compounds may significantly contribute synergistically to the ACE inhibitory activity of the 80% methanol extract.
    Matched MeSH terms: Hibiscus/chemistry*
  5. Sajab MS, Chia CH, Zakaria S, Jani SM, Ayob MK, Chee KL, et al.
    Bioresour Technol, 2011 Aug;102(15):7237-43.
    PMID: 21620692 DOI: 10.1016/j.biortech.2011.05.011
    Chemically modified kenaf core fibres were prepared via esterification in the presence of citric acid (CA). The adsorption kinetics and isotherm studies were carried out under different conditions to examine the adsorption efficiency of CA-treated kenaf core fibres towards methylene blue (MB). The adsorption capacity of the kenaf core fibres increased significantly after the citric acid treatment. The values of the correlation coefficients indicated that the Langmuir isotherm fitted the experimental data better than the Freundlich isotherm. The maximum adsorption capacity of the CA-treated kenaf core fibres was found to be 131.6mg/g at 60°C. Kinetic models, pseudo-first-order, pseudo-second-order and intraparticle diffusion, were employed to describe the adsorption mechanism. The kinetic data were found to fit pseudo-second-order model equation as compared to pseudo-first-order model. The adsorption of MB onto the CA-treated kenaf core fibres was spontaneous and endothermic.
    Matched MeSH terms: Hibiscus/chemistry*
  6. Saiful Bahari Bakarudin, Sarani Zakaria, Ching HC, Mohd Jani S
    Sains Malaysiana, 2012;41:225-231.
    Liquefactions of kenaf core wood were carried out at different phenol-kenaf (P/k) ratios. Characterizations of kenaf core wood liquefied residue were carried out to measure the degree of liquefaction. This provides a new approach to understand some fundamental aspects of the liquefaction reaction. Functional groups on the raw kenaf core wood and liquefied residue were examined using Fourier transform infrared spectroscopy (FTIR). The crystallinity index of the kenaf wood liquefied residue, which represents crystallinity changes of the cellulose component after the liquefaction process, was studied using X-ray diffraction (XRD). The surface morphology of the wood residue was observed using scanning electron microscopy (SEM). The thermal behavior of the residues was analyzed using thermogravimetric analysis (TGA). Abroad peak around 3450-3400 cm-1 representing OH stretching in lignin start to disappear as P/K ratio increases. The results showed that the higher the P/K ratio the greater the liquefaction of the lignin component in the kenaf core wood. The crystallinity index (CrI) on the kenaf liquefied residues increased with the increase in P/K ratio. SEM images showed that the small fragments attached on the liquefied kenaf residue surface were gradually removed as the P/K ratio was increased from 1.5/1.0 to 2.5/1.0, which is mainly attributed to the greater chemical penetration toward reactive site of the kenaf fibres. Residue content decreased as the P/K ratio increased from 1.5/1.0 to 2.5/1.0. TGA results showed the increase of heat resistance in the residue as the P/K ratio was increased.
    Matched MeSH terms: Hibiscus
  7. Saeed AAH, Harun NY, Sufian S, Bilad MR, Zakaria ZY, Jagaba AH, et al.
    Int J Environ Res Public Health, 2021 Jul 27;18(15).
    PMID: 34360240 DOI: 10.3390/ijerph18157949
    Development of strategies for removing heavy metals from aquatic environments is in high demand. Cadmium is one of the most dangerous metals in the environment, even under extremely low quantities. In this study, kenaf and magnetic biochar composite were prepared for the adsorption of Cd2+. The synthesized biochar was characterized using (a vibrating-sample magnetometer VSM), Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The adsorption batch study was carried out to investigate the influence of pH, kinetics, isotherm, and thermodynamics on Cd2+ adsorption. The characterization results demonstrated that the biochar contained iron particles that help in improving the textural properties (i.e., surface area and pore volume), increasing the number of oxygen-containing groups, and forming inner-sphere complexes with oxygen-containing groups. The adsorption study results show that optimum adsorption was achieved under pH 5-6. An increase in initial ion concentration and solution temperature resulted in increased adsorption capacity. Surface modification of biochar using iron oxide for imposing magnetic property allowed for easy separation by external magnet and regeneration. The magnetic biochar composite also showed a higher affinity to Cd2+ than the pristine biochar. The adsorption data fit well with the pseudo-second-order and the Langmuir isotherm, with the maximum adsorption capacity of 47.90 mg/g.
    Matched MeSH terms: Hibiscus*
  8. Rizal S, Mistar EM, Oyekanmi AA, H P S AK, Alfatah T, Olaiya NG, et al.
    Molecules, 2021 Jul 13;26(14).
    PMID: 34299524 DOI: 10.3390/molecules26144248
    The use of chemical modification of cellulosic fibre is applied in order to increase the hydrophobicity, hence improving the compatibility between the fibre and matrix bonding. In this study, the effect of propionic anhydride modification of kenaf fibre was investigated to determine the role of bionanocarbon from oil palm shell agricultural wastes in the improvement of the functional properties of bionanocomposites. The vinyl esters reinforced with unmodified and propionic anhydride modified kenaf fibres bio nanocomposites were prepared using 0, 1, 3, 5 wt% of bio-nanocarbon. Characterisation of the fabricated bionanocomposite was carried out using FESEM, TEM, FT-IR and TGA to investigate the morphological analysis, surface properties, functional and thermal analyses, respectively. Mechanical performance of bionanocomposites was evaluated according to standard methods. The chemical modification of cellulosic fibre with the incorporation of bionanocarbon in the matrix exhibited high enhancement of the tensile, flexural, and impact strengths, for approximately 63.91%, 49.61% and 54.82%, respectively. The morphological, structural and functional analyses revealed that better compatibility of the modified fibre-matrix interaction was achieved at 3% bionanocarbon loading, which indicated improved properties of the bionanocomposite. The nanocomposites exhibited high degradation temperature which signified good thermal stability properties. The improved properties of the bionanocomposite were attributed to the effect of the surface modification and bionanocarbon enhancement of the fibre-matrix networks.
    Matched MeSH terms: Hibiscus/chemistry*
  9. Razak NI, Ibrahim NA, Zainuddin N, Rayung M, Saad WZ
    Molecules, 2014;19(3):2957-68.
    PMID: 24609017 DOI: 10.3390/molecules19032957
    Bleaching treatment of kenaf fiber was performed in alkaline medium containing hydrogen peroxide solution maintained at pH 11 and 80 °C for 60 min. The bleached kenaf fiber was analyzed using Fourier Transform Infrared (FTIR) and X-ray Diffraction (XRD) analysis. The bleached kenaf fiber was then compounded with poly-(lactic acid) (PLA) via a melt blending method. The mechanical (tensile, flexural and impact) performance of the product was tested. The fiber treatment improved the mechanical properties of PLA/bleached kenaf fiber composites. Scanning electron micrograph (SEM) morphological analysis showed improvement of the interfacial adhesion between the fiber surface and polymer matrix.
    Matched MeSH terms: Hibiscus/chemistry*
  10. Razak MR, Yusof NA, Haron MJ, Ibrahim N, Mohammad F, Kamaruzaman S, et al.
    Int J Biol Macromol, 2018 Jun;112:754-760.
    PMID: 29428390 DOI: 10.1016/j.ijbiomac.2018.02.035
    In the present study, iminodiacetic acid (IDA)-modified kenaf fiber, K-IDA formed by the chemical modification of plant kenaf biomass was tested for its efficacy as a sorbent material towards the purification of waste water. The K-IDA fiber was first characterized by the instrumental techniques like Fourier transform infrared (FTIR) analysis, elemental analysis (CHNSO), and scanning electron microscopy (SEM). On testing for the biosorption, we found that the K-IDA has an increment in the adsorption of Cu2+ ions as compared against the untreated fiber. The Cu2+ ions adsorption onto K-IDA fits very well with the Langmuir model and the adsorption maximum achieved to be 91.74mg/g. Further, the adsorption kinetics observed to be pseudo second-order kinetics model and the Cu2+ ions adsorption is a spontaneous endothermic process. The desorption study indicates a highest percentage of Cu2+ of 97.59% from K-IDA under 1M HCl solution against H2SO4 (72.59%) and HNO3 (68.66%). The reusability study indicates that the efficiency did not change much until the 4th cycle and also providing enough evidence for the engagement of our biodegradable K-IDA fiber towards the removal of Cu2+ ions in real-time waste water samples obtained from the electroplating and wood treatment industries.
    Matched MeSH terms: Hibiscus/ultrastructure; Hibiscus/chemistry*
  11. Ramalingam A, Siti Balkis Budin, Lim Yc, Lislivia Si Yn, Satirah Zainalabidin
    Sains Malaysiana, 2016;45:1131-1137.
    UKMR-1, a local variant of mutant Roselle strain (Hibiscus sabdariffa) is enriched with free radical scavenging polyphenols
    such as anthocyanin, vitamin C and hydroxycitric acid. However, pharmacological actions of UKMR-1 are not fully known.
    This study was conducted to determine whether supplementation of aqueous UKMR-1 calyx extract was able to protect
    against nicotine-induced cardiac injury in rats. In this experimental study, healthy male albino rats were randomly
    allotted into three groups (n=7 per group): control, nicotine and UKMR-1+Nicotine groups. Nicotine (0.6 mg/kg, i.p.)
    was administered to both nicotine and UKMR-1+Nicotine groups for 28 consecutive days. UKMR-1+Nicotine group also
    received 100 mg/kg UKMR-1 extract orally via gavage 30 min prior to nicotine injection, daily. UKMR-1+Nicotine group
    had significantly (p<0.05) higher lactate dehydrogenase (LDH) activity, as well as lower malondialdehyde content in
    heart tissue homogenate than nicotine group, suggesting its cardio protective activity by inhibition of lipid peroxidation.
    UKMR-1 also lowered (p<0.05) the blood pressure in nicotine-administered rats. In addition, UKMR-1 significantly (p<0.05)
    restored activities of cytosolic superoxide dismutase, glutathione peroxidase and glutathione-S-transferase as well as
    redox balance ratio (GSH:GSSG). In conclusion, UKMR-1 was a
    Matched MeSH terms: Hibiscus
  12. Putra NR, Rizkiyah DN, Aziz AHA, Mamat H, Jusoh WMSW, Idham Z, et al.
    Sci Rep, 2023 Jul 05;13(1):10871.
    PMID: 37407592 DOI: 10.1038/s41598-023-32181-8
    The purpose of this work was to establish the best particle size for recovering high yields of total phenolic compounds (TPC), total anthocyanin compounds(TAC) and total flavonoid compounds (TFC) from roselle (Hibiscus sabdariffa) by applying supercritical carbon dioxide (ScCO2). The extraction rate, diffusivity and solubility of yield in ScCO2 were also studied and calculated utilizing models. Pressure (10 and 30 MPa), temperature (40 and 60 °C), and particle size (250 µm 
    Matched MeSH terms: Hibiscus*
  13. Ploetz RC, Palmateer AJ, Geiser DM, Juba JH
    Plant Dis, 2007 May;91(5):639.
    PMID: 30780734 DOI: 10.1094/PDIS-91-5-0639A
    Roselle, Hibiscus sabdariffa var. sabdariffa, is an annual that is grown primarily for its inflated calyx, which is used for drinks and jellies. It is native from India to Malaysia, but was taken at an early date to Africa and is now widely grown in the tropics and subtropics (2). In late 2005, dying plants were noted by a producer in South Florida. Plants wilted, became chlorotic, and developed generally unthrifty, sparse canopies. Internally, conspicuous vascular discoloration was evident in these plants from the roots into the canopy. After 5 days on one-half-strength potato dextrose agar (PDA), salmon-colored fungal colonies grew almost exclusively from surface-disinfested 5 mm2 pieces of vascular tissue. On banana leaf agar, single-spored strains produced the following microscopic characters of Fusarium oxysporum: copious microconidia on monophialides, infrequent falcate macroconidia, and terminal and intercalary chlamydospores. Partial, elongation factor 1-α (EF1-α) sequences were generated for two of the strains, O-2424 and O-2425, and compared with previously reported sequences for the gene (3). Maximum parsimony analysis of sequences showed that both strains fell in a large, previously described clade of the F. oxysporum complex (FOC) that contained strains from agricultural hosts, as well as human clinical specimens (2; clade 3 in Fig. 4); many of the strains in this clade have identical EF1-α sequences. Strains of F. oxysporum recovered from wilted roselle in Egypt, O-647 and O-648 in the Fusarium Research Center collection, were distantly related to the Florida strains. We are not aware of other strains of F. oxysporum from roselle in other international culture collections. Roselle seedlings were inoculated with O-2424 and O-2425 by placing a mycelial plug (5 mm2, PDA) over a small incision 5 cm above the soil line and then covering the site with Parafilm. Parafilm was removed after 1 week, and plants were incubated under ambient temperatures (20 to 32°C) in full sun for an additional 5 weeks (experiment 1) or 7 weeks (experiment 2). Compared with mock-inoculated (wound + Parafilm) control plants, both O-2424 and O-2425 caused significant (P < 0.05) vascular disease (linear extension of discolored xylem above and below wound site) and wilting (subjective 1 to 5 scale); both isolates were recovered from affected plants. F. oxysporum-induced wilt of roselle has been reported in Nigeria (1) and Malaysia (4) where the subspecific epithet f. sp. rosellae was used for the pathogen. We are not aware of reports of this disease elsewhere. To our knowledge, this is the first report of F. oxysporum-induced wilt of roselle in the United States. Research to determine whether the closely related strains in clade 3 of the FOC are generalist plant pathogens (i.e., not formae speciales) is warranted. References: (1) N. A. Amusa et al. Plant Pathol. J. 4:122, 2005. (2) J. Morton. Pages 81-286 in: Fruits of Warm Climates. Creative Resource Systems, Inc., Winterville, NC, 1987. (3) K. O'Donnell et al. J. Clin. Microbiol. 42:5109, 2004. (4) K. H. Ooi and B. Salleh. Biotropia 12:31, 1999.
    Matched MeSH terms: Hibiscus
  14. Pang AL, Azhar Abu Bakar, Hanafi Ismail
    Sains Malaysiana, 2018;47:571-580.
    The development of natural fiber polymer composites is increasing worldwide and in some applications, these composites
    are used at outdoor rendering them exposed to ultra-violet (UV) radiation. The paper investigates the degradation behavior
    of linear low density polyethylene/poly (vinyl alcohol)/kenaf (LLDPE/PVOH/KNF) composites after exposure to different
    natural weathering durations. The composites with KNF loadings of 10, 20 and 40 parts per hundred resin (phr) were
    exposed to natural weathering for 3 months and 6 months, respectively. The weathered composites were characterized by
    Fourier transform infrared (FTIR) spectroscopy, universal testing machine, field emission scanning electron microscopy
    (FESEM) and differential scanning calorimetry (DSC). The FTIR analysis showed an obvious carbonyl peak in composites
    after weathering as an evidence of oxidation. The weight loss percentage of composites increased with respect to exposure
    duration due to higher absorption of UV irradiation. The tensile properties of weathered composites were lower than
    that of control composites and these properties also decreased with increasing exposure duration. FESEM micrographs
    illustrated that composites with longer exposure duration suffered more surface damaged. The crystallinity percentage
    was found to increase with increasing exposure duration.
    Matched MeSH terms: Hibiscus
  15. Padzil FN, Zakaria S, Chia CH, Jaafar SN, Kaco H, Gan S, et al.
    Carbohydr Polym, 2015 Jun 25;124:164-71.
    PMID: 25839807 DOI: 10.1016/j.carbpol.2015.02.013
    Bleached kenaf core pulps (BKC) were hydrolyzed in H2SO4 (0.5M) at different time (0min to 90min) at room temperature. After the hydrolysis process, the viscosity average molecular weight (Mŋ) for BKC sample has reduced from 14.5×10(4) to 2.55×10(4). The hydrolyzed BKC was then dissolved in NaOH:urea:water and in LiOH:urea:water mixed solvent at the ratio of 7:12:81 and 4.6:15:80.4, respectively. The increased in hydrolysis time has decreased Mŋ of cellulose leading to easy dissolution process. Higher porosity and transparency with lower crystallinity index (CrI) of regenerated membrane produced can be achieved as the Mŋ reduced. The properties of membrane were observed through FESEM, UV-vis spectrophotometer and XRD. This study has proven that acid hydrolysis has reduced the Mŋ of cellulose, thus, enhanced the properties of regenerated membrane produced with assisted by alkaline/urea system.
    Matched MeSH terms: Hibiscus/chemistry*
  16. Oyekanmi AA, Saharudin NI, Hazwan CM, H P S AK, Olaiya NG, Abdullah CK, et al.
    Molecules, 2021 Apr 13;26(8).
    PMID: 33924692 DOI: 10.3390/molecules26082254
    Hydrophilic behaviour of carrageenan macroalgae biopolymer, due to hydroxyl groups, has limited its applications, especially for packaging. In this study, macroalgae were reinforced with cellulose nanofibrils (CNFs) isolated from kenaf bast fibres. The macroalgae CNF film was after that treated with silane for hydrophobicity enhancement. The wettability and functional properties of unmodified macroalgae CNF films were compared with silane-modified macroalgae CNF films. Characterisation of the unmodified and modified biopolymers films was investigated. The atomic force microscope (AFM), SEM morphology, tensile properties, water contact angle, and thermal behaviour of the biofilms showed that the incorporation of Kenaf bast CNF remarkably increased the strength, moisture resistance, and thermal stability of the macroalgae biopolymer films. Moreover, the films' modification using a silane coupling agent further enhanced the strength and thermal stability of the films apart from improved water-resistance of the biopolymer films compared to unmodified films. The morphology and AFM showed good interfacial interaction of the components of the biopolymer films. The modified biopolymer films exhibited significantly improved hydrophobic properties compared to the unmodified films due to the enhanced dispersion resulting from the silane treatment. The improved biopolymer films can potentially be utilised as packaging materials.
    Matched MeSH terms: Hibiscus/chemistry
  17. Ooi TC, Ahmad Munawar M, Mohd Rosli NH, Abdul Malek SNA, Rosli H, Ibrahim FW, et al.
    PMID: 32382294 DOI: 10.1155/2020/5126457
    This study aimed to determine the effects of tropical fruit juice mixture (pomegranate, white guava, and Roselle) on biochemical, behavioral, and histopathological changes of β-amyloid- (Aβ-) induced rats. Formulation 8 (F8) of tropical fruit juice mixture was chosen for this present study due to its high phenolic content and antioxidant capacity. Forty Wistar male rats were divided into five groups: dPBS (sham-operated control), dAβ (Aβ control), JPBS (F8 and PBS), JAβ (F8 and Aβ), and IBFAβ (ibuprofen and Aβ). F8 (5 ml/kg BW), and ibuprofen (10 ml/kg BW) was given orally daily for four weeks before the intracerebroventricular infusion of Aβ for two weeks. Histological analysis and neuronal count of hippocampus tissue in the Cornu Ammonis (CA1) region showed that supplementation with F8 was able to prevent Aβ-induced tissue damage and neuronal shrinkage. However, no significant difference in locomotor activity and novel object recognition (NOR) percentage was detected among different groups at day 7 and day 14 following Aβ infusion. Only effect of time differences (main effect of day) was observed at day 7 as compared to day 14, where reduction in locomotor activity and NOR percentage was observed in all groups, with F (1, 7) = 6.940, p < 0.05 and F (1, 7) = 7.152, p < 0.05, respectively. Besides, the MDA level of the JAβ group was significantly lower (p < 0.01) than that of the dPBS group. However, no significant changes in SOD activity were detected among different groups. Significant reduction in plasma CRH level (p < 0.05) and iNOS expression (p < 0.01) in the brain was detected in the JAβ group as compared to the dAβ group. Hence, our current findings suggest that the tropical fruit juice mixture (F8) has the potential to protect the rats from Aβ-induced neurotoxicity in brain hippocampus tissue possibly via its antioxidant properties and the suppression of iNOS expression and CRH production.
    Matched MeSH terms: Hibiscus
  18. Nyam, K.L., Tan, C.H., Long, K.
    MyJurnal
    The aim of this study was to investigate the oxidative stability, antioxidant activity and fatty acid composition of 2 minutes microwave pre-treated kenaf seed oil (MKSO) in comparison with the untreated kenaf seed oil (KSO) under accelerated storage for 24 days. Results obtained on oxidative stability for both KSO and MKSO by the end of storage with PV were 9.83 meq O2 /kg and 8.97 meq O2 /kg, respectively; p-Anv were 17.28 and 13.48, respectively; TOTOX value of 36.94 and 31.42, respectively; IV value were measured 84.50 g of I2 / 100 g and 84.34 g of I2 / 100 g oil, respectively; FFA value of 5.67 mg KOH/100g oil and 5.14 mg KOH/100g oil, respectively. Aside from that, the antioxidant activity in MKSO was better than KSO. For the fatty acid composition, the oleic and linoleic acids were affected significantly throughout storage for both KSO and MKSO. MKSO presented a better overall oxidative stability, antioxidant activity and retained higher content of MUFA and PUFA significantly (p< 0.05) upon accelerated storage.
    Matched MeSH terms: Hibiscus
  19. Nyam, K.L., Wong, M.M., Long, K., Tan, C.P.
    MyJurnal
    With the concern of adverse effects of lipid oxidation on food deterioration and human health, the antioxidant activities of kenaf seed extracts (KSE), roselle seed extracts (RSE) and roselle extracts (RE) were evaluated by comparing its oxidative stability in refined, bleached & deodorised (RBD) sunflower oils with that of in synthetic antioxidant, BHA. Established methods such as peroxide values (PV), p-anisidine values (AV), TOTOX values, free fatty acids (FFA), iodine values (IV), total phenolic contents (TPC), conjugated dienes (CD) and conjugated triene (CT) were employed to assess the extent of oil deterioration. During 24 days storage, consensus was accomplished based on the results assessed by PV, TOTOX, CD, CT, IV and TPC at which the antioxidant activities of KSE, RSE and RE were better than BHA. Surprisingly, the results obtained by AV and FFA assays showed the reversed. Among the extracts, RSE exhibited the best antioxidant activities. These suggest that KSE, RSE and RE may be used as potential source of natural antioxidants in the application of food industry to prevent lipid oxidation.
    Matched MeSH terms: Hibiscus
  20. Nyam KL, Leao SY, Tan CP, Long K
    J Food Sci Technol, 2014 Dec;51(12):3830-7.
    PMID: 25477650 DOI: 10.1007/s13197-012-0902-x
    Roselle (Hibiscus sabdariffa L.) seed is a valuable food resource as it has an excellent source of dietary fibre. Therefore, this study examined the functional properties of roselle seeds. Replacement of cookie flour with roselle seed powder at levels of 0-30 % was investigated for its effect on functional and nutritional properties of cookies. Among the four formulations cookies, the most preferred by panelists was 20 % roselle seed powder cookie (F3), followed by 10 % roselle seed powder cookie (F2) and 30 % roselle seed powder cookie (F4). The least preferred formulation among all was control cookie (F1). Cookie with 20 % roselle seed powder added showed higher content of total dietary fibre (5.6 g/100 g) as compared with control cookie (0.90 g/100 g). Besides that, cookies incorporated with roselle seed powder exhibited improved antioxidant properties. Thus, roselle seed powder can be used as a dietary fibre source and developed as a functional ingredient in food products.
    Matched MeSH terms: Hibiscus
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links