Displaying publications 21 - 40 of 147 in total

Abstract:
Sort:
  1. Duffy CR, Zhang R, How SE, Lilienkampf A, De Sousa PA, Bradley M
    Biomaterials, 2014 Jul;35(23):5998-6005.
    PMID: 24780167 DOI: 10.1016/j.biomaterials.2014.04.013
    Mesenchymal stems cells (MSCs) are currently the focus of numerous therapeutic approaches in tissue engineering/repair because of their wide multi-lineage potential and their ability to modulate the immune system response following transplantation. Culturing these cells, while maintaining their multipotency in vitro, currently relies on biological substrates such as gelatin, collagen and fibronectin. In addition, harvesting cells from these substrates requires enzymatic or chemical treatment, a process that will remove a multitude of cellular surface proteins, clearly an undesirable process if cells are to be used therapeutically. Herein, we applied a high-throughput 'hydrogel microarray' screening approach to identify thermo-modulatable substrates which can support hES-MP and ADMSC growth, permit gentle reagent free passaging, whilst maintaining multi-lineage potential. In summary, the hydrogel substrate identified, poly(AEtMA-Cl-co-DEAA) cross-linked with MBA, permitted MSCs to be maintained over 10 passages (each time via thermo-modulation), with the cells retaining expression of MSC associated markers and lineage potency. This chemically defined system allowed the passaging and maintenance of cellular phenotype of this clinically important cell type, in the absence of harsh passaging and the need for biological substrates.
    Matched MeSH terms: Hydrogels/chemistry*
  2. Chen LH, Sung TC, Lee HH, Higuchi A, Su HC, Lin KJ, et al.
    Biomater Sci, 2019 Aug 14.
    PMID: 31411209 DOI: 10.1039/c9bm00418a
    Recombinant vitronectin-grafted hydrogels were developed by adjusting surface charge of the hydrogels with grafting of poly-l-lysine for optimal culture of human embryonic stem cells (hESCs) under xeno- and feeder-free culture conditions, with elasticity regulated by crosslinking time (10-30 kPa), in contrast to conventional recombinant vitronectin coating dishes, which have a fixed stiff surface (3 GPa). hESCs proliferated on the hydrogels for over 10 passages and differentiated into the cells derived from three germ layers indicating the maintenance of pluripotency. hESCs on the hydrogels differentiated into cardiomyocytes under xeno-free culture conditions with much higher efficiency (80% of cTnT+ cells) than those on conventional recombinant vitronectin or Matrigel-coating dishes just only after 12 days of induction. It is important to have an optimal design of cell culture biomaterials where biological cues (recombinant vitronectin) and physical cues (optimal elasticity) are combined for high differentiation of hESCs into specific cell lineages, such as cardiomyocytes, under xeno-free and feeder-free culture conditions.
    Matched MeSH terms: Hydrogels
  3. Gumel AM, Razaif-Mazinah MR, Anis SN, Annuar MS
    Biomed Mater, 2015 Aug;10(4):045001.
    PMID: 26154416 DOI: 10.1088/1748-6041/10/4/045001
    Wound management and healing in several physiological or pathological conditions, particularly when comorbidities are involved, usually proves to be difficult. This presents complications leading to socio-economic and public health burdens. The accelerative wound healing potential of biocompatible poly(3-hydroxyalkanoates)-co-(6-hydroxyhexanoate) (PHA-PCL) composite hydrogel is reported herein. The biosynthesized PHA-PCL macromer was cross-linked with PEGMA to give a hydrogel. Twenty-four rats weighing 200-250 g each were randomly assigned to four groups of six rats. Rats in group I (negative control) were dressed with sterilized gum acacia paste in 10% normal saline while PEGMA-alone hydrogel (PH) was used to dress group II (secondary control) rats. Group III rats were dressed with PHAs-PCL cross-linked PEGMA hydrogel (PPH). For the positive control (group IV), the rats were dressed with Intrasite(®) gel. Biochemical, histomorphometric and immunohistomorphometric analyses revealed a significant difference in area closure and re-epithelialization on days 7 and 14 in PPH or Intrasite(®) gel groups compared to gum acacia or PEGMA-alone groups. Furthermore, wounds dressed with PPH or Intrasite(®) gel showed evident collagen deposition, enhanced fibrosis and extensively organized angiogenesis on day 14 compared to the negative control group. While improvement in wound healing of the PH dressed group could be observed, there was no significant difference between the negative control group and the PH dressed group in any of the tests. The findings suggested that topical application of PPH accelerated the rats' wound healing process by improving angiogenesis attributed to the increased microvessel density (MVD) and expressions of VEGF-A in tissue samples. Thus, PPH has been demonstrated to be effective in the treatment of cutaneous wounds in rats, and could be a potential novel agent in the management and acceleration of wound healing in humans and animals.
    Matched MeSH terms: Hydrogels
  4. Stone EL, Citossi F, Singh R, Kaur B, Gaskell M, Farmer PB, et al.
    Bioorg Med Chem, 2015 Nov 01;23(21):6891-9.
    PMID: 26474663 DOI: 10.1016/j.bmc.2015.09.052
    Potent, selective antitumour AhR ligands 5F 203 and GW 610 are bioactivated by CYPs 1A1 and 2W1. Herein we reason that DNA adducts' generation resulting in lethal DNA double strand breaks (DSBs) underlies benzothiazoles' activity. Treatment of sensitive carcinoma cell lines with GW 610 generated co-eluting DNA adducts (R(2)>0.7). Time-dependent appearance of γ-H2AX foci revealed subsequent DNA double strand breaks. Propensity for systemic toxicity of benzothiazoles steered development of prodrugs' hydrogels for localised delivery. Clinical applications of targeted therapies include prevention or treatment of recurrent disease after surgical resection of solid tumours. In vitro evaluation of 5F 203 prodrugs' activity demonstrated nanomolar potency against MCF-7 breast and IGROV-1 ovarian carcinoma cell lines.
    Matched MeSH terms: Hydrogels/chemistry*
  5. Pandey M, Mohd Amin MC
    CNS Neurosci Ther, 2014 Apr;20(4):377-8.
    PMID: 24588895 DOI: 10.1111/cns.12237
    Matched MeSH terms: Hydrogels/chemical synthesis; Hydrogels/pharmacology*
  6. Thenapakiam S, Kumar DG, Pushpamalar J, Saravanan M
    Carbohydr Polym, 2013 Apr 15;94(1):356-63.
    PMID: 23544549 DOI: 10.1016/j.carbpol.2013.01.004
    The carboxymethyl sago pulp (CMSP) with a degree of substitution of 0.4% was synthesized from sago waste. The CMSP beads with an average diameter of 3.1-4.8 mm were formed by aluminium chloride gelation as well as further cross-linked by irradiation. To evaluate colon targeted release, a model drug, 5-aminosalicylic acid (5-ASA) was encapsulated in CMSP beads. Fourier-transform infrared spectroscopy and X-ray diffraction studies indicated intact and amorphous nature of entrapped drug. A pH dependent drug release was observed, and about 90% of the drug was released only at pH 7.4 over 9 h. Irradiated beads were resisted the drug release in an acidic environment at a higher extent than non-irradiated beads. The drug release from 6% (w/w) of 5-ASA loaded bead followed zero order, whereas, 15 and 22% loaded beads followed first order. The release exponent n value suggests non-fickian transport of 5-ASA from the beads.
    Matched MeSH terms: Hydrogels/chemistry
  7. Hezaveh H, Muhamad II
    Carbohydr Polym, 2012 Jun 5;89(1):138-45.
    PMID: 24750615 DOI: 10.1016/j.carbpol.2012.02.062
    In this article, silver and magnetite nanofillers were synthesized in modified κ-carrageenan hydrogels using the in situ method. The effect of metallic nanoparticles in gastro-intestinal tract (GIT) release of a model drug (methylene blue) has been investigated. The effect of nanoparticles loading and genipin cross-linking on GIT release of nanocomposite is also studied to finally provide the most suitable drug carrier system. In vitro release studies revealed that using metallic nanocomposites hydrogels in GIT studies can improve the drug release in intestine and minimize it in the stomach. It was found that cross-linking and nanofiller loading can significantly improve the targeted release. Therefore, applying metallic nanoparticles seems to be a promising strategy to develop GIT controlled drug delivery.
    Matched MeSH terms: Hydrogels/chemistry*
  8. Yuan X, Amarnath Praphakar R, Munusamy MA, Alarfaj AA, Suresh Kumar S, Rajan M
    Carbohydr Polym, 2019 Feb 15;206:1-10.
    PMID: 30553301 DOI: 10.1016/j.carbpol.2018.10.098
    Natural polymer guar gum has one of the highest viscosities in water solution and hence, these are significantly used in pharmaceutical applications. Guar gum inter-connected micelles as a new carrier has been developed for poor water soluble rifampicin drug. The hydrogel inter-connected micelle core was formulated as a hydrophilic inner and hydrophobic outer core by using guar gum/chitosan/polycaprolactone and the carrier interaction with rifampicin was confirmed by FT-IR. The morphological observations were carried out through TEM, SEM and AFM analysis. The encapsulation efficiency and in-vitro drug release behavior of prepared hydrogel based micelle system was analyzed by UV-vis spectrometry. The anti-bacterial activity against K. pneumoniae and S. aureus was studied by observing their ruptured surface by SEM. The cytotoxicity study reveals that the pure polymeric system has no toxic effect whereas drug loaded ones showed superior activity against THP-1 cells. From the cell apoptosis analyses, the apoptosis was carried out in a time dependent manner. The cell uptake behavior was also observed in THP-1 cells which indicate that the hydrogel based micelle system is an excellent material for the mucoadhesive on intracellular alveolar macrophage treatment.
    Matched MeSH terms: Hydrogels/chemical synthesis; Hydrogels/toxicity; Hydrogels/chemistry*
  9. Zahib IR, Md Tahir P, Talib M, Mohamad R, Alias AH, Lee SH
    Carbohydr Polym, 2021 Jan 15;252:117224.
    PMID: 33183648 DOI: 10.1016/j.carbpol.2020.117224
    Carboxymethyl starch (CMS) was produced from sago starch via carboxymethylation. The CMS with different degree of substitution (DS) ranges from 0.4 to 0.8 were mixed with polyethylene glycol (PEG) of different molecular weight and distilled water and the hydrogel was cured by electron beam irradiation with doses ranging from 25 to 35 kGy. The results revealed that CMS-PEG hydrogels with DS 0.4 give the optimum gel content when radiated at 30 kGy and with PEG 600. Thermogravimetric analysis (TGA) revealed that there are two phases exist in CMS with DS 0.4 in contrast to the three steps decomposition occurs in DS 0.6 and 0.8. It shows that the CMS with DS 0.4 is more thermally stable. Surface morphology revealed crosslinking among the blends when subjected into the radiation dose. The study shows both radiation and PEG addition improved most of the properties of CMS irrespective of the DS value.
    Matched MeSH terms: Hydrogels
  10. Wong LC, Leh CP, Goh CF
    Carbohydr Polym, 2021 Jul 15;264:118036.
    PMID: 33910744 DOI: 10.1016/j.carbpol.2021.118036
    Hydrogels are an attractive system for a myriad of applications. While most hydrogels are usually formed from synthetic materials, lignocellulosic biomass appears as a sustainable alternative for hydrogel development. The valorization of biomass, especially the non-woody biomass to meet the growing demand of the substitution of synthetics and to leverage its benefits for cellulose hydrogel fabrication is attractive. This review aims to present an overview of advances in hydrogel development from non-woody biomass, especially using native cellulose. The review will cover the overall process from cellulose depolymerization, dissolution to crosslinking reaction and the related mechanisms where known. Hydrogel design is heavily affected by the cellulose solubility, crosslinking method and the related processing conditions apart from biomass type and cellulose purity. Hence, the important parameters for rational designs of hydrogels with desired properties, particularly porosity, transparency and swelling characteristics will be discussed. Current challenges and future perspectives will also be highlighted.
    Matched MeSH terms: Hydrogels/chemistry*
  11. Ansar R, Saqib S, Mukhtar A, Niazi MBK, Shahid M, Jahan Z, et al.
    Chemosphere, 2022 Jan;287(Pt 1):131956.
    PMID: 34523459 DOI: 10.1016/j.chemosphere.2021.131956
    Hydrogel is the most emblematic soft material which possesses significantly tunable and programmable characteristics. Polymer hydrogels possess significant advantages including, biocompatible, simple, reliable and low cost. Therefore, research on the development of hydrogel for biomedical applications has been grown intensely. However, hydrogel development is challenging and required significant effort before the application at an industrial scale. Therefore, the current work focused on evaluating recent trends and issues with hydrogel development for biomedical applications. In addition, the hydrogel's development methodology, physicochemical properties, and biomedical applications are evaluated and benchmarked against the reported literature. Later, biomedical applications of the nano-cellulose-based hydrogel are considered and critically discussed. Based on a detailed review, it has been found that the surface energy, intermolecular interactions, and interactions of hydrogel adhesion forces are major challenges that contribute to the development of hydrogel. In addition, compared to other hydrogels, nanocellulose hydrogels demonstrated higher potential for drug delivery, 3D cell culture, diagnostics, tissue engineering, tissue therapies and gene therapies. Overall, nanocellulose hydrogel has the potential for commercialization for different biomedical applications.
    Matched MeSH terms: Hydrogels*
  12. Hussain Z, Thu HE, Ng SF, Khan S, Katas H
    Colloids Surf B Biointerfaces, 2017 Feb 01;150:223-241.
    PMID: 27918967 DOI: 10.1016/j.colsurfb.2016.11.036
    Wound healing is a multifarious and vibrant process of replacing devitalized and damaged cellular structures, leading to restoration of the skin's barrier function, re-establishment of tissue integrity, and maintenance of the internal homeostasis. Curcumin (CUR) and its analogs have gained widespread recognition due to their remarkable anti-inflammatory, anti-infective, anticancer, immunomodulatory, antioxidant, and wound healing activities. However, their pharmaceutical significance is limited due to inherent hydrophobic nature, poor water solubility, low bioavailability, chemical instability, rapid metabolism and short half-life. Owing to their pharmaceutical limitations, newer strategies have been attempted in recent years aiming to mitigate problems related to the effective delivery of curcumanoids and to improve their wound healing potential. These advanced strategies include nanovesicles, polymeric micelles, conventional liposomes and hyalurosomes, nanocomposite hydrogels, electrospun nanofibers, nanohybrid scaffolds, nanoconjugates, nanostructured lipid carriers (NLCs), nanoemulsion, nanodispersion, and polymeric nanoparticles (NPs). The superior wound healing activities achieved after nanoencapsulation of the CUR are attributed to its target-specific delivery, longer retention at the target site, avoiding premature degradation of the encapsulated cargo and the therapeutic superiority of the advanced delivery systems over the conventional delivery. We have critically reviewed the literature and summarize the convincing evidence which explore the pharmaceutical significance and therapeutic feasibility of the advanced delivery systems in improving wound healing activities of the CUR and its analogs.
    Matched MeSH terms: Hydrogels/chemistry
  13. Poh Yuen Wen A, Halim AS, Mat Saad AZ, Mohd Nor F, Wan Sulaiman WA
    Complement Ther Med, 2018 Dec;41:261-266.
    PMID: 30477850 DOI: 10.1016/j.ctim.2018.10.006
    BACKGROUND: Gamat (sea-cucumber) is a natural occurring fauna which is popularly used as traditional medication in Southeast Asian countries. There have been many animal studies done on its' biochemical properties and its' effects in vivo. The effect of gamat on human cutaneous wounds was studied using a split-skin graft donor site wound.

    METHODS: This was a comparative case-control study done on patients in Hospital Universiti Sains Malaysia (Hospital USM), requiring split-thickness skin grafting, whereby, the skin graft donor site was divided to almost equal halves, and applied with both gamat-based gel on one side, with Duoderm® hydrogel on the other side. The epithelialization of the wounds was observed and compared on days 10, 14 and 21. Pain score, and pruritus score were also observed. Repeated measure analysis of variance (ANOVA) test and Paired t-test was used to test statistical significance accordingly.

    RESULTS: No significant differences were seen in rates of epithelialization of wounds on days 10, 14 and 21 (p > 0.01). No significant difference was also seen in the pain score and pruritus score (p > 0.01).

    CONCLUSIONS: A gamat-based gel is comparable to conventional hydrogels in treatment of split-skin graft donor site. No adverse effects were observed in either group.

    Matched MeSH terms: Hydrogels/pharmacology*
  14. Wang L, Li Y, Huang G, Zhang X, Pingguan-Murphy B, Gao B, et al.
    Crit Rev Biotechnol, 2016 Jun;36(3):553-65.
    PMID: 25641330 DOI: 10.3109/07388551.2014.993588
    Natural cellular microenvironment consists of spatiotemporal gradients of multiple physical (e.g. extracellular matrix stiffness, porosity and stress/strain) and chemical cues (e.g. morphogens), which play important roles in regulating cell behaviors including spreading, proliferation, migration, differentiation and apoptosis, especially for pathological processes such as tumor formation and progression. Therefore, it is essential to engineer cellular gradient microenvironment incorporating various gradients for the fabrication of normal and pathological tissue models in vitro. In this article, we firstly review the development of engineering cellular physical and chemical gradients with cytocompatible hydrogels in both two-dimension and three-dimension formats. We then present current advances in the application of engineered gradient microenvironments for the fabrication of disease models in vitro. Finally, concluding remarks and future perspectives for engineering cellular gradients are given.
    Matched MeSH terms: Hydrogels
  15. Rehman U, Sarfraz RM, Mahmood A, Hussain Z, Thu HE, Zafar N, et al.
    Curr Drug Deliv, 2021 Feb 11.
    PMID: 33583374 DOI: 10.2174/1567201818666210212085912
    BACKGROUND: Despite exhibiting promising anticancer potential, the clinical significance of capecitabine (a potent prodrug of 5-fluorouracil used for treatment of colorectal cancer) is limited owing to its acidic and enzymatic hydrolysis, lower absorption following the oral administration, poor bioavailability, short plasma half-life and poor patient compliance.

    OBJECTIVES: The present study was aimed to fabricate the capecitabine as smart pH-responsive hydrogel network to efficiently facilitate its oral delivery while shielding its stability in the gastric media.

    METHODS: The smart pH sensitive HP-β-CD/agarose-g-poly(MAA) hydrogel network was developed using an aqueous free radical polymerization technique. The developed hydrogels were characterized for drug-loading efficiency, structural and compositional features, thermal stability, swelling behaviour, morphology, physical form, and release kinetics. The pH-responsive behaviour of developed hydrogels was established by conducting the swelling and release behaviour at different pH values (1.2 and 7.4), demonstrating significantly higher swelling and release at pH 7.4 as compared with pH 1.2. The capecitabine-loaded hydrogels were also screened for acute oral toxicity in animals by analysing the body weight, water and food intake, dermal toxicity, ocular toxicity, biochemical analysis, and histological examination.

    RESULTS: The characteristic evaluations revealed that capecitabine (anticancer agent) was successfully loaded into the hydrogel network. Capecitabine loading was ranged from 71.22% to 90.12%. An interesting feature of hydrogel was its pH-responsive behaviour which triggers release at basic pH (94.25%). Optimum swelling (95%) was seen at pH 7.4. Based upon regression coefficient R2 (0.96 - 0.99) best fit model was zero order. The extensive toxicity evaluations evidenced good safety profile with no signs of oral, dermal or ocular toxicities, as well as no variations in blood parameters and histology of vital organs.

    CONCLUSION: Our findings conclusively evinced that the developed hydrogel exhibited excellent pharmaceutical and therapeutic potential and thus can be employed as pH-responsive system for controlled delivery of anticancer agents.

    Matched MeSH terms: Hydrogels
  16. Busra MFM, Lokanathan Y
    Curr Pharm Biotechnol, 2019;20(12):992-1003.
    PMID: 31364511 DOI: 10.2174/1389201020666190731121016
    Tissue engineering focuses on developing biological substitutes to restore, maintain or improve tissue functions. The three main components of its application are scaffold, cell and growthstimulating signals. Scaffolds composed of biomaterials mainly function as the structural support for ex vivo cells to attach and proliferate. They also provide physical, mechanical and biochemical cues for the differentiation of cells before transferring to the in vivo site. Collagen has been long used in various clinical applications, including drug delivery. The wide usage of collagen in the clinical field can be attributed to its abundance in nature, biocompatibility, low antigenicity and biodegradability. In addition, the high tensile strength and fibril-forming ability of collagen enable its fabrication into various forms, such as sheet/membrane, sponge, hydrogel, beads, nanofibre and nanoparticle, and as a coating material. The wide option of fabrication technology together with the excellent biological and physicochemical characteristics of collagen has stimulated the use of collagen scaffolds in various tissue engineering applications. This review describes the fabrication methods used to produce various forms of scaffolds used in tissue engineering applications.
    Matched MeSH terms: Hydrogels/chemistry
  17. Maarof M, Mh Busra MF, Lokanathan Y, Bt Hj Idrus R, Rajab NF, Chowdhury SR
    Drug Deliv Transl Res, 2019 02;9(1):144-161.
    PMID: 30547385 DOI: 10.1007/s13346-018-00612-z
    Skin substitutes are one of the main treatments for skin loss, and a skin substitute that is readily available would be the best treatment option. However, most cell-based skin substitutes require long production times, and therefore, patients endure long waiting times. The proteins secreted from the cells and tissues play vital roles in promoting wound healing. Thus, we aimed to develop an acellular three-dimensional (3D) skin patch with dermal fibroblast conditioned medium (DFCM) and collagen hydrogel for immediate treatment of skin loss. Fibroblasts from human skin samples were cultured using serum-free keratinocyte-specific media (KM1 or KM2) and serum-free fibroblast-specific medium (FM) to obtain DFCM-KM1, DFCM-KM2, and DFCM-FM, respectively. The acellular 3D skin patch was soft, semi-solid, and translucent. Collagen mixed with DFCM-KM1 and DFCM-KM2 showed higher protein release compared to collagen plus DFCM-FM. In vitro and in vivo testing revealed that DFCM and collagen hydrogel did not induce an immune response. The implantation of the 3D skin patch with or without DFCM on the dorsum of BALB/c mice demonstrated a significantly faster healing rate compared to the no-treatment group 7 days after implantation, and all groups had complete re-epithelialization at day 17. Histological analysis confirmed the structure and integrity of the regenerated skin, with positive expression of cytokeratin 14 and type I collagen in the epidermal and dermal layer, respectively. These findings highlight the possibility of using fibroblast secretory factors together with collagen hydrogel in an acellular 3D skin patch that can be used allogeneically for immediate treatment of full-thickness skin loss.
    Matched MeSH terms: Hydrogels/chemistry
  18. Sohail M, Mudassir, Minhas MU, Khan S, Hussain Z, de Matas M, et al.
    Drug Deliv Transl Res, 2019 04;9(2):595-614.
    PMID: 29611113 DOI: 10.1007/s13346-018-0512-x
    Ulcerative colitis (UC) is an inflammatory disease of the colon that severely affects the quality of life of patients and usually responds well to anti-inflammatory agents for symptomatic relief; however, many patients need colectomy, a surgical procedure to remove whole or part of the colon. Though various types of pharmacological agents have been employed for the management of UC, the lack of effectiveness is usually predisposed to various reasons including lack of target-specific delivery of drugs and insufficient drug accumulation at the target site. To overcome these glitches, many researchers have designed and characterized various types of versatile polymeric biomaterials to achieve target-specific delivery of drugs via oral route to optimize their targeting efficiency to the colon, to improve drug accumulation at the target site, as well as to ameliorate off-target effects of chemotherapy. Therefore, the aim of this review was to summarize and critically discuss the pharmaceutical significance and therapeutic feasibility of a wide range of natural and synthetic biomaterials for efficient drug targeting to colon and rationalized treatment of UC. Among various types of biomaterials, natural and synthetic polymer-based hydrogels have shown promising targeting potential due to their innate pH responsiveness, sustained and controlled release characteristics, and microbial degradation in the colon to release the encapsulated drug moieties. These characteristic features make natural and synthetic polymer-based hydrogels superior to conventional pharmacological strategies for the management of UC.
    Matched MeSH terms: Hydrogels/administration & dosage
  19. Mohamad N, Loh EYX, Fauzi MB, Ng MH, Mohd Amin MCI
    Drug Deliv Transl Res, 2019 04;9(2):444-452.
    PMID: 29302918 DOI: 10.1007/s13346-017-0475-3
    The healing of wounds, including those from burns, currently exerts a burden on healthcare systems worldwide. Hydrogels are widely used as wound dressings and in the field of tissue engineering. The popularity of bacterial cellulose-based hydrogels has increased owing to their biocompatibility. Previous study demonstrated that bacterial cellulose/acrylic acid (BC/AA) hydrogel increased the healing rate of burn wound. This in vivo study using athymic mice has extended the use of BC/AA hydrogel by the addition of human epidermal keratinocytes and human dermal fibroblasts. The results showed that hydrogel loaded with cells produces the greatest acceleration on burn wound healing, followed by treatment with hydrogel alone, compared with the untreated group. The percentage wound reduction on day 13 in the mice treated with hydrogel loaded with cells (77.34 ± 6.21%) was significantly higher than that in the control-treated mice (64.79 ± 6.84%). Histological analysis, the expression of collagen type I via immunohistochemistry, and transmission electron microscopy indicated a greater deposition of collagen in the mice treated with hydrogel loaded with cells than in the mice administered other treatments. Therefore, the BC/AA hydrogel has promising application as a wound dressing and a cell carrier.
    Matched MeSH terms: Hydrogels/administration & dosage*
  20. Rehman K, Zulfakar MH
    Drug Dev Ind Pharm, 2014 Apr;40(4):433-40.
    PMID: 23937582 DOI: 10.3109/03639045.2013.828219
    Transdermal drug delivery systems are a constant source of interest because of the benefits that they afford in overcoming many drawbacks associated with other modes of drug delivery (i.e. oral, intravenous). Because of the impermeable nature of the skin, designing a suitable drug delivery vehicle that penetrates the skin barrier is challenging. Gels are semisolid formulations, which have an external solvent phase, may be hydrophobic or hydrophilic in nature, and are immobilized within the spaces of a three-dimensional network structure. Gels have a broad range of applications in food, cosmetics, biotechnology, pharmatechnology, etc. Typically, gels can be distinguished according to the nature of the liquid phase, for example, organogels (oleogels) contain an organic solvent, and hydrogels contain water. Recent studies have reported other types of gels for dermal drug application, such as proniosomal gels, emulgels, bigels and aerogels. This review aims to introduce the latest trends in transdermal drug delivery via traditional hydrogels and organogels and to provide insight into the latest gel types (proniosomal gels, emulgels, bigels and aerogels) as well as recent technologies for topical and transdermal drug delivery.
    Matched MeSH terms: Hydrogels
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links