Displaying publications 21 - 40 of 390 in total

Abstract:
Sort:
  1. Nik Ramli NN, Omar N, Husin A, Ismail Z, Siran R
    Neurosci Lett, 2015 Feb 19;588:137-41.
    PMID: 25562631 DOI: 10.1016/j.neulet.2014.12.062
    Glutamate receptors are the integral cellular components associated with excitotoxicity mechanism induced by the ischemic cascade events. Therefore the glutamate receptors have become the major molecular targets of neuroprotective agents in stroke researches. Recent studies have demonstrated that a Group I metabotropic glutamate receptor agonist, (S)-3,5-dihydroxyphenylglycine ((S)-3,5-DHPG) preconditioning elicits neuroprotection in the hippocampal slice cultures exposed to toxic level of N-methyl-d-aspartate (NMDA). We further investigated the preconditioning effects of (S)-3,5-DHPG on acute ischemic stroke rats. One 10 or 100μM of (S)-3,5-DHPG was administered intrathecally to Sprague-Dawley adult male rats, 2h prior to induction of acute ischemic stroke by middle cerebral artery occlusion (MCAO). After 24h, neurological deficits were evaluated by modified stroke severity scores and grid-walking test. All rats were sacrificed and infarct volumes were determined by 2,3,5-triphenyltetrazolium chloride staining. The serum level of neuron-specific enolase (NSE) of each rat was analyzed by enzyme-linked immunosorbent assay (ELISA). One and 10μM of (S)-3,5-DHPG preconditioning in the stroke rats showed significant improvements in motor impairment (P<0.01), reduction in the infarct volume (P<0.01) and reduction in the NSE serum level (P<0.01) compared to the control stroke rats. We conclude that 1 and 10μM (S)-3,5-DHPG preconditioning induced protective effects against acute ischemic insult in vivo.
    Matched MeSH terms: Injections, Spinal
  2. Konidala SK, Kotra V, Danduga RCSR, Kola PK
    Bioorg Chem, 2020 11;104:104207.
    PMID: 32947135 DOI: 10.1016/j.bioorg.2020.104207
    Four series of thirteen new coumarin-chalcone hybrids (DPCU 1-13, DPCT 1-13, DCCU 1-13 and DCCT 1-13) were designed and synthesized using Biginelli synthesis, Pechmann condensation, Acetylation, and Claisen-Schmidt reactions. Synthesized compounds were tested for insulin receptor in silico docking studies (PDB ID: 1IR3); DCCU 13 and DCCT 13 derivatives received the lowest docking score; Streptozocin (STZ) and Nicotinamide (NA) induced type II diabetes was tested for their anti-diabetic activity in rats. In vivo tests suggested that fasting blood glucose levels of animals treated with DCCU 13 (30 mg/kg body weight) and DCCT 13 (30 mg/kg body weight) were significantly and moderately suppressed, respectively, relative to fasting blood glucose levels of diabetic control animals. Similarly, therapy with DCCU 13 and DCCT 13 attenuated oxidative stress parameters such as lipid peroxidation (MDA), superoxide dismutase (SOD) and increased the glutathione (GSH) in the liver and pancreas in a dose-dependent manner. In comparison, therapy with DCCU 13 (30 mg/kg body weight) mitigated alterations in the histological architecture of the liver and pancreatic tissue. These results indicated that the hybrids DUUC 13 and DCCT 13 at 30 mg/kg had an anti-hyperglycemic and antioxidant impact on STZ + NA mediated type II diabetes in rats. Further detailed work could be required to determine the precise mode of action of the anti-diabetic behavior of hybrids.
    Matched MeSH terms: Injections, Intraperitoneal
  3. Subrayan V, Khaw KW, Peyman M, Koay AC, Tajunisah I
    Ophthalmologica, 2013;229(4):208-11.
    PMID: 23548379 DOI: 10.1159/000348630
    To evaluate the outcome of intravitreal bevacizumab in the treatment of radiation-induced cystoid macular oedema among patients who underwent external beam radiotherapy for nasopharyngeal carcinoma.
    Matched MeSH terms: Intravitreal Injections
  4. Lim TH, Lai TYY, Takahashi K, Wong TY, Chen LJ, Ruamviboonsuk P, et al.
    JAMA Ophthalmol, 2020 09 01;138(9):935-942.
    PMID: 32672800 DOI: 10.1001/jamaophthalmol.2020.2443
    Importance: The 2-year efficacy and safety of combination therapy of ranibizumab administered together with verteporfin photodynamic therapy (vPDT) compared with ranibizumab monotherapy in participants with polypoidal choroidal vasculopathy (PCV) are unclear.

    Objective: To compare treatment outcomes of ranibizumab, 0.5 mg, plus prompt vPDT combination therapy with ranibizumab, 0.5 mg, monotherapy in participants with PCV for 24 months.

    Design, Setting, and Participants: This 24-month, phase IV, double-masked, multicenter, randomized clinical trial (EVEREST II) was conducted among Asian participants from August 7, 2013, to March 2, 2017, with symptomatic macular PCV confirmed using indocyanine green angiography.

    Interventions: Participants (N = 322) were randomized 1:1 to ranibizumab, 0.5 mg, plus vPDT (combination therapy group; n = 168) or ranibizumab, 0.5 mg, plus sham PDT (monotherapy group; n = 154). All participants received 3 consecutive monthly ranibizumab injections, followed by a pro re nata regimen. Participants also received vPDT (combination group) or sham PDT (monotherapy group) on day 1, followed by a pro re nata regimen based on the presence of active polypoidal lesions.

    Main Outcomes and Measures: Evaluation of combination therapy vs monotherapy at 24 months in key clinical outcomes, treatment exposure, and safety. Polypoidal lesion regression was defined as the absence of indocyanine green hyperfluorescence of polypoidal lesions.

    Results: Among 322 participants (mean [SD] age, 68.1 [8.8] years; 225 [69.9%] male), the adjusted mean best-corrected visual acuity (BCVA) gains at month 24 were 9.6 letters in the combination therapy group and 5.5 letters in the monotherapy group (mean difference, 4.1 letters; 95% CI, 1.0-7.2 letters; P = .005), demonstrating that combination therapy was superior to monotherapy by the BCVA change from baseline to month 24. Combination therapy was superior to monotherapy in terms of complete polypoidal lesion regression at month 24 (81 of 143 [56.6%] vs 23 of 86 [26.7%] participants; P 

    Matched MeSH terms: Intravitreal Injections
  5. Suhaini S, Liew SZ, Norhaniza J, Lee PC, Jualang G, Embi N, et al.
    Trop Biomed, 2015 Sep;32(3):419-33.
    PMID: 26695202 MyJurnal
    Gleichenia truncata is a highland fern from the Gleicheniaceae family known for its traditional use among indigenous communities in Asia to treat fever. The scientific basis of its effect has yet to be documented. A yeast-based kinase assay conducted in our laboratory revealed that crude methanolic extract (CME) of G. truncata exhibited glycogen synthase kinase-3 (GSK3)-inhibitory activity. GSK3β is now recognized to have a pivotal role in the regulation of inflammatory response during bacterial infections. We have also previously shown that lithium chloride (LiCl), a GSK3 inhibitor suppressed development of Plasmodium berghei in a murine model of malarial infection. The present study is aimed at evaluating G. truncata for its anti-malarial and anti-inflammatory effects using in vivo malarial and melioidosis infection models respectively. In a four-day suppressive test, intraperitoneal injections of up to 250 mg/kg body weight (bw) G. truncata CME into P.berghei-infected mice suppressed parasitaemia development by >60%. Intraperitoneal administration of 150 mg/kg bw G. truncata CME into Burkholderia pseudomallei-infected mice improved survivability by 44%. G. truncata CME lowered levels of pro-inflammatory cytokines (TNF-α, IFN-γ) in serum and organs of B. pseudomallei-infected mice. In both infections, increased phosphorylations (Ser9) of GSK3β were detected in organ samples of animals administered with G. truncata CME compared to controls. Taken together, results from this study strongly suggest that the anti-malarial and anti-inflammatory effects elicited by G. truncata in part were mediated through inhibition of GSK3β. The findings provide scientific basis for the ethnomedicinal use of this fern to treat inflammation-associated symptoms.
    Matched MeSH terms: Injections, Intraperitoneal
  6. Eldem B, Lai TYY, Ngah NF, Vote B, Yu HG, Fabre A, et al.
    Graefes Arch Clin Exp Ophthalmol, 2018 May;256(5):963-973.
    PMID: 29502232 DOI: 10.1007/s00417-017-3890-8
    PURPOSE: To describe intravitreal ranibizumab treatment frequency, clinical monitoring, and visual outcomes (including mean central retinal thickness [CRT] and visual acuity [VA] changes from baseline) in neovascular age-related macular degeneration (nAMD) in real-world settings across three ranibizumab reimbursement scenarios in the Middle East, North Africa, and the Asia-Pacific region.

    METHODS: Non-interventional multicenter historical cohort study of intravitreal ranibizumab use for nAMD in routine clinical practice between April 2010 and April 2013. Eligible patients were diagnosed with nAMD, received at least one intravitreal ranibizumab injection during the study period, and had been observed for a minimum of 1 year (up to 3 years). Reimbursement scenarios were defined as self-paid, partially-reimbursed, and fully-reimbursed.

    RESULTS: More than three-fourths (n = 2521) of the analysis population was partially-reimbursed for ranibizumab, while 16.4% (n = 532) was fully-reimbursed, and 5.8% was self-paid (n = 188). The average annual ranibizumab injection frequency was 4.1 injections in the partially-reimbursed, 4.7 in the fully-reimbursed and 2.6 in the self-paid populations. The average clinical monitoring frequency was estimated to be 6.7 visits/year, with similar frequencies observed across reimbursement categories. On average, patients experienced VA reduction of -0.7 letters and a decrease in CRT of -44.4 μm. The greatest mean CRT change was observed in the self-paid group, with -92.6 μm.

    CONCLUSIONS: UNCOVER included a large, heterogeneous ranibizumab-treated nAMD population in real-world settings. Patients in all reimbursement scenarios attained vision stability on average, indicating control of disease activity.

    Matched MeSH terms: Intravitreal Injections
  7. Malik A, Arooj M, Butt TT, Zahid S, Zahid F, Jafar TH, et al.
    Drug Des Devel Ther, 2018;12:1431-1443.
    PMID: 29872266 DOI: 10.2147/DDDT.S154169
    Background: The present study investigates the hepato- and DNA-protective effects of standardized extracts of Cleome brachycarpa (cabralealactone), Solanum incanum (solasodin), and Salvadora oleioides (salvadorin) in rats.

    Materials and methods: Hepatotoxicity was induced with intraperitoneal injection of carbon tetrachloride (CCl4) (1 mL/kg b.wt.) once a week for 12 weeks. The hepato- and DNA protective effects of the extracts in different combinations were compared with that of a standard drug Clavazin (200 mg/kg b.wt.). Tissue alanine aminotransferase, alpha-fetoprotein, tumor necrosis factor alpha (TNF-α), isoprostanes-2α, malondialdehyde, and 8-hydroxydeoxyguanosine, the significant hallmarks of oxidative stress, were studied.

    Results: Histopathological findings of the liver sections from the rat group which received CCl4+cabralealactone, solasodin, and salvadorin demonstrated improved centrilobular hepatocyte regeneration with moderate areas of congestion and infiltration comparable with Clavazin. For in silico study, the identified compounds were subjected to molecular docking with cyclooxygenase-2 and TNF-α followed by a molecular dynamics study, which indicated their potential as anti-inflammatory agents.

    Conclusion: Cabralealactone, solasodin, and salvadorin confer some hepatoprotective and DNA-damage protective effects against CCl4-induced toxicity. They successfully restored the normal architecture of hepatocytes and have the potential to be used as inhibitor to main culprits, that is, cyclooxygenase-2 and TNF-α. They can combat oxidative stress and liver injuries both as mono and combinational therapies. However, combination therapy has more ameliorating effects.

    Matched MeSH terms: Injections, Intraperitoneal
  8. Badran MM, Alomrani AH, Harisa GI, Ashour AE, Kumar A, Yassin AE
    Biomed Pharmacother, 2018 Oct;106:1461-1468.
    PMID: 30119220 DOI: 10.1016/j.biopha.2018.07.102
    In the present study, docetaxel (DTX)-loaded poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) nanoparticles were successfully prepared and coated with chitosan (CS). The prepared nanoparticles (NPs) were evaluated for their particle size, zeta potential, particle morphology, drug entrapment efficiency (EE%), and in vitro drug release profile. The anticancer activity of DTX-loaded NPs was assessed in human HT29 colon cancer cell line utilizing MTT assay. The pharmacokinetics of DTX-loaded NPs was monitored in Wistar rats in comparison to DTX solution. The prepared NPs exhibited particle sizes in the range 177.1 ± 8.2-287.6 ± 14.3 nm. CS decorated NPs exhibited a significant increase in particle size and a switch of zeta potential from negative to positive. In addition, high EE% values were obtained for CS coated PCL NPs and PLGA NPs as 67.1 and 76.2%, respectively. Moreover, lowering the rate of DTX in vitro release was achieved within 48 h by using CS coated NPs. Furthermore, a tremendous increase in DTX cytotoxicity was observed by CS-decorated PLGA NPs compared to all other NPs including DTX-free-NPs and pure DTX. The in vivo study revealed significant enhancement in DTX bioavailability from CS-decorated PLGA NPs with more than 4-fold increase in AUC compared to DTX solution. In conclusion, CS-decorated PLGA NPs are a considerable DTX-delivery carrier with magnificent antitumor efficacy.
    Matched MeSH terms: Injections, Intraperitoneal
  9. Norlinah MI, Hamizah R, Md Isa SH, Wan Nazaimoon WM, Khalid BA
    Indian J Med Sci, 2009 Apr;63(4):131-8.
    PMID: 19414982
    BACKGROUND: The role of endothelial injury and circulating adhesion molecule in the development and progression of diabetic peripheral neuropathy in the long-term has been established previously.
    AIMS: To study the effects of short-term glycemic control using insulin and oral hypoglycemic agent therapy (OHA) on the peroneal nerve function and vascular cell adhesion molecule-1 (VCAM-1) and advanced glycation endproducts (AGE) levels in type 2 diabetic patients.
    SETTINGS AND DESIGN: A randomized controlled study involving poorly controlled (HbA1c, 7.5%-11%) type 2 diabetic patients attending the endocrinology outpatient center in a tertiary hospital in Kuala Lumpur.
    MATERIALS AND METHODS: Twenty-nine patients were randomized to receive insulin (n=15) or OHA (n=14) for 8 weeks. The glycemic variables (HbA1c, fasting plasma glucose [FPG], fructosamine), VCAM-1, serum AGE and the peroneal motor conduction velocity (PMCV) were measured at baseline and at 4-week intervals.
    STATISTICAL ANALYSIS USED: Paired 't' test or Kruskal Wallis test; and the unpaired 't' test or Mann-Whitney U test were used for within-group and between-group analyses, respectively. Correlation was analyzed using Spearman's correlation coefficient.
    RESULTS: Within-group analysis showed significant progressive improvement in HbA1c at weeks 4 and 8 in the insulin group. The PMCV improved significantly in both groups by week 8, and by week 4 (P = 0.01) in the insulin group. PMCV correlated negatively with VCAM-1 (P = 0.031) and AGE (P = 0.009) at week 8.
    CONCLUSION: Aggressive glycemic control with insulin improves the peroneal nerve function within 4 weeks. Improvement in the serum VCAM-1 and AGE levels correlated significantly with improvement in peroneal nerve conduction velocity only in the insulin group.
    Study site: Tertiary endocrinology outpatient center in Kuala Lumpur, Malaysia
    Matched MeSH terms: Injections, Subcutaneous
  10. Sheshala R, Peh KK, Darwis Y
    Drug Dev Ind Pharm, 2009 Nov;35(11):1364-74.
    PMID: 19832637 DOI: 10.3109/03639040902939213
    AIM: The aim of this study was to prepare insulin-loaded poly(lactic acid)-polyethylene glycol microspheres that could control insulin release at least for 1 week and evaluate their in vivo performance in a streptozotocin-induced diabetic rat model.
    METHODS: The microspheres were prepared using a water-in-oil-in-water double emulsion solvent evaporation technique. Different formulation variables influencing the yield, particle size, entrapment efficiency, and in vitro release profiles were investigated. The pharmacokinetic study of optimized formulation was performed with single dose in comparison with multiple dose of Humulin 30/70 as a reference product in streptozotocin-induced diabetic rats.
    RESULTS: The optimized formulation of insulin microspheres was nonporous, smooth-surfaced, and spherical in structure under scanning electron microscope with a mean particle size of 3.07 microm and entrapment efficiency of 42.74% of the theoretical amount incorporated. The in vitro insulin release profiles was characterized by a bimodal behavior with an initial burst release because of the insulin adsorbed on the microsphere surface, followed by slower and continuous release corresponding to the insulin entrapped in polymer matrix.
    CONCLUSIONS: The optimized formulation and reference were comparable in the extent of absorption. Consequently, these microspheres can be proposed as new controlled parenteral delivery system.
    Matched MeSH terms: Injections, Subcutaneous
  11. Boukari Y, Qutachi O, Scurr DJ, Morris AP, Doughty SW, Billa N
    J Biomater Sci Polym Ed, 2017 Nov;28(16):1966-1983.
    PMID: 28777694 DOI: 10.1080/09205063.2017.1364100
    The development of patient-friendly alternatives to bone-graft procedures is the driving force for new frontiers in bone tissue engineering. Poly (dl-lactic-co-glycolic acid) (PLGA) and chitosan are well-studied and easy-to-process polymers from which scaffolds can be fabricated. In this study, a novel dual-application scaffold system was formulated from porous PLGA and protein-loaded PLGA/chitosan microspheres. Physicochemical and in vitro protein release attributes were established. The therapeutic relevance, cytocompatibility with primary human mesenchymal stem cells (hMSCs) and osteogenic properties were tested. There was a significant reduction in burst release from the composite PLGA/chitosan microspheres compared with PLGA alone. Scaffolds sintered from porous microspheres at 37 °C were significantly stronger than the PLGA control, with compressive strengths of 0.846 ± 0.272 MPa and 0.406 ± 0.265 MPa, respectively (p 
    Matched MeSH terms: Injections
  12. Sayem ASM, Giribabu N, Muniandy S, Salleh N
    Biomed Pharmacother, 2017 Dec;96:1016-1021.
    PMID: 29221723 DOI: 10.1016/j.biopha.2017.11.128
    INTRODUCTION: Thyroid hormone is known to play important role during embryo implantation, however mechanisms underlying its actions in uterus during peri-implantation period has not been fully identified. In this study, we hypothesized that thyroid hormone could affect expression of proteins related to its function, where these could explain mechanisms for its action in uterus during this period.

    METHODS: Female rats, once rendered hypothyroid via oral administration of methimazole (0.03% in drinking water) for twenty-one days were mated with fertile euthyroid male rats at 1:1 ratio. Pregnancy was confirmed by the presence of vaginal plug and this was designated as day-1. Thyroxine (20, 40 and 80 μg/kg/day) was then subcutaneously administered to pregnant, hypothyroid female rats for three days. A day after last injection (day four pregnancy), female rats were sacrificed and expression of thyroid hormone receptors (TR-α and β), retinoid X receptor (RXR) and extracellular signal-regulated kinase (ERK1/2) in uterus were quantified by Western blotting while their distribution in endometrium was visualized by immunofluorescence.

    RESULTS: Expression of TRα-1, TRβ-1 and ERK1/2 proteins in uterus increased with increasing doses of thyroxine however no changes in RXR expression was observed. These proteins were found in the stroma with their distribution levels were relatively higher following thyroxine treatment.

    CONCLUSIONS: Increased expression of TRα-1, TRβ-1 and ERK1/2 at day 4 pregnancy in thyroxine-treated hypothyroid pregnant rats indicate the importance of thyroxine in up-regulating expression of these proteins that could help mediate the uterine changes prior to embryo implantation.

    Matched MeSH terms: Injections, Subcutaneous
  13. Springer SA, Di Paola A, Azar MM, Barbour R, Biondi BE, Desabrais M, et al.
    J Acquir Immune Defic Syndr, 2018 05 01;78(1):43-53.
    PMID: 29373393 DOI: 10.1097/QAI.0000000000001634
    OBJECTIVE: To determine whether extended-release naltrexone (XR-NTX) would improve or maintain viral suppression (VS) among prisoners or jail detainees with HIV and opioid use disorder (OUD) transitioning to the community.

    DESIGN: A 4-site, prospective randomized double-blind, placebo-controlled trial was conducted among prison and jail inmates with HIV and OUD transitioning to the community from September 2010 through March 2016.

    METHODS: Eligible participants (N = 93) were randomized 2:1 to receive 6 monthly injections of XR-NTX (n = 66) or placebo (n = 27) starting at release and observed for 6 months. The primary outcome was the proportion that maintained or improved VS (<50 copies/mL) from baseline to 6 months.

    RESULTS: Participants allocated to XR-NTX significantly improved to VS (<50 copies/mL) from baseline (37.9%) to 6 months (60.6%) (P = 0.002), whereas the placebo group did not (55.6% at baseline to 40.7% at 6 months P = 0.294). There was, however, no statistical significant difference in VS levels at 6 months between XR-NTX (60.6%) vs. placebo (40.7%) (P = 0.087). After controlling for other factors, only allocation to XR-NTX (adjusted odds ratio = 2.90; 95% confidence interval = 1.04 to 8.14, P = 0.043) was associated with the primary outcome. Trajectories in VS from baseline to 6 months differed significantly (P = 0.017) between treatment groups, and the differences in the discordant values were significantly different as well (P = 0.041): the XR-NTX group was more likely than the placebo group to improve VS (30.3% vs. 18.5%), maintain VS (30.3% vs. 27.3), and less likely to lose VS (7.6% vs. 33.3%) by 6 months.

    CONCLUSIONS: XR-NTX improves or maintains VS after release to the community for incarcerated people living with HIV with OUD.

    Matched MeSH terms: Injections, Intramuscular
  14. Lambuk L, Jafri AJ, Arfuzir NN, Iezhitsa I, Agarwal R, Rozali KN, et al.
    Neurotox Res, 2017 01;31(1):31-45.
    PMID: 27568334 DOI: 10.1007/s12640-016-9658-9
    Glutamate excitotoxicity plays a major role in the loss of retinal ganglion cells (RGCs) in glaucoma. The toxic effects of glutamate on RGCs are mediated by the overstimulation of N-methyl-D-aspartate (NMDA) receptors. Accordingly, NMDA receptor antagonists have been suggested to inhibit excitotoxicity in RGCs and delay the progression and visual loss in glaucoma patients. The purpose of the present study was to examine the potential neuroprotective effect of Mg acetyltaurate (MgAT) on RGC death induced by NMDA. MgAT was proposed mainly due to the combination of magnesium (Mg) and taurine which may provide neuroprotection by dual mechanisms of action, i.e., inhibition of NMDA receptors and antioxidant effects. Rats were divided into 5 groups and were given intravitreal injections. Group 1 (PBS group) was injected with vehicle; group 2 (NMDA group) was injected with NMDA while groups 3 (pre-), 4 (co-), and 5 (post-) treatments were injected with MgAT, 24 h before, in combination or 24 h after NMDA injection respectively. NMDA and MgAT were injected in PBS at doses 160 and 320 nmol, respectively. Seven days after intravitreal injection, the histological changes in the retina were evaluated using hematoxylin & eosin (H&E) staining. Optic nerves were dissected and stained in Toluidine blue for grading on morphological neurodegenerative changes. The extent of apoptosis in retinal tissue was assessed by TUNEL assay and caspase-3 immunohistochemistry staining. The estimation of neurotrophic factor, oxidative stress, pro/anti-apoptotic factors and caspase-3 activity in retina was done using enzyme-linked immunosorbent assay (ELISA) technique. The retinal morphometry showed reduced thickness of ganglion cell layer (GCL) and reduction in the number of retinal cells in GCL in NMDA group compared to the MgAT-treated groups. TUNEL and caspase-3 staining showed increased number of apoptotic cells in inner retina. The results were further corroborated by the estimation of neurotrophic factor, oxidative stress, pro/anti-apoptotic factors, and caspase-3 activity in retina. In conclusion, current study revealed that intravitreal MgAT prevents retinal and optic nerve damage induced by NMDA. Overall, our data demonstrated that the pretreatment with MgAT was more effective than co- and posttreatment. This protective effect of MgAT against NMDA-induced retinal cell apoptosis could be attributed to the reduction of retinal oxidative stress and activation of BDNF-related neuroprotective mechanisms.
    Matched MeSH terms: Intravitreal Injections
  15. Jafri AJA, Agarwal R, Iezhitsa I, Agarwal P, Spasov A, Ozerov A, et al.
    Mol Vis, 2018;24:495-508.
    PMID: 30090013
    Purpose: Retinal nitrosative stress associated with altered expression of nitric oxide synthases (NOS) plays an important role in excitotoxic retinal ganglion cell loss in glaucoma. The present study evaluated the effects of magnesium acetyltaurate (MgAT) on changes induced by N-methyl-D-aspartate (NMDA) in the retinal expression of three NOS isoforms, retinal 3-nitrotyrosine (3-NT) levels, and the extent of retinal cell apoptosis in rats. Effects of MgAT with taurine (TAU) alone were compared to understand the benefits of a combined salt of Mg and TAU.

    Methods: Excitotoxic retinal injury was induced with intravitreal injection of NMDA in Sprague-Dawley rats. All treatments were given as pre-, co-, and post-treatment with NMDA. Seven days post-injection, the retinas were processed for measurement of the expression of NOS isoforms using immunostaining and enzyme-linked immunosorbent assay (ELISA), retinal 3-NT content using ELISA, retinal histopathological changes using hematoxylin and eosin (H&E) staining, and retinal cell apoptosis using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining.

    Results: As observed on immunohistochemistry, the treatment with NMDA caused a 4.53-fold increase in retinal nNOS expression compared to the PBS-treated rats (p<0.001). Among the MgAT-treated groups, only the pretreatment group showed significantly lower nNOS expression than the NMDA-treated group with a 2.00-fold reduction (p<0.001). Among the TAU-treated groups, the pre- and cotreatment groups showed 1.84- and 1.71-fold reduction in nNOS expression compared to the NMDA-treated group (p<0.001), respectively, but remained higher compared to the PBS-treated group (p<0.01). Similarly, iNOS expression in the NMDA-treated group was significantly greater than that for the PBS-treated group (2.68-fold; p<0.001). All MgAT treatment groups showed significantly lower iNOS expression than the NMDA-treated groups (3.58-, 1.51-, and 1.65-folds, respectively). However, in the MgAT co- and post-treatment groups, iNOS expression was significantly greater than in the PBS-treated group (1.77- and 1.62-folds, respectively). Pretreatment with MgAT caused 1.77-fold lower iNOS expression compared to pretreatment with TAU (p<0.05). In contrast, eNOS expression was 1.63-fold higher in the PBS-treated group than in the NMDA-treated group (p<0.001). Among all treatment groups, only pretreatment with MgAT caused restoration of retinal eNOS expression with a 1.39-fold difference from the NMDA-treated group (p<0.05). eNOS expression in the MgAT pretreatment group was also 1.34-fold higher than in the TAU pretreatment group (p<0.05). The retinal NOS expression as measured with ELISA was in accordance with that estimated with immunohistochemistry. Accordingly, among the MgAT treatment groups, only the pretreated group showed 1.47-fold lower retinal 3-NT than the NMDA-treated group, and the difference was significant (p<0.001). The H&E-stained retinal sections in all treatment groups showed statistically significantly greater numbers of retinal cell nuclei than the NMDA-treated group in the inner retina. However, the ganglion cell layer thickness in the TAU pretreatment group remained 1.23-fold lower than that in the MgAT pretreatment group (p<0.05). In line with this observation, the number of apoptotic cells as observed after TUNEL staining was 1.69-fold higher after pretreatment with TAU compared to pretreatment with MgAT (p<0.01).

    Conclusions: MgAT and TAU, particularly with pretreatment, reduce retinal cell apoptosis by reducing retinal nitrosative stress. Pretreatment with MgAT caused greater improvement in NMDA-induced changes in iNOS and eNOS expression and retinal 3-NT levels than pretreatment with TAU. The greater reduction in retinal nitrosative stress after pretreatment with MgAT was associated with lower retinal cell apoptosis and greater preservation of the ganglion cell layer thickness compared to pretreatment with TAU.

    Matched MeSH terms: Intravitreal Injections
  16. Armenia A, Munavvar AS, Abdullah NA, Helmi A, Johns EJ
    Br J Pharmacol, 2004 Jun;142(4):719-26.
    PMID: 15172958
    1. Diabetes and hypertension are both associated with an increased risk of renal disease and are associated with neuropathies, which can cause defective autonomic control of major organs including the kidney. This study aimed to examine the alpha(1)-adrenoceptor subtype(s) involved in mediating adrenergically induced renal vasoconstriction in a rat model of diabetes and hypertension. 2. Male spontaneously hypertensive rats (SHR), 220-280 g, were anaesthetized with sodium pentobarbitone 7-day poststreptozotocin (55 mg x kg(-1) i.p.) treatment. The reductions in renal blood flow (RBF) induced by increasing frequencies of electrical renal nerve stimulation (RNS), close intrarenal bolus doses of noradrenaline (NA), phenylephrine (PE) or methoxamine were determined before and after administration of nitrendipine (Nit), 5-methylurapidil (5-MeU), chloroethylclonidine (CEC) and BMY 7378. 3. In the nondiabetic SHR group, mean arterial pressure (MAP) was 146+/-6 mmHg, RBF was 28.0+/-1.4 ml x min(-1) x kg(-1) and blood glucose was 112.3+/-4.7 mg x dl(-1), and in the diabetic SHR Group, MAP was 144+/-3 mmHg, RBF 26.9+/-1.3 ml(-1) min x kg(-1) and blood glucose 316.2+/-10.5 mg x dl(-1). Nit, 5-MeU and BMY 7378 blunted all the adrenergically induced renal vasoconstrictor responses in SHR and diabetic SHR by 25-35% (all P<0.05), but in diabetic rats the responses induced by RNS and NA treated with 5-MeU were not changed. By contrast, during the administration of CEC, vasoconstrictor responses to all agonists were enhanced by 20-25% (all P<0.05) in both the SHR and diabetic SHR. 4. These findings suggest that alpha(1A) and alpha(1D)-adrenoceptor subtypes contribute in mediating the adrenergically induced constriction of the renal vasculature in both the SHR and diabetic SHR. There was also an indication of a greater contribution of presynaptic adrenoceptors, that is, alpha(1B)-, and/or alpha(2)-subtypes.
    Matched MeSH terms: Injections, Intraperitoneal; Injections, Intravenous
  17. Chong YJ, Wong CK, Shatriah I
    Middle East Afr J Ophthalmol, 2015 Jan-Mar;22(1):125-8.
    PMID: 25624689 DOI: 10.4103/0974-9233.148364
    Conjunctival necrosis is a rare complication following periocular/intraocular triamcinolone acetonide injection and has been reported extensively in adults. We describe a child who developed conjunctival necrosis following subconjunctival injection of triamcinolone acetonide for severe chronic anterior uveitis. Prompt diagnosis and management of this uncommon condition is vital.
    Matched MeSH terms: Injections, Intraocular
  18. Theron KE, Penny CB, Hosie MJ
    Reprod Biol, 2014 Sep;14(3):224-33.
    PMID: 25152521 DOI: 10.1016/j.repbio.2014.04.005
    RU486 is a partial progesterone and estrogen receptor antagonist, functioning to actively silence progesterone receptor gene-associated transcription. For this reason, it has been used as both a contraceptive and an abortive agent. In the present study, cellular and gene specific effects of RU486 were investigated in a rat model of early pregnancy, including key phases of the window of receptivity and early implantation. As these stages are hormonally regulated by progesterone and estrogens, the focus here was to elucidate the mechanism of action of a single dose of RU486, used as a postcoital contraceptive, to successfully prevent implantation of a viable blastocyst. Immunofluorescent techniques were used to examine the change in protein levels of PR in RU486-treated endometria at days 4.5, 5.5 and 6.5 of pregnancy. Changes in the Pgr gene expression level as a consequence of RU486 administration was evaluated using quantitative real-time reverse transcription polymerase chain reaction. The progesterone receptor gene and protein expression was ubiquitously decreased throughout pregnancy as a direct consequence of RU486 administration. The overall effects of postcoital RU486 administration during early pregnancy indicate highly effective inhibition of progesterone and estrogen effects on the endometrium, mediated by their receptors. More specifically, the expression and localization of the progesterone receptor mirrors that described in ovariectomized animal models, suggesting a hormonally under-stimulated endometrium. Clearly from the present study, the precise priming of the endometrium by progesterone, in preparation for blastocyst implantation, is severely impaired by RU486, thus predisposing the uterus to pregnancy failure.
    Matched MeSH terms: Injections, Subcutaneous
  19. Singh GK, Turner L, Desai R, Jimenez M, Handelsman DJ
    J Clin Endocrinol Metab, 2014 Jul;99(7):2592-8.
    PMID: 24684468 DOI: 10.1210/jc.2014-1243
    Testosterone (T) and nandrolone (N) esters require deep im injections by medical personnel but these often deposit injectate into sc fat so that more convenient sc self-administration may be feasible.
    Matched MeSH terms: Injections, Subcutaneous
  20. Al Faqeh H, Nor Hamdan BM, Chen HC, Aminuddin BS, Ruszymah BH
    Exp Gerontol, 2012 Jun;47(6):458-64.
    PMID: 22759409 DOI: 10.1016/j.exger.2012.03.018
    In recent years, the use of bone marrow mesenchymal stem cell (BMSC) implantation has provided an alternative treatment for osteoarthritis. The objective of this study is to determine whether or not an intra-articular injection of a single dose of autologous chondrogenic induced BMSC could retard the progressive destruction of cartilage in a surgically induced osteoarthritis in sheep. Sheep BMSCs were isolated and divided into two groups. One group was cultured in chondrogenic media containing (Ham's F12:DMEM, 1:1) FD+1% FBS+5 ng/ml TGFβ3+50 ng/ml IGF-1 (CM), and the other group was cultured in the basal media, FD+10% FBS (BM). The procedure for surgically induced osteoarthritis was performed on the donor sheep 6 weeks prior to intra-articular injection into the knee joint of a single dose of BMSC from either group, suspended in 5 ml FD at density of 2 million cells/ml. The control groups were injected with basal media, without cells. Six weeks after injection, gross evidence of retardation of cartilage destruction was seen in the osteoarthritic knee joints treated with CM as well as BM. No significant ICRS (International Cartilage Repair Society) scoring was detected between the two groups with cells. However macroscopically, meniscus repair was observed in the knee joint treated with CM. Severe osteoarthritis and meniscal injury was observed in the control group. Interestingly, histologically the CM group demonstrated good cartilage histoarchitecture, thickness and quality, comparable to normal knee joint cartilage. As a conclusion, intra-articular injection of a single dose of BMSC either chondrogenically induced or not, could retard the progression of osteoarthritis (OA) in a sheep model, but the induced cells indicated better results especially in meniscus regeneration.
    Study site: Universiti Kebangsaan Malaysia, Kuala Lumpur
    Matched MeSH terms: Injections, Intra-Articular
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links