Displaying publications 21 - 40 of 67 in total

Abstract:
Sort:
  1. Rohawi NS, Ramasamy K, Agatonovic-Kustrin S, Lim SM
    PMID: 29894935 DOI: 10.1016/j.jchromb.2018.06.009
    A quantitative assay using high-performance thin-layer chromatography (HPTLC) was developed to investigate bile salt hydrolase (BSH) activity in Pediococcus pentosaceus LAB6 and Lactobacillus plantarum LAB12 probiotic bacteria isolated from Malaysian fermented food. Lactic acid bacteria (LAB) were cultured in de Man Rogosa and Sharpe (MRS) broth containing 1 mmol/L of sodium-based glyco- and tauro-conjugated bile salts for 24 h. The cultures were centrifuged and the resultant cell free supernatant was subjected to chromatographic separation on a HPTLC plate. Conjugated bile salts were quantified by densitometric scans at 550 nm and results were compared to digital image analysis of chromatographic plates after derivatisation with anisaldehyde/sulfuric acid. Standard curves for bile salts determination with both methods show good linearity with high coefficient of determination (R2) between 0.97 and 0.99. Method validation indicates good sensitivity with low relative standard deviation (RSD) (<10%), low limits of detection (LOD) of 0.4 versus 0.2 μg and limit of quantification (LOQ) of 1.4 versus 0.7 μg, for densitometric vs digital image analysis method, respectively. The bile salt hydrolase activity was found to be higher against glyco- than tauro-conjugated bile salts (LAB6; 100% vs >38%: LAB12; 100% vs >75%). The present findings strongly show that quantitative analysis via digitally-enhanced HPTLC offers a rapid quantitative analysis for deconjugation of bile salts by probiotics.
    Matched MeSH terms: Lactobacillus plantarum/enzymology; Lactobacillus plantarum/metabolism
  2. Fareez IM, Lim SM, Mishra RK, Ramasamy K
    Int J Biol Macromol, 2015 Jan;72:1419-28.
    PMID: 25450046 DOI: 10.1016/j.ijbiomac.2014.10.054
    The vulnerability of probiotics at low pH and high temperature has limited their optimal use as nutraceuticals. This study addressed these issues by adopting a physicochemical driven approach of incorporating Lactobacillus plantarum LAB12 into chitosan (Ch) coated alginate-xanthan gum (Alg-XG) beads. Characterisation of Alg-XG-Ch, which elicited little effect on bead size and polydispersity, demonstrated good miscibility with improved bead surface smoothness and L. plantarum LAB12 entrapment when compared to Alg, Alg-Ch and Alg-XG. Sequential incubation of Alg-XG-Ch in simulated gastric juice and intestinal fluid yielded high survival rate of L. plantarum LAB12 (95%) at pH 1.8 which in turn facilitated sufficient release of probiotics (>7 log CFU/g) at pH 6.8 in both time- and pH-dependent manner. Whilst minimising viability loss at 75 and 90 °C, Alg-XG-Ch improved storage durability of L. plantarum LAB12 at 4 °C. The present results implied the possible use of L. plantarum LAB12 incorporated in Alg-XG-Ch as new functional food ingredient with health claims.
    Matched MeSH terms: Lactobacillus plantarum/drug effects; Lactobacillus plantarum/physiology*; Lactobacillus plantarum/ultrastructure
  3. Idoui T, Karam N
    Sains Malaysiana, 2016;45:347-353.
    The objective of this study was to investigate the effect of autochthonous Lactobacillus plantarum feeding on growth performance, carcass traits, serum composition and faecal microflora of broiler chickens. The results showed a significant positive effect (p< 0.05) of probiotic on body weight and feed conversion ratio. Coliform counts in the fecal matter of broiler chickens receiving probiotic were lower than the analogous population in control birds (p<0.05). In contrary, lactic acid bacteria (LAB) number increased (p<0.05) in fecal matter of experimental group. At the end of the study, the degree of serum cholesterol reduction resulted in a 20.31% compared to the control group (p<0.05). The experimental group had significantly lower serum triglycerides (p<0.05). It was concluded that autochthonous probiotic improved growth and feed efficiency in broilers chickens and considering the improvements in carcass traits. This probiotic possess the property of reducing cholesterol and triglycerides in the blood and possess a positive effect on the gut microflora.
    Matched MeSH terms: Lactobacillus plantarum
  4. Choe DW, Loh TC, Foo HL, Hair-Bejo M, Awis QS
    Br Poult Sci, 2012;53(1):106-15.
    PMID: 22404811 DOI: 10.1080/00071668.2012.659653
    1. Various dosages of metabolite combinations of the Lactobacillus plantarum RI11, RG14 and RG11 strains (COM456) were used to study the egg production, faecal microflora population, faecal pH, small intestine morphology, and plasma and egg yolk cholesterol in laying hens. 2. A total of 500 Lohmann Brown hens were raised from 19 weeks to 31 weeks of age. The birds were randomly divided into 5 groups and fed on various treatment diets: (i) basal diet without supplementation of metabolites (control); (ii) basal diet supplemented with 0·3% COM456 metabolites; (iii) basal diet supplemented with 0·6% COM456 metabolites; (iv) basal diet supplemented with 0·9% COM456 metabolites; and (v) basal diet supplemented with 1·2% COM456 metabolites. 3. The inclusion of 0·6% liquid metabolite combinations, produced from three L. plantarum strains, demonstrated the best effect in improving the hens' egg production, faecal lactic acid bacteria population, and small intestine villus height, and reducing faecal pH and Enterobacteriaceae population, and plasma and yolk cholesterol concentrations. 4. The metabolites from locally isolated L. plantarum are a possible alternative feed additive in poultry production.
    Matched MeSH terms: Lactobacillus plantarum/metabolism*
  5. Thanh NT, Loh TC, Foo HL, Hair-Bejo M, Azhar BK
    Br Poult Sci, 2009 May;50(3):298-306.
    PMID: 19637029 DOI: 10.1080/00071660902873947
    1. Four combinations of metabolites produced from strains of Lactobacillus plantarum were used to study the performance of broiler chickens. 2. A total of 432 male Ross broilers were raised from one-day-old to 42 d of age in deep litter pens (12 birds/pen). These birds were divided into 6 groups and fed on different diets: (i) standard maize-soybean-based diet (negative control); (ii) standard maize-soybean-based diet + Neomycin and Oxytetracycline (positive control); (iii) standard maize-soybean-based diet + 0.3% metabolite combination of Lactobacillus plantarum RS5, RI11, RG14 and RG11 strains (com3456); (iv) standard maize-soybean-based diet + 0.3% metabolite combination of L. plantarum TL1, RI11 and RG11 (Com246); (v) standard maize-soybean-based diet + 0.3% metabolite combination of L. plantarum TL1, RG14 and RG11 (Com256) and (vi) standard maize-soybean-based diet + 0.3% metabolite combination of L. plantarum TL1, RS5, RG14 and RG11 (Com2356). 3. Higher final body weight, weight gain, average daily gain and lower feed conversion ratio were found in all 4 treated groups. 4. The addition of a metabolite combination supplementation also increased faecal lactic acid bacteria population, small intestine villus height and faecal volatile fatty acids and faecal Enterobacteriaceae population.
    Matched MeSH terms: Lactobacillus plantarum/chemistry*
  6. Chuah LO, Foo HL, Loh TC, Mohammed Alitheen NB, Yeap SK, Abdul Mutalib NE, et al.
    BMC Complement Altern Med, 2019 Jun 03;19(1):114.
    PMID: 31159791 DOI: 10.1186/s12906-019-2528-2
    BACKGROUND: Lactobacillus plantarum, a major species of Lactic Acid Bacteria (LAB), are capable of producing postbiotic metabolites (PM) with prominent probiotic effects that have been documented extensively for rats, poultry and pigs. Despite the emerging evidence of anticancer properties of LAB, very limited information is available on cytotoxic and antiproliferative activity of PM produced by L. plantarum. Therefore, the cytotoxicity of PM produced by six strains of L. plantarum on various cancer and normal cells are yet to be evaluated.

    METHODS: Postbiotic metabolites (PM) produced by six strains of L. plantarum were determined for their antiproliferative and cytotoxic effects on normal human primary cells, breast, colorectal, cervical, liver and leukemia cancer cell lines via MTT assay, trypan blue exclusion method and BrdU assay. The toxicity of PM was determined for human and various animal red blood cells via haemolytic assay. The cytotoxicity mode was subsequently determined for selected UL4 PM on MCF-7 cells due to its pronounced cytotoxic effect by fluorescent microscopic observation using AO/PI dye reagents and flow cytometric analyses.

    RESULTS: UL4 PM exhibited the lowest IC50 value on MCF-7, RG14 PM on HT29 and RG11 and RI11 PM on HL60 cell lines, respectively from MTT assay. Moreover, all tested PM did not cause haemolysis of human, dog, rabbit and chicken red blood cells and demonstrated no cytotoxicity on normal breast MCF-10A cells and primary cultured cells including human peripheral blood mononuclear cells, mice splenocytes and thymocytes. Antiproliferation of MCF-7 and HT-29 cells was potently induced by UL4 and RG 14 PM respectively after 72 h of incubation at the concentration of 30% (v/v). Fluorescent microscopic observation and flow cytometric analyses showed that the pronounced cytotoxic effect of UL4 PM on MCF-7 cells was mediated through apoptosis.

    CONCLUSION: In conclusion, PM produced by the six strains of L. plantarum exhibited selective cytotoxic via antiproliferative effect and induction of apoptosis against malignant cancer cells in a strain-specific and cancer cell type-specific manner whilst sparing the normal cells. This reveals the vast potentials of PM from L. plantarum as functional supplement and as an adjunctive treatment for cancer.

    Matched MeSH terms: Lactobacillus plantarum/metabolism*
  7. Mohamad Zabidi NA, Foo HL, Loh TC, Mohamad R, Abdul Rahim R
    Molecules, 2020 Jun 03;25(11).
    PMID: 32503356 DOI: 10.3390/molecules25112607
    Lactobacillus plantarum RI 11 was reported recently to be a potential lignocellulosic biomass degrader since it has the capability of producing versatile extracellular cellulolytic and hemicellulolytic enzymes. Thus, this study was conducted to evaluate further the effects of various renewable natural polymers on the growth and production of extracellular cellulolytic and hemicellulolytic enzymes by this novel isolate. Basal medium supplemented with molasses and yeast extract produced the highest cell biomass (log 10.51 CFU/mL) and extracellular endoglucanase (11.70 µg/min/mg), exoglucanase (9.99 µg/min/mg), β-glucosidase (10.43 nmol/min/mg), and mannanase (8.03 µg/min/mg), respectively. Subsequently, a statistical optimization approach was employed for the enhancement of cell biomass, and cellulolytic and hemicellulolytic enzyme productions. Basal medium that supplemented with glucose, molasses and soybean pulp (F5 medium) or with rice straw, yeast extract and soybean pulp (F6 medium) produced the highest cell population of log 11.76 CFU/mL, respectively. However, formulated F12 medium supplemented with glucose, molasses and palm kernel cake enhanced extracellular endoglucanase (4 folds), exoglucanase (2.6 folds) and mannanase (2.6 folds) specific activities significantly, indicating that the F12 medium could induce the highest production of extracellular cellulolytic and hemicellulolytic enzymes concomitantly. In conclusion, L. plantarum RI 11 is a promising and versatile bio-transformation agent for lignocellulolytic biomass.
    Matched MeSH terms: Lactobacillus plantarum/enzymology*
  8. Maidin MS, Song AA, Jalilsood T, Sieo CC, Yusoff K, Rahim RA
    Plasmid, 2014 Jul;74:32-8.
    PMID: 24879963 DOI: 10.1016/j.plasmid.2014.05.003
    A vector that drives the expression of the reporter gusA gene in both Lactobacillus plantarum and Lactococcus lactis was constructed in this study. This vector contained a newly characterized heat shock promoter (Phsp), amplified from an Enterococcus faecium plasmid, pAR6. Functionality and characterization of this promoter was initially performed by cloning Phsp into pNZ8008, a commercial lactococcal plasmid used for screening of putative promoters which utilizes gusA as a reporter. It was observed that Phsp was induced under heat, salinity and alkaline stresses or a combination of all three stresses. The newly characterized Phsp promoter was then used to construct a novel Lactobacillus vector, pAR1801 and its ability to express the gusA under stress-induced conditions was reproducible in both Lb. plantarum Pa21 and L. lactis M4 hosts.
    Matched MeSH terms: Lactobacillus plantarum/genetics*
  9. Ong JS, Taylor TD, Yong CC, Khoo BY, Sasidharan S, Choi SB, et al.
    Probiotics Antimicrob Proteins, 2020 03;12(1):125-137.
    PMID: 30659503 DOI: 10.1007/s12602-018-9505-9
    This study aimed to elucidate the targets and mechanisms of anti-staphylococcal effects from bioactive metabolites produced by lactic acid bacteria. We aimed to better understand the safety and efficacy of these bioactive metabolites in in vivo systems, typically at topical sites. The cell-free supernatant and protein-rich fraction from Lactobacillus plantarum USM8613 inhibited staphyloxanthin biosynthesis, reduced (p plantarum USM8613. In vivo data using rats showed that the protein-rich fraction from L. plantarum USM8613 exerted wound healing properties via direct inhibition of S. aureus and promoted innate immunity, in which the expression of β-defensin was significantly (p plantarum USM8613 also significantly enhanced (p plantarum USM8613 exerted inhibitory activity via targeting the atl gene in S. aureus. Taken altogether, our present study illustrates the potential of L. plantarum USM8613 in aiding wound healing, suppressing of S. aureus infection at wound sites and promoting host innate immunity.
    Matched MeSH terms: Lactobacillus plantarum/metabolism*
  10. Loh TC, Thanh NT, Foo HL, Hair-Bejo M, Azhar BK
    Anim Sci J, 2010 Apr;81(2):205-14.
    PMID: 20438502 DOI: 10.1111/j.1740-0929.2009.00701.x
    The effects of feeding different dosages of metabolite combination of L. plantarum RS5, RI11, RG14 and RG11 strains (Com3456) on the performance of broiler chickens was studied. A total of 504 male Ross broilers were grouped into 7 treatments and offered different diets: (i) standard corn-soybean based diet (negative control); (ii) standard corn-soybean based diet +100 ppm neomycin and oxytetracycline (positive control); (iii) standard corn-soybean based diet + 0.1% metabolite combination of L. plantarum RS5, RI11, RG14 and RG11 strains (Com3456); (iv) standard corn-soybean based diet + 0.2% of Com3456; (v) standard corn-soybean based diet + 0.3% of Com3456 (vi) standard corn-soybean based diet + 0.4% of Com3456 and (vii) standard corn-soybean based diet + 0.5% of Com3456. Supplementation of Com3456 with different dosages improved growth performance, reduced Enterobacteriaceae and increased lactic acid bacteria count, and increased villi height of small intestine and fecal volatile fatty acid concentration. Treatment with 0.4% and 0.2% Com3456 had the best results, especially in terms of growth performance, feed conversion ratio and villi height among other dosages. However, the dosage of 0.2% was recommended due to its lower concentration yielding a similar effect as 0.4% supplementation. These results indicate that 0.2% is an optimum level to be included in the diets of broiler in order to replace antibiotic growth promoters.
    Matched MeSH terms: Lactobacillus plantarum*
  11. Lew LC, Hor YY, Yusoff NAA, Choi SB, Yusoff MSB, Roslan NS, et al.
    Clin Nutr, 2019 10;38(5):2053-2064.
    PMID: 30266270 DOI: 10.1016/j.clnu.2018.09.010
    BACKGROUND & AIMS: To investigate the effects of probiotic in alleviation of stress in stressed adults, along our focus to identify and justify strain specificity on selected health benefits with a precisely targeted population.

    METHODS: This 12-weeks randomized, double-blind and placebo-controlled study investigated the effects of a probiotic (Lactobacillus plantarum P8; 10 log CFU daily) on psychological, memory and cognition parameters in one hundred and three (P8 n = 52, placebo n = 51) stressed adults with mean age of 31.7 ± 11.1 years old. All subjects fulfilled the criteria of moderate stress upon diagnosis using the PSS-10 questionnaire.

    RESULTS: At the end of study, subjects on P8 showed reduced scores of stress (mean difference 2.94; 95% CI 0.08 to 5.73; P = 0.048), anxiety (mean difference 2.82; 95% CI 0.35 to 5.30; P = 0.031) and total score (mean difference 8.04; 95% CI 0.73 to 15.30; P = 0.041) as compared to placebo after 4-weeks, as assessed by the DASS-42 questionnaire. Although plasma cortisol levels were only marginally different between placebo and P8 (mean difference 3.28 ug/dl; 95% CI -7.09 to 0.52; P = 0.090), pro-inflammatory cytokines such as IFN-γ (mean difference 8.07 pg/ml; 95% CI -11.2 to -4.93; P plantarum P8 is a feasible and natural intervention for the alleviation of selected stress, anxiety, memory and cognitive symptoms in stressed adults.

    TRIAL REGISTRATION: Approved by the JEPeM-USM Review Panel on Clinical Studies (Approval number USM/JEPeM/16050195) and was registered at ClinicalTrials.gov (identifier number NCT03268447).

    Matched MeSH terms: Lactobacillus plantarum*
  12. Tan FHP, Liu G, Lau SA, Jaafar MH, Park YH, Azzam G, et al.
    Benef Microbes, 2020 Feb 19;11(1):79-89.
    PMID: 32066253 DOI: 10.3920/BM2019.0086
    Alzheimer's disease (AD) is a progressive disease and one of the most common forms of neurodegenerative disorders. Emerging evidence is supporting the use of various strategies that modulate gut microbiota to exert neurological and psychological changes. This includes the utilisation of probiotics as a natural and dietary intervention for brain health. Here, we showed the potential AD-reversal effects of Lactobacillus probiotics through feeding to our Drosophila melanogaster AD model. The administration of Lactobacillus strains was able to rescue the rough eye phenotype (REP) seen in AD-induced Drosophila, with a more prominent effect observed upon the administration of Lactobacillus plantarum DR7 (DR7). Furthermore, we analysed the gut microbiota of the AD-induced Drosophila and found elevated levels of Wolbachia. The administration of DR7 restored the gut microbiota diversity of AD-induced Drosophila with a significant reduction in Wolbachia's relative abundance, accompanied by an increase of Stenotrophomonas and Acetobacter. Through functional predictive analyses, Wolbachia was predicted to be positively correlated with neurodegenerative disorders, such as Parkinson's, Huntington's and Alzheimer's diseases, while Stenotrophomonas was negatively correlated with these neurodegenerative disorders. Altogether, our data exhibited DR7's ability to ameliorate the AD effects in our AD-induced Drosophila. Thus, we propose that Wolbachia be used as a potential biomarker for AD.
    Matched MeSH terms: Lactobacillus plantarum*
  13. Yap PG, Choi SB, Liong MT
    Appl Biochem Biotechnol, 2020 May;191(1):226-244.
    PMID: 32125649 DOI: 10.1007/s12010-020-03265-2
    This study aimed to evaluate the effect of probiotic administration on obese and ageing models. Sprague Dawley rats were subjected to high-fat diet (HFD) and injected with D-galactose to induce premature ageing. Upon 12 weeks of treatment, the faecal samples were collected and subjected to gas chromatography-mass spectrophotometry (GC-MS) analysis for metabolite detection. The sparse partial least squares discriminant analysis (sPLS-DA) showed a distinct clustering pattern of metabolite profile in the aged and obese rats administered with probiotics Lactobacillus plantarum DR7 and L. reuteri 8513d, particularly with a significantly higher concentration of allantoin. Molecular docking simulation showed that allantoin promoted the phosphorylation (activation) of adenosine monophosphate-activated kinase (AMPK) by lowering the substrate free energy of binding (FEB) and induced the formation of an additional hydrogen bond between Val184 and the substrate AMP. Allantoin also suppressed cholesterol biosynthesis by either inducing enzyme inhibition, occupying or blocking the putative binding site to result in non-spontaneous substrate binding, as in the cases of 3-hydroxy-methylglutaryl-coA reductase (HMGCR), mevalonate kinase (MVK) and lanosterol demethylase (LDM) where positive FEBs were reported. These results demonstrated the potential of allantoin to alleviate age-related hypercholesterolaemia by upregulating AMPK and downregulating cholesterol biosynthesis via the mevalonate pathway and Bloch pathway.
    Matched MeSH terms: Lactobacillus plantarum*
  14. Wang H, Tao Y, Li Y, Wu S, Li D, Liu X, et al.
    Ultrason Sonochem, 2021 May;73:105486.
    PMID: 33639530 DOI: 10.1016/j.ultsonch.2021.105486
    In this work, low-intensity ultrasonication (58.3 and 93.6 W/L) was performed at lag, logarithmic and stationary growth phases of Lactobacillus plantarum in apple juice fermentation, separately. Microbial responses to sonication, including microbial growth, profiles of organic acids profile, amino acids, phenolics, and antioxidant capacity, were examined. The results revealed that obvious responses were made by Lactobacillus plantarum to ultrasonication at lag and logarithmic phases, whereas sonication at stationary phase had a negligible impact. Sonication at lag and logarithmic phases promoted microbial growth and intensified biotransformation of malic acid to lactic acid. For example, after sonication at lag phase for 0.5 h, microbial count and lactic acid content in the ultrasound-treated samples at 58.3 W/L reached 7.91 ± 0.01 Log CFU/mL and 133.70 ± 7.39 mg/L, which were significantly higher than that in the non-sonicated samples. However, the ultrasonic effect on microbial growth and metabolism of organic acids attenuated with fermentation. Moreover, ultrasonication at lag and logarithmic phases had complex influences on the metabolism of apple phenolics such as chlorogenic acid, caffeic acid, procyanidin B2, catechin and gallic acid. Ultrasound could positively affect the hydrolysis of chlorogenic acid to caffeic acid, the transformation of procyanidin B2 and decarboxylation of gallic acid. The metabolism of organic acids and free amino acids in the sonicated samples was statistically correlated with phenolic metabolism, implying that ultrasound may benefit phenolic derivation by improving the microbial metabolism of organic acids and amino acids.
    Matched MeSH terms: Lactobacillus plantarum/growth & development*
  15. Haghshenas B, Abdullah N, Nami Y, Radiah D, Rosli R, Khosroushahi AY
    Anaerobe, 2014 Dec;30:51-9.
    PMID: 25168457 DOI: 10.1016/j.anaerobe.2014.08.009
    Lactobacillus and Lactococcus strains isolated from food products can be introduced as probiotics because of their health-promoting characteristics and non-pathogenic nature. This study aims to perform the isolation, molecular identification, and probiotic characterization of Lactobacillus and Lactococcus strains from traditional Iranian dairy products. Primary probiotic assessments indicated high tolerance to low pH and high bile salt conditions, high anti-pathogenic activities, and susceptibility to high consumption antibiotics, thus proving that both strains possess probiotic potential. Cytotoxicity assessments were used to analyze the effects of the secreted metabolite on different cancer cell lines, including HT29, AGS, MCF-7, and HeLa, as well as a normal human cell line (HUVEC). Results showed acceptable cytotoxic properties for secreted metabolites (40 μg/ml dry weight) of Lactococcus lactis subsp. Lactis 44Lac. Such performance was similar to that of Taxol against all of the treated cancer cell lines; however, the strain exhibited no toxicity on the normal cell line. Cytotoxic assessments through flow cytometry and fluorescent microscopy demonstrated that apoptosis is the main cytotoxic mechanism for secreted metabolites of L. lactis subsp. Lactis 44Lac. By contrast, the effects of protease-treated metabolites on the AGS cell line verified the protein nature of anti-cancer metabolites. However, precise characterizations and in vitro/in vivo investigations on purified proteins should be conducted before these metabolites are introduced as potential anti-cancer therapeutics.
    Matched MeSH terms: Lactobacillus plantarum/drug effects; Lactobacillus plantarum/isolation & purification; Lactobacillus plantarum/metabolism; Lactobacillus plantarum/physiology*
  16. Danial AM, Medina A, Magan N
    World J Microbiol Biotechnol, 2021 Feb 24;37(4):57.
    PMID: 33625606 DOI: 10.1007/s11274-021-03020-7
    The objective was to screen and evaluate the anti-fungal activity of lactic acid bacteria (LABs) isolated from Malaysian fermented foods against two Trichophyton species. A total of 66 LAB strains were screened using dual culture assays. This showed that four LAB strains were very effective in inhibiting growth of T. rubrum but not T. interdigitale. More detailed studies with Lactobacillus plantarum strain HT-W104-B1 showed that the supernatant was mainly responsible for inhibiting the growth of T. rubrum. The minimum inhibitory concentration (MIC), inhibitory concentration, the 50% growth inhibition (IC50) and minimum fungicide concentration (MFC) were 20 mg/mL, 14 mg/mL and 30 mg/mL, respectively. A total of six metabolites were found in the supernatant, with the two major metabolites being L-lactic acid (19.1 mg/g cell dry weight (CDW)) and acetic acid (2.2 mg/g CDW). A comparative study on keratin agar media showed that the natural mixture in the supernatants predominantly contained L-lactic and acetic acid, and this significantly controlled the growth of T. rubrum. The pure two individual compounds were less effective. Potential exists for application of the natural mixture of compounds for the treatment of skin infection by T. rubrum.
    Matched MeSH terms: Lactobacillus plantarum/isolation & purification; Lactobacillus plantarum/metabolism*
  17. Lim PS, Loke CF, Ho YW, Tan HY
    J Appl Microbiol, 2020 Nov;129(5):1374-1388.
    PMID: 32356362 DOI: 10.1111/jam.14678
    AIMS: To determine the mechanism underlying the serum cholesterol reduction effect by probiotics isolated from local fermented tapioca (Tapai).

    METHODS AND RESULTS: Lactic acid bacteria strains were isolated and examined for acid tolerance, bile salt resistance and hypocholesterolemic properties. Among the isolates, Lactobacillus plantarum TAR4 showed the highest cholesterol reduction ability (48·01%). The focus in the in vivo trial was to elucidate the cholesterol balance from findings pertaining to serum cholesterol reduction in rat model fed with high fat diet via oral administration. Rats fed with high-cholesterol diet supplemented with Lact. plantarum TAR4 showed significant reduction in serum total cholesterol (29·55%), serum triglyceride (45·31%) and liver triglyceride (23·44%) as compared to high-cholesterol diet (HCD) group. There was a significant increment in faecal triglyceride (45·83%) and faecal total bile acid (384·95%) as compared to HCD group.

    CONCLUSIONS: The findings showed that probiotic Lact. plantarum TAR4 supplementation reduced the absorption of bile acids for enterohepatic recycling and increased the catabolism of cholesterol to bile acids and not by suppressing the rate of cholesterol synthesis.

    SIGNIFICANCE AND IMPACT OF STUDY: Probiotic supplements could provide a new nonpharmacological alternative to reduce cardiovascular risk factors.

    Matched MeSH terms: Lactobacillus plantarum/isolation & purification; Lactobacillus plantarum/metabolism
  18. Nurhazirah Salehen, Nurzafirah Mazlan, Oon, Chuah Li, Siti Marwanis Anua,, Young, Thung Tze
    MyJurnal
    Probiotics has been discovered long time ago for its beneficial effect on health when consumed especially to the people who had allergy and gastrointestinal disease. This preliminary study was conducted to find out which vehicles can allow better growth of probiotic. Lactobacillus plantarum was used in this study as choice of probiotic to be cultured in the four types of milk. The pH value was recorded for determination of growths and metabolic activity of the probiotic. Results showed that L. plantarum in soy milk can grow and had a better metabolic activity in the cultured soy milk with pH 3.46 compared to others. The highest growth was recorded at optical density of 1.137 in soy milk at 560nm. This result showed that L. plantarum in soy milk multiply rapidly compared to other milks. As conclusion, soy milk has better development of probiotic as delivery vehicles compare to cow milk, goat milk and coconut milk.
    Matched MeSH terms: Lactobacillus plantarum
  19. Ida Muryany, Ahmad Rohi Ghazali, Nor Fadilah Rajab, Hing HL, Ina-Salwany, Mohd Zamri Saad, et al.
    Sains Malaysiana, 2018;47:2391-2399.
    Bacterial adhesion to host cells is the most important probiotic character. However, the adhesion of probiotic should not
    affect the viability of the host cells. In this study, Lactobacillus plantarum strain L8, Lactobacillus plantarum strain L20
    and Lactobacillus pentosus strain S1 were tested for their cytotoxic effects through MTT assay and their ability to adhere
    and colonize on HT-29 and CCD-18Co intestinal cells as detected microscopically using light microscopy and Scanning
    Electron Microscopy (SEM). No cytotoxicity effects were observed on both intestinal cells following 24 h treatment with
    all Lactobacillus strains. Additionally, all strains demonstrated strong adhesive activity where more than 100 bacteria
    adhered to both intestinal cells although differences in the adhesion scores observed among different strains. The adhesion
    as observed via SEM showed an autoagreggative pattern and adhered as clusters on the surface of both intestinal cells.
    In conclusion, all three Lactobacillus strains are non-cytotoxic to both cells with strong adhesion ability on intestinal
    cells and this study also proved that Malaysian fermented fish are good source of probiotic bacteria.
    Matched MeSH terms: Lactobacillus plantarum
  20. Arief II, Afiyah DN, Wulandari Z, Budiman C
    J Food Sci, 2016 Nov;81(11):M2761-M2769.
    PMID: 27712046 DOI: 10.1111/1750-3841.13509
    Probiotics may be used to enhance the functionality and nutritional values of fermented sausages. This study aims to evaluate the physicochemical and sensory properties of beef sausages fermented by lactic acid bacteria of Lactobacillus plantarum IIA-2C12 and L. acidophilus IIA-2B4. These strains were isolated from beef cattle and have shown to display probiotic features. While the nutrient contents were not affected by the probiotics, the pH, texture, and color varied among the sausages. Further analysis on fatty acids showed different profiles of saturated (C14:0, C17:0, and C20:0) and unsaturated (C14:1, C18:1n9c, C18:2n6c, and C22:6n3) fatty acids in sausages with probiotics. Gas chromatography-mass spectrometry further revealed some flavor development compounds including acid, alcohols, aldehydes, aromatic, ketones, sulfur, hydrocarbons and terpenes, varied among the sausages. Hedonic test showed no difference in the preference toward aroma, texture, and color for untrained panelists.
    Matched MeSH terms: Lactobacillus plantarum
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links