Displaying publications 21 - 40 of 768 in total

Abstract:
Sort:
  1. Vojvodić S, Dimitrijević M, Žižić M, Dučić T, Aquilanti G, Stanić M, et al.
    J Exp Bot, 2023 Feb 05;74(3):1107-1122.
    PMID: 36453904 DOI: 10.1093/jxb/erac472
    Metabolism of metals in microalgae and adaptation to metal excess are of significant environmental importance. We report a three-step mechanism that the green microalga Chlorella sorokiniana activates during the acquisition of and adaptation to manganese (Mn), which is both an essential trace metal and a pollutant of waters. In the early stage, Mn2+ was mainly bound to membrane phospholipids and phosphates in released mucilage. The outer cell wall was reorganized and lipids were accumulated, with a relative increase in lipid saturation. Intracellular redox settings were rapidly altered in the presence of Mn excess, with increased production of reactive oxygen species that resulted in lipid peroxidation and a decrease in the concentration of thiols. In the later stage, Mn2+ was chelated by polyphosphates and accumulated in the cells. The structure of the inner cell wall was modified and the redox milieu established a new balance. Polyphosphates serve as a transient Mn2+ storage ligand, as proposed previously. In the final stage, Mn was stored in multivalent Mn clusters that resemble the structure of the tetramanganese-calcium core of the oxygen-evolving complex. The present findings elucidate the bioinorganic chemistry and metabolism of Mn in microalgae, and may shed new light on water-splitting Mn clusters.
    Matched MeSH terms: Metals/metabolism
  2. Cao X, Yu ZX, Xie M, Pan K, Tan QG
    Environ Sci Technol, 2023 Jan 17;57(2):1060-1070.
    PMID: 36595456 DOI: 10.1021/acs.est.2c06447
    In coastal waters, particulate metals constitute a substantial fraction of the total metals; however, the prevalent water quality criteria are primarily based on dissolved metals, seemingly neglecting the contribution of particulate metals. Here we developed a method to quantify the toxicity risk of particulate metals, and proposed a way to calculate modifying factors (MFs) for setting site-specific criteria in turbid waters. Specifically, we used a side-by-side experimental design to study copper (Cu) bioaccumulation and toxicity in an estuarine clam, Potamocorbula laevis, under the exposure to "dissolved only" and "dissolved + particulate" 65Cu. A toxicokinetic-toxicodynamic model (TK-TD) was used to quantify the processes of Cu uptake, ingestion, assimilation, egestion, and elimination, and to relate mortality risk to tissue Cu. We find that particulate Cu contributes 40-67% of the Cu bioaccumulation when the suspended particulate matter (SPM) ranges from 12 to 229 mg L-1. The Cu-bearing SPM also increases the sensitivity of organisms to internalized Cu by decreasing the internal threshold concentration (CIT) from 141 to 76.8 μg g-1. MFs were derived based on the TK-TD model to consider the contribution of particulate Cu (in the studied SPM range) for increasing Cu bioaccumulation (MF = 1.3-2.2) and toxicity (MF = 2.3-3.9). Water quality criteria derived from dissolved metal exposure need to be lowered by dividing by an MF to provide adequate protection. Overall, the method we developed provides a scientifically sound framework to manage the risks of metals in turbid waters.
    Matched MeSH terms: Metals/analysis
  3. Altındaş C, Sher F, Smječanin N, Lima EC, Rashid T, Hai IU, et al.
    Environ Res, 2023 Jan 01;216(Pt 1):114479.
    PMID: 36208784 DOI: 10.1016/j.envres.2022.114479
    A feasible and cost-effective process for utilization of toluene and heavy reformate is the conversion of its streams by transalkylation reaction into highly valuable xylenes. The process is usually catalysed by zeolites and the challenges to overcome in transalkylation of heavy reformate with toluene over zeolites are their selectivity, activity, long-term stability, and coke formation. Current study aimed to investigate xylenes production by transalkylation reaction on the synthesized metal-doped zeolite catalysts and to characterize prepared catalysts by FTIR, SEM, EDS and BET analysis. Toluene/heavy reformate modelled mixture was utilized as a feed. For the first time Beta and ZSM-5 catalysts with 10% (w/w) cerium and 0.1% (w/w) palladium were synthesized by calcination and wet impregnation method. Catalytic tests were performed by continuous-flow gas/solid catalytic fixed bed reactor at atmospheric pressure, 2 h-1 and 5 h-1 and 250, 300, 350 and 400 °C. Experimental results revealed that the highest heavy reformate conversion (98.94%) and toluene conversion (9.82%) were obtained over H-ZSM-5, at 400 °C and 2 h-1 WHSV. The highest xylene selectivity (11.53) was achieved over H-ZSM-5, and the highest p-xylene percentage (62.40%), using Ce-ZSM-5 catalyst. ZSM-5 catalysts showed more resistance to coke deposition than Beta zeolites. The present study delivers novel approach and catalysts, which have immense potential for developing safer and inexpensive transalkylation process in industry.
    Matched MeSH terms: Metals
  4. Nayeem A, Ali MF, Shariffuddin JH
    Environ Res, 2023 Jan 01;216(Pt 1):114306.
    PMID: 36191616 DOI: 10.1016/j.envres.2022.114306
    Inverse vulcanized polysulfides have been used as low-cost and effective adsorbents to remediate heavy metals in wastewater. Inverse vulcanization introduces sustainable polysulfide synthesis by solving the rapid desulfurization problem of unstable polysulfides, and provides superior performance compared to conventional commercial adsorbents. The review discussed the brief applications of the inverse vulcanized polysulfides to remove heavy metal wastewater and emphasized the modified synthesis processes for enhanced uptake ratios. The characteristics of polysulfide adsorbents, which play a vital role during the removal process are highlighted with a proper discussion of the interaction between metal ions and polysulfides. The review paper concludes with remarks on the future outlook of these low-cost adsorbents with high selectivity to heavy metals. These polysulfide adsorbents can be prepared using a wide variety of crosslinker monomers including organic hydrocarbons, cooking oils, and agro-based waste materials. They have shown good surface area and excellent metal-binding capabilities compared to the commercially available adsorbents. Proper postmodification processes have enabled the benefits of repetitive uses of the polysulfide adsorbents. The improved surface area obtained by appropriate choice of crosslinkers, modified synthesis techniques, and regeneration through post-modification has made inverse vulcanized polysulfides capable of removing.
    Matched MeSH terms: Metals, Heavy*
  5. Mohamad Nor N, Ramli NH, Poobalan H, Qi Tan K, Abdul Razak K
    Crit Rev Anal Chem, 2023;53(2):253-288.
    PMID: 34565248 DOI: 10.1080/10408347.2021.1950521
    Heavy metal pollution has gained global attention due to its high toxicity and non-biodegradability, even at a low level of exposure. Therefore, the development of a disposable electrode that is sensitive, simple, portable, rapid, and cost-effective as the sensor platform in electrochemical heavy metal detection is vital. Disposable electrodes have been modified with nanomaterials so that excellent electrochemical properties can be obtained. This review highlights the recent progress in the development of numerous types of disposable electrodes modified with nanomaterials for electrochemical heavy metal detection. The disposable electrodes made from carbon-based, glass-based, and paper-based electrodes are reviewed. In particular, the analytical performance, fabrication technique, and integration design of disposable electrodes modified with metal (such as gold, tin and bismuth), carbon (such as carbon nanotube and graphene), and metal oxide (such as iron oxide and zinc oxide) nanomaterials are summarized. In addition, the role of the nanomaterials in improving the electrochemical performance of the modified disposable electrodes is discussed. Finally, the current challenges and future prospect of the disposable electrode modified with nanomaterials are summarized.
    Matched MeSH terms: Metals, Heavy*
  6. Tang LW, Alias Y, Zakaria R, Woi PM
    Crit Rev Anal Chem, 2023;53(4):869-886.
    PMID: 34672838 DOI: 10.1080/10408347.2021.1989657
    A detailed overview toward the advancement of amino acid-based electrochemical sensors on the detection of heavy metals is presented. Discussion is focused on the unique properties of various amino acids (AAs) and its composites which allow them being employed in a diverse range of sensing platforms. Formation of metal-ligand complexes in between metal ions and different AAs has been discussed. The essential insights on the interaction between amino acid-based sensors and target heavy metal ions (HMIs) are provided, along with the discussion on their pros and cons. Voltammetry analysis of metal ions based on various interfaces of electrochemical sensors has been highlighted, together with the incorporation of AAs with organic, inorganic and bio-materials. In all these cases, the amino acid modified electrodes have demonstrated large active surface area with abundant adsorption sites for HMIs. The developed sensors are promising for environmental applications, as evidenced by the high selectivity, high sensitivity, high catalytic activity, and low detection limits. The materials involved, fabrication techniques and its sensing mechanism were comprehensively discussed, and the future outlooks of electrochemical sensing platforms are emphasized in this review.
    Matched MeSH terms: Metals, Heavy*
  7. Lai JW, Maah MJ, Tan KW, Sarip R, Lim YAL, Ganguly R, et al.
    Malar J, 2022 Dec 17;21(1):386.
    PMID: 36528584 DOI: 10.1186/s12936-022-04406-0
    BACKGROUND: Malaria remains one of the most virulent and deadliest parasitic disease in the world, particularly in Africa and Southeast Asia. Widespread occurrence of artemisinin-resistant Plasmodium falciparum strains from the Greater Mekong Subregion is alarming. This hinders the national economies, as well as being a major drawback in the effective control and elimination of malaria worldwide. Clearly, an effective anti-malarial drug is urgently needed.

    METHODS: The dinuclear and mononuclear copper(II) and zinc(II) complexes were synthesized in ethanolic solution and characterized by various physical measurements (FTIR, CHN elemental analysis, solubility, ESI-MS, UV-Visible, conductivity and magnetic moment, and NMR). X-ray crystal structure of the dicopper(II) complex was determined. The in vitro haemolytic activities of these metal complexes were evaluated spectroscopically on B+ blood while the anti-malarial potency was performed in vitro on blood stage drug-sensitive Plasmodium falciparum 3D7 (Pf3D7) and artemisinin-resistant Plasmodium falciparum IPC5202 (Pf5202) with fluorescence dye. Mode of action of metal complexes were conducted to determine the formation of reactive oxygen species using PNDA and DCFH-DA dyes, JC-1 depolarization of mitochondrial membrane potential, malarial 20S proteasome inhibition with parasite lysate, and morphological studies using Giemsa and Hoechst stains.

    RESULTS: Copper(II) complexes showed anti-malarial potency against both Pf3D7 and Pf5202 in sub-micromolar to micromolar range. The zinc(II) complexes were effective against Pf3D7 with excellent therapeutic index but encountered total resistance against Pf5202. Among the four, the dinuclear copper(II) complex was the most potent against both strains. The zinc(II) complexes caused no haemolysis of RBC while copper(II) complexes induced increased haemolysis with increasing concentration. Further mechanistic studies of both copper(II) complexes on both Pf3D7 and Pf5202 strains showed induction of ROS, 20S malarial proteasome inhibition, loss of mitochondrial membrane potential and morphological features indicative of apoptosis.

    CONCLUSION: The dinuclear [Cu(phen)-4,4'-bipy-Cu(phen)](NO3)4 is highly potent and can overcome the total drug-resistance of Pf5202 towards chloroquine and artemisinin. The other three copper(II) and zinc(II) complexes were only effective towards the drug-sensitive Pf3D7, with the latter causing no haemolysis of RBC. Their mode of action involves multiple targets.

    Matched MeSH terms: Metals
  8. Gorjian H, Khaligh NG
    Mol Divers, 2022 Dec;26(6):3047-3055.
    PMID: 34982359 DOI: 10.1007/s11030-021-10364-7
    A practical and facile synthesis of various coumarin derivatives was conducted using a liquid phase of 4,4'-trimethylenedipiperidine as a safe and greener dual-task reagent under catalyst-free and solvent-free conditions. This reagent is a commercially available solid and can be handled easily, having a liquid phase over a vast temperature range, high thermal stability, low toxicity, and good solubility in green solvents such as water and ethanol. It is worth mentioning that 4,4'-trimethylenedipiperidine could be completely recovered and regenerated after a simple process. The current method has other merits, including (a) minimizing the use of high-risk and toxic reagents and solvents; (b) the use of a secure and recoverable medium-organocatalyst instead of metal-based catalysts, (c) avoid tedious processes, harsh conditions, and a multi-step process for the preparation of catalysts, (d) transform phenol and salicyladehyde derivatives into the corresponding coumarin derivatives in good to high yields, (e) minimize hazardous waste generation. TMDP could be easily recovered and reused several times with no change in its activity. Furthermore, the current work demonstrated that the liquid phase of 4,4'-trimethylenedipiperidine can be a promising medium in organic reaction at higher temperatures due to its broad liquid range temperature, thermal stability, acceptor/donor hydrogen bond property, and other unique merits. New methodology for the synthesis of coumarines using liquid phase of TMDP under mild conditions.
    Matched MeSH terms: Metals*
  9. Abdul Rahim KA, Jewaratnam J, Che Hassan CR
    Int J Environ Res Public Health, 2022 Nov 27;19(23).
    PMID: 36497858 DOI: 10.3390/ijerph192315783
    The use of various machines, equipment and power tools at TVET Institute causes the institute's environment to be exposed to noise hazards that are similar to the industry. However, not much data has been published regarding noise exposure at TVET institutes. This study was carried out to document the noise exposure of work activities training in public TVET institutes in Malaysia that implement skill training programs in metal fabrication, furniture manufacturing and automotive maintenance. The identification of excessive noise, task-based noise exposure monitoring and source measurement was conducted. The noise contribution from each work activity to the daily A-weighted noise exposure level and sound pressure level emitted by machines and equipment was documented. The findings of this study recorded 20 activities with task-based noise contribution to the daily A-weighted noise exposure level between 75.3 dB and 95 dB. Based on the findings, the training environment at the TVET institutes has a risk of operating with excessive noise. The documented data can be used in planning the implementation of suitable noise control measures in TVET institutes.
    Matched MeSH terms: Metals
  10. Hitam CNC, Jalil AA
    Environ Res, 2022 03;204(Pt A):111964.
    PMID: 34461122 DOI: 10.1016/j.envres.2021.111964
    As one of the potential bionanomaterials, nanocellulose has appeared as a favorable candidate for photoremediation of the environment because of its abundance in nature, inexpensive, eco-friendly, decomposable, high surface area, and outstanding mechanical properties. The current review carefully summarized the diverse type of nanocellulose, their preparation approaches, and several previous works on the use of nanocellulose for photoremediation. These include the role of nanocellulose for the increased surface active site of the hybrid photocatalysts by providing a large surface area for enhanced adsorption of photons and pollutant molecules, as a dispersing agent to increase distribution of metal/non-metal dopants photocatalysts, as well as for controlled size and morphology of the dopants photocatalysts. Furthermore, the recommendations for upcoming research provided in this review are anticipated to ignite an idea for the development of other nanocellulose-based photocatalysts. Other than delivering beneficial information on the present growth of the nanocellulose biomaterials photocatalysts, this review is expected will attract more interest to the utilization of nanocellulose photocatalyst and distribute additional knowledge in this exciting area of environmental photoremediation. This could be attained by considering that a review on nanocellulose biomaterials for environmental health photoremediation has not been described elsewhere, notwithstanding intensive research works have been dedicated to this topic.
    Matched MeSH terms: Metals
  11. Chin JF, Heng ZW, Teoh HC, Chong WC, Pang YL
    Chemosphere, 2022 Mar;291(Pt 3):133035.
    PMID: 34848231 DOI: 10.1016/j.chemosphere.2021.133035
    Heavy metal contamination in water bodies is currently in an area of greater concern due to the adverse effects on human health. Despite the good adsorption performance of biochar, various modifications have been performed on the pristine biochar to further enhance its adsorption capability, at the same time overcome the difficulty of particles separation and mitigate the secondary pollution issues. In this review, the feasibility of chitosan-modified magnetic biochar for heavy metal removal from aqueous solution is evaluated by critically analysing existing research. The effective strategies that applied to introduce chitosan and magnetic substances into the biochar matrix are systematically reviewed. The physicochemical changes of the modified-biochar composite are expounded in terms of surface morphology, pore properties, specific surface area, surface functional groups and electromagnetism. The detailed information regarding the adsorption performances of various modified biochar towards different heavy metals and their respective underlying mechanisms are studied in-depth. The current review also analyses the kinetic and isotherm models that dominated the adsorption process and summarizes the common models that fitted well to most of the experimental adsorption data. Moreover, the operating parameters that affect the adsorption process which include solution pH, temperature, initial metal concentration, adsorbent dosage, contact time and the effect of interfering ions are explored. This review also outlines the stability of modified biochar and their regeneration rate after cycles of heavy metal removal process. Lastly, constructive suggestions on the future trends and directions are provided for better research and development of chitosan-modified magnetic biochar.
    Matched MeSH terms: Metals, Heavy*
  12. Ratnasari A, Syafiuddin A, Zaidi NS, Hong Kueh AB, Hadibarata T, Prastyo DD, et al.
    Environ Pollut, 2022 Jan 01;292(Pt B):118474.
    PMID: 34763013 DOI: 10.1016/j.envpol.2021.118474
    The emergence and continual accumulation of industrial micropollutants such as dyes, heavy metals, organic matters, and pharmaceutical active compounds (PhACs) in the ecosystem pose an alarming hazard to human health and the general wellbeing of global flora and fauna. To offer eco-friendly solutions, living and non-living algae have lately been identified and broadly practiced as promising agents in the bioremediation of micropollutants. The approach is promoted by recent findings seeing better removal performance, higher efficiency, surface area, and binding affinity of algae in various remediation events compared to bacteria and fungi. To give a proper and significant insight into this technology, this paper comprehensively reviews its current applications, removal mechanisms, comparative efficacies, as well as future outlooks and recommendations. In conducting the review, the secondary data of micropollutants removal have been gathered from numerous sources, from which their removal performances are analyzed and presented in terms of strengths, weaknesses, opportunities, and threats (SWOT), to specifically examine their suitability for selected micropollutants remediation. Based on kinetic, isotherm, thermodynamic, and SWOT analysis, non-living algae are generally more suitable for dyes and heavy metals removal, meanwhile living algae are appropriate for removal of organic matters and PhACs. Moreover, parametric effects on micropollutants removal are evaluated, highlighting that pH is critical for biodegradation activity. For selective pollutants, living and non-living algae show recommendable prospects as agents for the efficient cleaning of industrial wastewaters while awaiting further supporting discoveries in encouraging technology assurance and extensive applications.
    Matched MeSH terms: Metals, Heavy*
  13. Bibi M, Khan MK, Shujaat S, Godil DI, Sharif A, Anser MK
    Environ Sci Pollut Res Int, 2022 Jan;29(5):7424-7437.
    PMID: 34476685 DOI: 10.1007/s11356-021-16262-7
    To boost the stability of economic and financial aspects along with the apprehensions for sustainability, it is important to promote the development of clean energy stocks around the globe. In the current research, the researchers have examined the impact of oil prices, coal prices, natural gas prices, and gold prices on clean energy stock using the autoregressive distribution lag (ARDL) approach from the year 2011 to the year 2020. The result of daily data analysis specifies that in the long as well as in the short run, gold prices, oil prices, and coal prices have a positive and significant effect on clean energy stock. On the other side, natural gas prices in the long as well as in the short run have a negative and significant effect on clean energy stock. So, the empirical analysis of our study is of interest to investors at an institutional level who aim at detecting the risk associated with the clean energy market through proper financial modeling. Besides, this study opens up a new domain to sustain financial as well as economic prospects by protecting the environment through clean energy stock as the investment in clean energy stocks results in producing a substantial effect on the economy and the environment as well.
    Matched MeSH terms: Metals
  14. Low SS, Yew M, Lim CN, Chai WS, Low LE, Manickam S, et al.
    Ultrason Sonochem, 2022 Jan;82:105887.
    PMID: 34954629 DOI: 10.1016/j.ultsonch.2021.105887
    Ultrasound (US) demonstrates remarkable potential in synthesising nanomaterials, particularly nanobiomaterials targeted towards biomedical applications. This review briefly introduces existing top-down and bottom-up approaches for nanomaterials synthesis and their corresponding synthesis mechanisms, followed by the expounding of US-driven nanomaterials synthesis. Subsequently, the pros and cons of sono-nanotechnology and its advances in the synthesis of nanobiomaterials are drawn based on recent works. US-synthesised nanobiomaterials have improved properties and performance over conventional synthesis methods and most essentially eliminate the need for harsh and expensive chemicals. The sonoproduction of different classes and types of nanobiomaterials such as metal and superparamagnetic nanoparticles (NPs), lipid- and carbohydrate-based NPs, protein microspheres, microgels and other nanocomposites are broadly categorised based on the physical and/or chemical effects induced by US. This review ends on a good note and recognises US-driven synthesis as a pragmatic solution to satisfy the growing demand for nanobiomaterials, nonetheless some technical challenges are highlighted.
    Matched MeSH terms: Metals
  15. Adam T, Dhahi TS, Gopinath SCB, Hashim U
    Crit Rev Anal Chem, 2022;52(8):1913-1929.
    PMID: 34254863 DOI: 10.1080/10408347.2021.1925523
    Nanowires have been utilized widely in the generation of high-performance nanosensors. Laser ablation, chemical vapor, thermal evaporation and alternating current electrodeposition are in use in developing nanowires. Nanowires are in a great attention because of their submicron feature and their potentials in the front of nanoelectronics, accelerated field effect transistors, chemical- and bio-sensors, and low power consuming light-emitting devices. With the control of nanowire size and concentration of dopant, the electrical sensitivity and other properties of nanowires can be tuned for the reproducibility. Nanowires comprise of arrays of electrodes that form a nanometer electrical circuit. One of advantages of nanowires is that they can be fabricated in nanometer-size for various applications in different approaches. Several studies have been conducted on nanowires and researchers discovered that nanowires have the potential in the applications with material properties at the nanometer scale. The unique electrical properties of nanowires have made them to be promising for numerous applications. Nowadays, for example, MOS field-effect transistors are largely used as fundamental building elements in electronic circuits. Also, the dimension of MOS transistors is gradually decreasing to the nanoscale based on the prediction made by Moor's law. However, their fabrication is challenging. This review summarized different techniques in the fabrication of nanowires, global nanowire prospect, testing of nanowires to understand the real electrical behavior using higher resolution microscopes, and brief applications in the detection of biomolecules, disease such as corona viral pandemic, heavy metal in water, and applications of nanowires in agriculture.
    Matched MeSH terms: Metals, Heavy*
  16. Kian LK, Jawaid M, Nasef MM, Fouad H, Karim Z
    Int J Biol Macromol, 2021 Dec 01;192:654-664.
    PMID: 34655581 DOI: 10.1016/j.ijbiomac.2021.10.042
    In this study, poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) dual-layer membranes filled with 0-3 wt% cellulose nanowhisker (CNWs) were fabricated with aim to remove metal ions from wastewater. An integrated method was employed in the membrane fabrication process by combining water vapor-induced and crystallization-induced phase inversions. The membrane thickness was measured in between 11 and 13 μm, which did not pose significant flux deviation during filtration process. The 3% CNW filled membrane showed prominent and well-laminated two layers structure. Meanwhile, the increase in CNWs from 0 to 3% loadings could improve the membrane porosity (43-74%) but reducing pore size (2.45-0.54 μm). The heat resistance of neat membrane enhanced by 1% CNW but decreased with loadings of 2-3% CNWs due to flaming behavior of sulphated nanocellulose. Membrane with 3% CNW displayed the tensile strength (23.5 MPa), elongation at break (7.1%), and Young's modulus (0.75 GPa) as compared to other samples. For wastewater filtration performance, the continuous operation test showed that 3% CNW filled membrane exhibited the highest removal efficiency for both cobalt and nickel metal ions reaching to 83% and 84%, respectively. We concluded that CNWs filled dual-layer membranes have potential for future development in the removal of heavy metal ions from wastewater streams.
    Matched MeSH terms: Metals, Heavy/chemistry*
  17. Nisa FY, Rahman MA, Hossen MA, Khan MF, Khan MAN, Majid M, et al.
    Ann Med, 2021 Dec;53(1):1476-1501.
    PMID: 34433343 DOI: 10.1080/07853890.2021.1966088
    Alzheimer's disease (AD) is the most conspicuous chronic neurodegenerative syndrome, which has become a significant challenge for the global healthcare system. Multiple studies have corroborated a clear association of neurotoxicants with AD pathogenicity, such as Amyloid beta (Aβ) proteins and neurofibrillary tangles (NFTs), signalling pathway modifications, cellular stress, cognitive dysfunctions, neuronal apoptosis, neuroinflammation, epigenetic modification, and so on. This review, therefore, aimed to address several essential mechanisms and signalling cascades, including Wnt (wingless and int.) signalling pathway, autophagy, mammalian target of rapamycin (mTOR), protein kinase C (PKC) signalling cascades, cellular redox status, energy metabolism, glutamatergic neurotransmissions, immune cell stimulations (e.g. microglia, astrocytes) as well as an amyloid precursor protein (APP), presenilin-1 (PSEN1), presenilin-2 (PSEN2) and other AD-related gene expressions that have been pretentious and modulated by the various neurotoxicants. This review concluded that neurotoxicants play a momentous role in developing AD through modulating various signalling cascades. Nevertheless, comprehension of this risk agent-induced neurotoxicity is far too little. More in-depth epidemiological and systematic investigations are needed to understand the potential mechanisms better to address these neurotoxicants and improve approaches to their risk exposure that aid in AD pathogenesis.Key messagesInevitable cascade mechanisms of how Alzheimer's Disease-related (AD-related) gene expressions are modulated by neurotoxicants have been discussed.Involvement of the neurotoxicants-induced pathways caused an extended risk of AD is explicited.Integration of cell culture, animals and population-based analysis on the clinical severity of AD is addressed.
    Matched MeSH terms: Metals/toxicity*
  18. Lin JY, Lee J, Oh WD, Kwon E, Tsai YC, Lisak G, et al.
    J Colloid Interface Sci, 2021 Nov 15;602:95-104.
    PMID: 34118608 DOI: 10.1016/j.jcis.2021.05.098
    Metal Organic Frameworks (MOFs) represent a promising class of metallic catalysts for reduction of nitrogen-containing contaminants (NCCs), such as 4-nitrophenol (4-NP). Nevertheless, most researches involving MOFs for 4-NP reduction employ noble metals in the form of fine powders, making these powdered noble metal-based MOFs impractical and inconvenient for realistic applications. Thus, it would be critical to develop non-noble-metal MOFs which can be incorporated into macroscale and porous supports for convenient applications. Herein, the present study proposes to develop a composite material which combines advantageous features of macroscale/porous supports, and nanoscale functionality of MOFs. In particular, copper foam (CF) is selected as a macroscale porous medium, which is covered by nanoflower-structured CoO to increase surfaces for growing a cobaltic MOF, ZIF-67. The resultant composite comprises of CF covered by CoO nanoflowers decorated with ZIF-67 to form a hierarchical 3D-structured catalyst, enabling this ZIF-67@Cu foam (ZIF@CF) a promising catalyst for reducing 4-NP, and other NCCs. Thus, ZIF@CF can readily reduce 4-NP to 4-AP with a significantly lower Ea of 20 kJ/mol than reported values. ZIF@CF could be reused over 10 cycles and remain highly effective for 4-NP reduction. ZIF@CF also efficiently reduces other NCCs, such as 2-nitrophenol, 3-nitrophenol, methylene blue, and methyl orange. ZIF@CF can be adopted as catalytic filters to enable filtration-type reduction of NCCs by passing NCC solutions through ZIF@CF to promptly and conveniently reduce NCCs. The versatile and advantageous catalytic activity of ZIF@CF validates that ZIF@CF is a promising and practical heterogeneous catalyst for reductive treatments of NCCs.
    Matched MeSH terms: Metals
  19. Hermawan AA, Teh KL, Talei A, Chua LHC
    J Environ Manage, 2021 Nov 01;297:113298.
    PMID: 34280854 DOI: 10.1016/j.jenvman.2021.113298
    The discharge of high levels of heavy metals into the environment is of concern due to its toxicity to aquatic life and potential human health impacts. Biofiltration systems have been used in urban environments to address nutrient contamination, but there is also evidence that such systems can be effective in reducing heavy metals concentration in stormwater. However, the accumulation pattern of heavy metals and lifespan of such systems, which are important in engineering design, have not been thoroughly explored. This study investigated the accumulation patterns of lead (Pb), copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe), which are common in urban runoff, in non-vegetated filtration columns using three different types of filter media, namely sand (S), and mixtures of sand with fly ash (sand-fly ash mix, SF), and with zeolite (sand-zeolite mix, SZ). The columns were assessed in terms of infiltration rate, the mass of heavy metals accumulation at different depths, and formation of crust layer (schmutzdecke) at the surface. The results show that most of the heavy metals accumulated at the top 5-10 cm of the filter media. However, Zn was found adsorbed to a depth of 15 cm in S and SZ columns, while Mn and Fe were present in column S throughout the entire 30 cm depth of the filter media. The presence especially of Zn, Mn, and Fe in the deeper portions of the filter media before the top 5 cm layer reached its maximum adsorption capacity, hints that transport to the deeper layers is not necessarily dependent on saturation of the upper layers for these heavy metals. SF accumulated heavy metals most at the top 5 cm of the filter media layer, and retained twice the mass of heavy metals in the crust layer, compared to S and SZ columns. SF also yielded the lowest value of infiltration rate of 31 mm/h. Considering both metals accumulation and clogging potential of the filter media, the periodic maintenance of these systems is suggested to be approximately between 1.5 and 3 years.
    Matched MeSH terms: Metals, Heavy*
  20. Rakib MRJ, Jolly YN, Dioses-Salinas DC, Pizarro-Ortega CI, De-la-Torre GE, Khandaker MU, et al.
    Sci Rep, 2021 10 25;11(1):20999.
    PMID: 34697391 DOI: 10.1038/s41598-021-99750-7
    Although coastal water marine algae have been popularly used by others as indicators of heavy metal pollution, data within the Bay of Bengal for the estuarine Cox's Bazar region and Saint Martin's Island has remained scarce. Using marine algae, the study herein forms an effort in biomonitoring of metal contamination in the aforementioned Bangladesh areas. A total of 10 seaweed species were collected, including edible varieties, analyzed for metal levels through the use of the technique of EDXRF. From greatest to least, measured mean metal concentrations in descending order have been found to be K > Fe > Zr > Br > Sr > Zn > Mn > Rb > Cu > As > Pb > Cr > Co. Potential toxic heavy metals such as Pb, As, and Cr appear at lower concentration values compared to that found for essential mineral elements. However, the presence of Pb in Sargassum oligocystum species has been observed to exceed the maximum international guidance level. Given that some of the algae species are cultivated for human consumption, the non-carcinogenic and carcinogenic indices were calculated, shown to be slightly lower than the maxima recommended by the international organizations. Overall, the present results are consistent with literature data suggesting that heavy metal macroalgae biomonitoring may be species-specific. To the best of our knowledge, this study represents the first comprehensive macroalgae biomonitoring study of metal contamination from the coastal waters of Cox's Bazar and beyond.
    Matched MeSH terms: Metals, Heavy/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links