Displaying publications 21 - 35 of 35 in total

Abstract:
Sort:
  1. Ansar S, Iqbal M, AlJameil N
    Hum Exp Toxicol, 2014 Dec;33(12):1209-16.
    PMID: 24596035 DOI: 10.1177/0960327114524237
    Ferric nitrilotriacetate (Fe-NTA) induces tissue necrosis as a result of lipid peroxidation (LPO) and oxidative damage that leads to high incidence of renal carcinomas. The present study was undertaken to evaluate the effect of diallyl sulphide (DAS) against Fe-NTA-induced nephrotoxicity. A total of 30 healthy male rats were randomly divided into 5 groups of 6 rats each: (1) control, (2) DAS (200 mg kg(-1)), (3) Fe-NTA (9 g Fe kg(-1)), (4) DAS (100 mg kg(-1)) + Fe-NTA (9 mg Fe kg(-1)) and (5) DAS (200 mg kg(-1)) + Fe-NTA (9 mg Fe kg(-1)). Fe-NTA + DAS-treated groups were given DAS for a period of 1 week before Fe-NTA administration. The intraperitoneal administration of Fe-NTA enhanced blood urea nitrogen and creatinine levels with reduction in levels of antioxidant enzymes. However, significant restoration of depleted renal glutathione and its dependent enzymes (glutathione reductase and glutathione-S-transferase) was observed in DAS pretreated groups. DAS also attenuated Fe-NTA-induced increase in LPO, hydrogen peroxide generation and protein carbonyl formation (p < 0.05). The results indicate that DAS may be beneficial in ameliorating the Fe-NTA-induced renal oxidative damage in rats.
    Matched MeSH terms: Microsomes/drug effects; Microsomes/metabolism
  2. Takhi M, Sreenivas K, Reddy CK, Munikumar M, Praveena K, Sudheer P, et al.
    Eur J Med Chem, 2014 Sep 12;84:382-94.
    PMID: 25036796 DOI: 10.1016/j.ejmech.2014.07.036
    A novel and potent series of ene-amides featuring azetidines has been developed as FabI inhibitors active against drug resistant Gram-positive pathogens particularly staphylococcal organisms. Most of the compounds from the series possessed excellent biochemical inhibition of Staphylococcus aureus FabI enzyme and whole cell activity against clinically relevant MRSA, MSSA and MRSE organisms which are responsible for significant morbidity and mortality in community as well as hospital settings. The binding mode of one of the leads, AEA16, in Escherichia coli FabI enzyme was determined unambiguously using X-ray crystallography. The lead compounds displayed good metabolic stability in mice liver microsomes and pharmacokinetic profile in mice. The in vivo efficacy of lead AEA16 has been demonstrated in a lethal murine systemic infection model.
    Matched MeSH terms: Microsomes, Liver/metabolism
  3. Zulkhairi A, Zaiton Z, Jamaluddin M, Sharida F, Mohd TH, Hasnah B, et al.
    Biomed Pharmacother, 2008 Dec;62(10):716-22.
    PMID: 18538528 DOI: 10.1016/j.biopha.2006.12.003
    There is accumulating data demonstrated hypercholesterolemia and oxidative stress play an important role in the development of atherosclerosis. In the present study, a protective activity of alpha-lipoic acid; a metabolic antioxidant in hypercholesterolemic-induced animals was investigated. Eighteen adult male New Zealand White (NZW) rabbit were segregated into three groups labelled as group K, AT and ALA (n=6). While group K was fed with normal chow and acted as a control, the rest fed with 100 g/head/day with 1% high cholesterol diet to induce hypercholesterolemia. 4.2 mg/body weight of alpha lipoic acid was supplemented daily to the ALA group. Drinking water was given ad-libitum. The study was designed for 10 weeks. Blood sampling was taken from the ear lobe vein at the beginning of the study, week 5 and week 10 and plasma was prepared for lipid profile estimation and microsomal lipid peroxidation index indicated with malondialdehyde (MDA) formation. Animals were sacrificed at the end of the study and the aortas were excised for intimal lesion analysis. The results showed a significant reduction of lipid peroxidation index indicated with low MDA level (p<0.05) in ALA group compared to that of the AT group. The blood total cholesterol (TCHOL) and low density lipoprotein (LDL) levels were found to be significantly low in ALA group compared to that of the AT group (p<0.05). Histomorphometric intimal lesion analysis of the aorta showing less of atheromatous plaque formation in alpha lipoic acid supplemented group (p<0.05) compared to that of AT group. These findings suggested that apart from its antioxidant activity, alpha lipoic acid may also posses a lipid lowering effect indicated with low plasma TCHOL and LDL levels and reduced the athero-lesion formation in rabbits fed a high cholesterol diet.
    Matched MeSH terms: Microsomes/metabolism
  4. Somchit N, Wong CW, Zuraini A, Ahmad Bustamam A, Hasiah AH, Khairi HM, et al.
    Drug Chem Toxicol, 2006;29(3):237-53.
    PMID: 16777703
    Itraconazole and fluconazole are potent wide spectrum antifungal drugs. Both of these drugs induce hepatotoxicity clinically. The mechanism underlying the hepatotoxicity is unknown. The purpose of this study was to investigate the role of phenobarbital (PB), an inducer of cytochrome P450 (CYP), and SKF 525A, an inhibitor of CYP, in the mechanism of hepatotoxicity induced by these two drugs in vivo. Rats were pretreated with PB (75 mg/kg for 4 days) prior to itraconazole or fluconazole dosing (20 and 200 mg/kg for 4 days). In the inhibition study, for 4 consecutive days, rats were pretreated with SKF 525A (50 mg/kg) or saline followed by itraconazole or fluconazole (20 and 200 mg/kg) Dose-dependent increases in plasma alanine aminotransferase (ALT), gamma-glutamyl transferase (gamma-GT), and alkaline phosphatase (ALP) activities and in liver weight were detected in rats receiving itraconazole treatment. Interestingly, pretreatment with PB prior to itraconazole reduced the ALT and gamma-GT activities and the liver weight of rats. No changes were observed in rats treated with fluconazole. Pretreatment with SKF 525A induced more severe hepatotoxicity for both itraconazole and fluconazole. CYP 3A activity was inhibited dose-dependently by itraconazole treatment. Itraconazole had no effects on the activity of CYP 1A and 2E. Fluconazole potently inhibited all three isoenzymes of CYP. PB plays a role in hepatoprotection to itraconazole-induced but not fluconazole-induced hepatotoxicity. SKF 525A enhanced the hepatotoxicity of both antifungal drugs in vivo. Therefore, it can be concluded that inhibition of CYP may play a key role in the mechanism of hepatotoxicity induced by itraconazole and fluconazole.
    Matched MeSH terms: Microsomes, Liver/enzymology
  5. Pan Y, Mak JW, Ong CE
    Biomed Chromatogr, 2013 Jul;27(7):859-65.
    PMID: 23386533 DOI: 10.1002/bmc.2872
    In this study, a simple and reliable reverse-phase high-performance liquid chromatography (RP-HPLC) method was established and validated to analyze S-mephenytoin 4-hydroxylase activity of a recombinant CYP2C19 system. This system was obtained by co-expressing CYP2C19 and NADPH-CYP oxidoreductase (OxR) proteins in Escherichia coli (E. coli) cells. In addition to RP-HPLC, the expressed proteins were evaluated by immunoblotting and reduced CO difference spectral scanning. The RP-HPLC assay showed good linearity (r(2) = 1.00) with 4-hydroxymephenytoin concentration from 0.100 to 50.0 μm and the limit of detection was 5.00 × 10(-2) μm. Intraday and interday precisions determined were from 1.90 to 8.19% and from 2.20 to 14.9%, respectively. Recovery and accuracy of the assay were from 83.5 to 85.8% and from 95.0 to 105%. Enzyme kinetic parameters (Km , Vmax and Ki ) were comparable to reported values. The presence of CYP2C19 in bacterial membranes was confirmed by immunoblotting and the characteristic absorbance peak at 450 nm was determined in the reduced CO difference spectral assay. Moreover, the activity level of co-expressed OxR was found to be comparable to that of the literature. As a conclusion, the procedures described here have generated catalytically active CYP2C19 and the RP-HPLC assay developed is able to serve as CYP2C19 activity marker for pharmacokinetic drug interaction study in vitro.
    Matched MeSH terms: Microsomes, Liver/metabolism
  6. Leong SW, Mohd Faudzi SM, Abas F, Mohd Aluwi MF, Rullah K, Lam KW, et al.
    Bioorg Med Chem Lett, 2015 Aug 15;25(16):3330-7.
    PMID: 26071636 DOI: 10.1016/j.bmcl.2015.05.056
    A series of twenty-four 2-benzoyl-6-benzylidenecyclohexanone analogs were synthesized and evaluated for their nitric oxide inhibition and antioxidant activity. Six compounds (3, 8, 10, 17, 18 and 19) were found to exhibit significant NO inhibitory activity in LPS/IFN-induced RAW 264.7 macrophages, of which compound 10 demonstrated the highest activity with the IC50 value of 4.2 ± 0.2 μM. Furthermore, two compounds (10 and 17) displayed antioxidant activity upon both the DPPH scavenging and FRAP analyses. However, none of the 2-benzoyl-6-benzylidenecyclohexanone analogs significantly scavenged NO radical. Structure-activity comparison suggested that 3,4-dihydroxylphenyl ring is crucial for bioactivities of the 2-benzoyl-6-benzylidenecyclohexanone analogs. The results from this study and the reports from previous studies indicated that compound 10 could be a candidate for further investigation on its potential as a new anti-inflammatory agent.
    Matched MeSH terms: Microsomes, Liver/drug effects
  7. Wahab NFAC, Kannan TP, Mahmood Z, Rahman IA, Ismail H
    Toxicol In Vitro, 2018 Mar;47:207-212.
    PMID: 29247761 DOI: 10.1016/j.tiv.2017.12.002
    Biphasic Calcium Phosphate (BCP) with a ratio of 20/80 Hydroxyapatite (HA)/Beta-tricalcium phosphate (β-TCP) promotes the differentiation of human dental pulp cells (HDPCs). In the current study, the genotoxicity of locally produced BCP of modified porosity (65%) with a mean pore size of 300micrometer (μm) was assessed using Comet and Ames assays. HDPCs were treated with BCP extract at three different inhibitory concentrations which were obtained based on cytotoxicity test conducted with concurrent negative and positive controls. The tail moment of HDPCs treated with BCP extract at all three concentrations showed no significant difference compared to negative control (p>0.05), indicating that BCP did not induce DNA damage to HDPCs. The BCP was evaluated using five tester strains of Salmonella typhimurium TA98, TA100, TA102, TA1537 and TA1538. Each strain was incubated with BCP extract with five different concentrations in the presence and absence of metabolic activation system (S9) mix. Concurrently, negative and positive controls were included. The average number of revertant colonies per plate treated with the BCP extract was less than double as compared to the number of revertant colonies in negative control plate and no dose-related increase was observed. Results from both assays suggested that the BCP of modified porosity did not exhibit any genotoxic effect under the present test conditions.
    Matched MeSH terms: Microsomes/enzymology
  8. Kar SS, Bhat G V, Rao PP, Shenoy VP, Bairy I, Shenoy GG
    Drug Des Devel Ther, 2016;10:2299-310.
    PMID: 27486307 DOI: 10.2147/DDDT.S104037
    A series of triclosan mimic diphenyl ether derivatives have been synthesized and evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. The binding mode of the compounds at the active site of enoyl-acyl carrier protein reductase of M. tuberculosis has been explored. Among them, compound 10b was found to possess antitubercular activity (minimum inhibitory concentration =12.5 µg/mL) comparable to triclosan. All the synthesized compounds exhibited low levels of cytotoxicity against Vero and HepG2 cell lines, and three compounds 10a, 10b, and 10c had a selectivity index more than 10. Compound 10b was also evaluated for log P, pKa, human liver microsomal stability, and % protein binding, in order to probe its druglikeness. Based on the antitubercular activity and druglikeness profile, it may be concluded that compound 10b could be a lead for future development of antitubercular drugs.
    Matched MeSH terms: Microsomes, Liver/drug effects
  9. Khor, Hun Teik, Ng, Theng Theng, Rajendran, Raajeswari
    Malays J Nutr, 2002;8(2):157-166.
    MyJurnal
    Tocotrienols and tocopherols are isoforms of vitamin E. Vitamin E may exhibit antioxidant, prooxidant and non-antioxidant activities depending upon circumstances. In this study, the effect of tocotrienols and α-tocopherol on the activities of HMG CoA reductase and cholesterol 7 α-hydroxylase was investigated. Pure tocotrienols were isolated from palm fatty acid distillate and pure α-tocopherol was obtained commercially. Guinea pigs were treated with different dosages of tocotrienols and α-tocopherol. After the treatment period, animals were sacrificed and liver microsomes were prepared. HMG CoA reductase and cholesterol 7α-hydroxylase were assayed using tracer techniques. Our results showed that the effects of tocotrienols and α-tocopherol on the activities of both the enzymes were dose-dependent. At low dosages, both tocotrienols and α-tocopherol exhibited an inhibitory effect on both the enzymes. Moreover, tocotrienols were a much stronger inhibitors than α-tocopherol. At high dosages, on the other hand, tocotrienols and α-tocopherol showed opposite effects on the enzymes. While tocotrienols continued to exhibit an inhibitory effect, α-tocopherol actually exhibited a stimulatory effect on both the enzymes. A possible explanation for this observation is suggested.
    Matched MeSH terms: Microsomes, Liver
  10. Muhsain SN, Lang MA, Abu-Bakar A
    Toxicol Appl Pharmacol, 2015 Jan 1;282(1):77-89.
    PMID: 25478736 DOI: 10.1016/j.taap.2014.11.010
    The intracellular level of bilirubin (BR), an endogenous antioxidant that is cytotoxic at high concentrations, is tightly controlled within the optimal therapeutic range. We have recently described a concerted intracellular BR regulation by two microsomal enzymes: heme oxygenase 1 (HMOX1), essential for BR production and cytochrome P450 2A5 (CYP2A5), a BR oxidase. Herein, we describe targeting of these enzymes to hepatic mitochondria during oxidative stress. The kinetics of microsomal and mitochondrial BR oxidation were compared. Treatment of DBA/2J mice with 200mgpyrazole/kg/day for 3days increased hepatic intracellular protein carbonyl content and induced nucleo-translocation of Nrf2. HMOX1 and CYP2A5 proteins and activities were elevated in microsomes and mitoplasts but not the UGT1A1, a catalyst of BR glucuronidation. A CYP2A5 antibody inhibited 75% of microsomal BR oxidation. The inhibition was absent in control mitoplasts but elevated to 50% after treatment. An adrenodoxin reductase antibody did not inhibit microsomal BR oxidation but inhibited 50% of mitochondrial BR oxidation. Ascorbic acid inhibited 5% and 22% of the reaction in control and treated microsomes, respectively. In control mitoplasts the inhibition was 100%, which was reduced to 50% after treatment. Bilirubin affinity to mitochondrial and microsomal CYP2A5 enzyme is equally high. Lastly, the treatment neither released cytochrome c into cytoplasm nor dissipated membrane potential, indicating the absence of mitochondrial membrane damage. Collectively, the observations suggest that BR regulatory enzymes are recruited to mitochondria during oxidative stress and BR oxidation by mitochondrial CYP2A5 is supported by mitochondrial mono-oxygenase system. The induced recruitment potentially confers membrane protection.
    Matched MeSH terms: Microsomes, Liver/enzymology
  11. Ramasamy S, Kiew LV, Chung LY
    Molecules, 2014 Feb 24;19(2):2588-601.
    PMID: 24566323 DOI: 10.3390/molecules19022588
    Bacopa monnieri and the constituents of this plant, especially bacosides, possess various neuropharmacological properties. Like drugs, some herbal extracts and the constituents of their extracts alter cytochrome P450 (CYP) enzymes, causing potential herb-drug interactions. The effects of Bacopa monnieri standardized extract and the bacosides from the extract on five major CYP isoforms in vitro were analyzed using a luminescent CYP recombinant human enzyme assay. B. monnieri extract exhibited non-competitive inhibition of CYP2C19 (IC50/Ki = 23.67/9.5 µg/mL), CYP2C9 (36.49/12.5 µg/mL), CYP1A2 (52.20/25.1 µg/mL); competitive inhibition of CYP3A4 (83.95/14.5 µg/mL) and weak inhibition of CYP2D6 (IC50 = 2061.50 µg/mL). However, the bacosides showed negligible inhibition of the same isoforms. B. monnieri, which is orally administered, has a higher concentration in the gut than the liver; therefore, this herb could exhibit stronger inhibition of intestinal CYPs than hepatic CYPs. At an estimated gut concentration of 600 µg/mL (based on a daily dosage of 300 mg/day), B. monnieri reduced the catalytic activities of CYP3A4, CYP2C9 and CYP2C19 to less than 10% compared to the total activity (without inhibitor = 100%). These findings suggest that B. monnieri extract could contribute to herb-drug interactions when orally co-administered with drugs metabolized by CYP1A2, CYP3A4, CYP2C9 and CYP2C19.
    Matched MeSH terms: Microsomes, Liver/metabolism
  12. Kandasamy M, Mak KK, Devadoss T, Thanikachalam PV, Sakirolla R, Choudhury H, et al.
    BMC Chem, 2019 Dec;13(1):117.
    PMID: 31572984 DOI: 10.1186/s13065-019-0633-4
    Background: The transcription factor Nuclear factor erythroid-2-related factor 2 (NRF2) and its principal repressive regulator, Kelch-like ECH-associated protein 1 (KEAP1), are perilous in the regulation of inflammation, as well as maintenance of homeostasis. Thus, NRF2 activation is involved in cytoprotection against many inflammatory disorders. N'-Nicotinoylquinoxaline-2-carbohdyrazide (NQC) was structurally designed by the combination of important pharmacophoric features of bioactive compounds reported in the literature.

    Methods: NQC was synthesised and characterised using spectroscopic techniques. The compound was tested for its anti-inflammatory effect using Lipopolysaccharide from Escherichia coli (LPSEc) induced inflammation in mouse macrophages (RAW 264.7 cells). The effect of NQC on inflammatory cytokines was measured using enzyme-linked immune sorbent assay (ELISA). The Nrf2 activity of the compound NQC was determined using 'Keap1:Nrf2 Inhibitor Screening Assay Kit'. To obtain the insights on NQC's activity on Nrf2, molecular docking studies were performed using Schrödinger suite. The metabolic stability of NQC was determined using mouse, rat and human microsomes.

    Results: NQC was found to be non-toxic at the dose of 50 µM on RAW 264.7 cells. NQC showed potent anti-inflammatory effect in an in vitro model of LPSEc stimulated murine macrophages (RAW 264.7 cells) with an IC50 value 26.13 ± 1.17 µM. NQC dose-dependently down-regulated the pro-inflammatory cytokines [interleukin (IL)-1β (13.27 ± 2.37 μM), IL-6 (10.13 ± 0.58 μM) and tumor necrosis factor (TNF)-α] (14.41 ± 1.83 μM); and inflammatory mediator, prostaglandin E2 (PGE2) with IC50 values, 15.23 ± 0.91 µM. Molecular docking studies confirmed the favourable binding of NQC at Kelch domain of Keap-1. It disrupts the Nrf2 interaction with kelch domain of keap 1 and its IC50 value was 4.21 ± 0.89 µM. The metabolic stability studies of NQC in human, rat and mouse liver microsomes revealed that it is quite stable with half-life values; 63.30 ± 1.73, 52.23 ± 0.81, 24.55 ± 1.13 min; microsomal intrinsic clearance values; 1.14 ± 0.31, 1.39 ± 0.87 and 2.96 ± 0.34 µL/min/g liver; respectively. It is observed that rat has comparable metabolic profile with human, thus, rat could be used as an in vivo model for prediction of pharmacokinetics and metabolism profiles of NQC in human.

    Conclusion: NQC is a new class of NRF2 activator with potent in vitro anti-inflammatory activity and good metabolic stability.

    Matched MeSH terms: Microsomes, Liver
  13. Ahmad N, Samiulla DS, Teh BP, Zainol M, Zolkifli NA, Muhammad A, et al.
    Pharmaceutics, 2018 Jul 11;10(3).
    PMID: 29997335 DOI: 10.3390/pharmaceutics10030090
    Eurycoma longifolia is one of the commonly consumed herbal preparations and its major chemical compound, eurycomanone, has been described to have antimalarial, antipyretic, aphrodisiac, and cytotoxic activities. Today, the consumption of E. longifolia is popular through the incorporation of its extract in food items, most frequently in drinks such as tea and coffee. In the current study, the characterisation of the physicochemical and pharmacokinetic (PK) attributes of eurycomanone were conducted via a series of in vitro and in vivo studies in rats and mice. The solubility and chemical stability of eurycomanone under the conditions of the gastrointestinal tract environment were determined. The permeability of eurycomanone was investigated by determining its distribution coefficient in aqueous and organic environments and its permeability using the parallel artificial membrane permeability assay system and Caco-2 cultured cells. Eurycomanone's stability in plasma and its protein-binding ability were measured by using an equilibrium dialysis method. Its stability in liver microsomes across species (mice, rat, dog, monkey, and human) and rat liver hepatocytes was also investigated. Along with the PK evaluations of eurycomanone in mice and rats, the PK parameters for the Malaysian Standard (MS: 2409:201) standardised water extract of E. longifolia were also evaluated in rats. Both rodent models showed that eurycomanone in both the compound form and extract form had a half-life of 0.30 h. The differences in the bioavailability of eurycomanone in the compound form between the rats (11.8%) and mice (54.9%) suggests that the PK parameters cannot be directly extrapolated to humans. The results also suggest that eurycomanone is not readily absorbed across biological membranes. However, once absorbed, the compound is not easily metabolised (is stable), hence retaining its bioactive properties, which may be responsible for the various reported biological activities.
    Matched MeSH terms: Microsomes, Liver
  14. Latif IK, Karim AJ, Zuki AB, Zamri-Saad M, Niu JP, Noordin MM
    Poult Sci, 2010 Jul;89(7):1379-88.
    PMID: 20548065 DOI: 10.3382/ps.2009-00622
    Aftermath in several air pollution episodes with high concentrations of polycyclic aromatic hydrocarbons did not significantly affect health and performance of broilers despite its renowned sensitivity to polycyclic aromatic hydrocarbons. The aim of the study was to elucidate the previous lack of response in birds exposed to such severe episodes of air pollution. Benzo[a]pyrene (BaP) was used to simulate the influence of air pollution on hematology, selected organ function, and oxidative stress in broilers. One-day-old chicks were assigned to 5 equal groups composed of a control group, tricaprylin group, and 3 groups treated with BaP (at 1.5 microg, 150 microg, or 15 mg/kg of BW). The BaP was intratracheally administered to 1-d-old chicks for 5 consecutive days. The hematology, liver and kidney function, P450 activity, and malondialdehyde level especially in the group receiving 15 mg of BaP/kg of BW demonstrated evidence of hemato- and hepatoxicity via BaP-induced oxidative stress. The deleterious effect of exposure to high concentration of BaP in broiler chickens was probably due to the anatomy of this species and the half-life of BaP. Although the effect of BaP may be transient or irreversible, pathogen challenges faced during the period of suppression may prove fatal.
    Matched MeSH terms: Microsomes/enzymology; Microsomes/metabolism
  15. Ab Rahman NS, Abd Majid FA, Abd Wahid ME, Zainudin AN, Zainol SN, Ismail HF, et al.
    Drug Metab Lett, 2018;12(1):62-67.
    PMID: 29542427 DOI: 10.2174/1872312812666180314112457
    BACKGROUND: SynacinnTM contains five standardized herbal extracts of Orthosiphon Stamineus (OS), Syzygium polyanthum (SZ), Curcuma xantorrizza (CX), Cinnamomum zeylanicum (CZ) and Andrographis paniculata (AP) and is standardized against phytochemical markers of rosmarinic acid, gallic acid, curcumin, catechin and andrographolide respectively. This herbal medicine has been used as health supplement for diabetes. SynacinnTM is recommended to be consumed as supplement to the diabetic drugs. However, herb-drug interaction of SynacinnTM polyherbal with present drugs is unknown.

    METHODS: This study was designed to investigate the effect of SynacinnTM and its individual biomarkers on drug metabolizing enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4 (Midazolam), CYP3A4 (Testosteron)), to assess its herb-drug interaction potential through cytochrome P450 inhibition assay. This study was conducted using liquid chromatography- tandem mass spectroscopy (LC-MS/MS) using probe substrates using human liver microsomes against CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4 (Midazolam) and CYP3A4 (Testosteron).

    RESULTS: Result showed that SynacinnTM at maximum concentration (5000 µg/ml) 100% inhibit CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4 (Midazolam) and CYP3A4 (Testosteron). IC50 values determined were 0.23, 0.60, 0.47, 0.78, 1.23, 0.99, 1.01, and 0.91 mg/ml for CYP 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4 (midazolam) and 3A4 (testosterone), respectively. Meanwhile, all individual biomarkers showed no, less or moderate inhibitory effect towards all the tested CYP450 except for curcumin that showed inhibition of CYP2C8 (91%), CYP2C9 (81%) and CYP2C19 (72%) at 10µM.

    CONCLUSION: Curcumin was found to be an active constituent that might contribute to the inhibition of SynacinnTM against CYP2C8, CYP2C9 and CYP2C19. It can be suggested that SynacinnTM can be consumed separately from a drug known to be metabolized by all tested CYP450 enzymes.

    Matched MeSH terms: Microsomes, Liver
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links