Displaying publications 21 - 40 of 75 in total

Abstract:
Sort:
  1. Kan SP, Prathap K, Dissanaike AS
    Am J Trop Med Hyg, 1979 Jul;28(4):634-42.
    PMID: 111569
    The ultrastructure of the cyst wall and zoites of a species of Sarcocystis from the skeletal muscles of a naturally-infected Malaysian long-tailed monkey, Macaca fascicularis, is described in detail. The wavy, electron-dense primary cyst wall is thin (55 nm) and invaginated. Cytophaneres are absent. The ground substance contains electron-dense granules and bundles of parallel, fibrillar elements in some areas. Thin trabeculae are present. The zoites measure 1.2 X 4.7 microns and have an interior conoid, 22 subpellicular microtubules, 50-60 micronemes, 4-6 rhoptries, and a posteriorly situated nucleus. Some ultrastructural aspects of the cyst wall and the zoites of this parasite resemble those of Sarcocystis species of the moonrat, rhesus monkey, tamarin, and baboon. The light microscopic appearance of this species from M. fascicularis also bears some resemblance to that of parasites from the four cases of human Sarcocystis reported in Malaysia. The cyst in all these human cases were thin-walled, with no cytophaners. Although the final hosts of these species of Sarcocystis are not known, it is quite possible that man, monkeys, and perhaps the moonrat (an insectivore) may serve as common intermediate hosts for one or several species of Sarcocystis.
    Matched MeSH terms: Monkey Diseases/parasitology*
  2. Montrey RD, Huxsoll DL, Hildebrandt PK, Booth BW, Arimbalam S
    Lab. Anim. Sci., 1980 Aug;30(4 Pt 1):694-7.
    PMID: 7421117
    An epizootic of measles occurred in a group of 31 silvered leaf-monkeys (Presbytis cristatus) that had been in captivity for 4-12 months. Twenty-four of the monkeys exhibited a maculopapular rash that persisted for 6-9 days. A serous to mucopurulent nasal discharge and conjunctivitis were seen in some animals. Eight monkeys died during the epizootic; however, their deaths could not be directly attributed to measles. Serum samples from the surviving monkeys collected 1-2 months prior to, and 5 weeks after, the epizootic were examined by the complement-fixation and hemagglutination-inhibition tests for antibodies to measles virus. The preepizootic complement-fixation titers were all less than 1:4 and hemagglutination-inhibition titers, less than 1:10. The postepizootic complement-fixation titers in 21 of 23 surviving monkeys ranged from 1:8 to 1:128, and hemagglutination-inhibition titers in 22 of 23 monkeys ranged from 1:40 to 1:80 or greater.
    Matched MeSH terms: Monkey Diseases/immunology; Monkey Diseases/epidemiology*
  3. Adrus M, Zainuddin R, Ahmad Khairi NH, Ahamad M, Abdullah MT
    J Med Primatol, 2019 12;48(6):357-363.
    PMID: 31486088 DOI: 10.1111/jmp.12437
    BACKGROUND: Nasalis larvatus are well-known attraction for tourists in the mangrove forest of Bako National Park (BNP). Little is known regarding the infestation of helminth parasites in proboscis monkeys. Therefore, the objectives of this study are to determine the prevalence species of major helminth parasites of public health importance in proboscis monkeys in BNP.

    METHODS: A total of 65 faecal samples screened for helminth parasites via sodium nitrate floatation and faecal sedimentation techniques.

    RESULTS: A total of 14 helminth parasite species comprising of eight genera of nematodes, two species of cestodes and two trematodes were identified. Eggs of Trichuris trichiura were the most frequently encountered in proboscis monkeys.

    CONCLUSION: This is the first survey on the fauna of helminth parasites of proboscis monkeys living in mangrove forests, and therefore, it implies the important baseline information that increases our current knowledge for future research regarding parasite-host ecology in primates.

    Matched MeSH terms: Monkey Diseases/epidemiology*; Monkey Diseases/parasitology
  4. Fungfuang W, Udom C, Tongthainan D, Kadir KA, Singh B
    Malar J, 2020 Oct 01;19(1):350.
    PMID: 33004070 DOI: 10.1186/s12936-020-03424-0
    BACKGROUND: Certain species of macaques are natural hosts of Plasmodium knowlesi and Plasmodium cynomolgi, which can both cause malaria in humans, and Plasmodium inui, which can be experimentally transmitted to humans. A significant number of zoonotic malaria cases have been reported in humans throughout Southeast Asia, including Thailand. There have been only two studies undertaken in Thailand to identify malaria parasites in non-human primates in 6 provinces. The objective of this study was to determine the prevalence of P. knowlesi, P. cynomolgi, P. inui, Plasmodium coatneyi and Plasmodium fieldi in non-human primates from 4 new locations in Thailand.

    METHODS: A total of 93 blood samples from Macaca fascicularis, Macaca leonina and Macaca arctoides were collected from four locations in Thailand: 32 were captive M. fascicularis from Chachoengsao Province (CHA), 4 were wild M. fascicularis from Ranong Province (RAN), 32 were wild M. arctoides from Prachuap Kiri Khan Province (PRA), and 25 were wild M. leonina from Nakornratchasima Province (NAK). DNA was extracted from these samples and analysed by nested PCR assays to detect Plasmodium, and subsequently to detect P. knowlesi, P. coatneyi, P. cynomolgi, P. inui and P. fieldi.

    RESULTS: Twenty-seven of the 93 (29%) samples were Plasmodium-positive by nested PCR assays. Among wild macaques, all 4 M. fascicularis at RAN were infected with malaria parasites followed by 50% of 32 M. arctoides at PRA and 20% of 25 M. leonina at NAK. Only 2 (6.3%) of the 32 captive M. fascicularis at CHA were malaria-positive. All 5 species of Plasmodium were detected and 16 (59.3%) of the 27 macaques had single infections, 9 had double and 2 had triple infections. The composition of Plasmodium species in macaques at each sampling site was different. Macaca arctoides from PRA were infected with P. knowlesi, P. coatneyi, P. cynomolgi, P. inui and P. fieldi.

    CONCLUSIONS: The prevalence and species of Plasmodium varied among the wild and captive macaques, and between macaques at 4 sampling sites in Thailand. Macaca arctoides is a new natural host for P. knowlesi, P. inui, P. coatneyi and P. fieldi.

    Matched MeSH terms: Monkey Diseases/epidemiology*; Monkey Diseases/parasitology
  5. Jeyaprakasam NK, Liew JWK, Low VL, Wan-Sulaiman WY, Vythilingam I
    PLoS Negl Trop Dis, 2020 12;14(12):e0008900.
    PMID: 33382697 DOI: 10.1371/journal.pntd.0008900
    Plasmodium knowlesi, a simian malaria parasite, has been in the limelight since a large focus of human P. knowlesi infection was reported from Sarawak (Malaysian Borneo) in 2004. Although this infection is transmitted across Southeast Asia, the largest number of cases has been reported from Malaysia. The increasing number of knowlesi malaria cases has been attributed to the use of molecular tools for detection, but environmental changes including deforestation likely play a major role by increasing human exposure to vector mosquitoes, which coexist with the macaque host. In addition, with the reduction in human malaria transmission in Southeast Asia, it is possible that human populations are at a greater risk of P. knowlesi infection due to diminishing cross-species immunity. Furthermore, the possibility of increasing exposure of humans to other simian Plasmodium parasites such as Plasmodium cynomolgi and Plasmodium inui should not be ignored. We here review the current status of these parasites in humans, macaques, and mosquitoes to support necessary reorientation of malaria control and elimination in the affected areas.
    Matched MeSH terms: Monkey Diseases/epidemiology; Monkey Diseases/parasitology
  6. Zhang X, Meng Y, Houghton P, Liu M, Kanthaswamy S, Oldt R, et al.
    J Med Primatol, 2017 04;46(2):31-41.
    PMID: 28266719 DOI: 10.1111/jmp.12256
    BACKGROUND: Most cynomolgus macaques (Macaca fascicularis) used in the United States as animal models are imported from Chinese breeding farms without documented ancestry. Cynomolgus macaques with varying rhesus macaque ancestry proportions may exhibit differences, such as susceptibility to malaria, that affect their suitability as a research model.

    METHODS: DNA of 400 cynomolgus macaques from 10 Chinese breeding farms was genotyped to characterize their regional origin and rhesus ancestry proportion. A nested PCR assay was used to detect Plasmodium cynomolgi infection in sampled individuals.

    RESULTS: All populations exhibited high levels of genetic heterogeneity and low levels of inbreeding and genetic subdivision. Almost all individuals exhibited an Indochinese origin and a rhesus ancestry proportion of 5%-48%. The incidence of P. cynomolgi infection in cynomolgus macaques is strongly associated with proportion of rhesus ancestry.

    CONCLUSIONS: The varying amount of rhesus ancestry in cynomolgus macaques underscores the importance of monitoring their genetic similarity in malaria research.

    Matched MeSH terms: Monkey Diseases/epidemiology*; Monkey Diseases/parasitology
  7. Abegunde AT
    Lancet, 2004;364(9441):1217.
    PMID: 15464180 DOI: 10.1016/S0140-6736(04)17132-8
    Comment on: Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SS, Cox-Singh J, Thomas A, Conway DJ. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet. 2004 Mar 27;363(9414):1017-24. PubMed PMID: 15051281.
    Matched MeSH terms: Monkey Diseases/parasitology; Monkey Diseases/transmission*
  8. Prasad AN, Woolsey C, Geisbert JB, Agans KN, Borisevich V, Deer DJ, et al.
    J Infect Dis, 2020 05 11;221(Suppl 4):S436-S447.
    PMID: 32022850 DOI: 10.1093/infdis/jiz613
    BACKGROUND: The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are capable of causing severe and often lethal respiratory and/or neurologic disease in animals and humans. Given the sporadic nature of henipavirus outbreaks, licensure of vaccines and therapeutics for human use will likely require demonstration of efficacy in animal models that faithfully reproduce the human condition. Currently, the African green monkey (AGM) best mimics human henipavirus-induced disease.

    METHODS: The pathogenic potential of HeV and both strains of NiV (Malaysia, Bangladesh) was assessed in cynomolgus monkeys and compared with henipavirus-infected historical control AGMs. Multiplex gene and protein expression assays were used to compare host responses.

    RESULTS: In contrast to AGMs, in which henipaviruses cause severe and usually lethal disease, HeV and NiVs caused only mild or asymptomatic infections in macaques. All henipaviruses replicated in macaques with similar kinetics as in AGMs. Infection in macaques was associated with activation and predicted recruitment of cytotoxic CD8+ T cells, Th1 cells, IgM+ B cells, and plasma cells. Conversely, fatal outcome in AGMs was associated with aberrant innate immune signaling, complement dysregulation, Th2 skewing, and increased secretion of MCP-1.

    CONCLUSION: The restriction factors identified in macaques can be harnessed for development of effective countermeasures against henipavirus disease.

    Matched MeSH terms: Monkey Diseases/immunology; Monkey Diseases/virology
  9. Moyes CL, Shearer FM, Huang Z, Wiebe A, Gibson HS, Nijman V, et al.
    Parasit Vectors, 2016 Apr 28;9:242.
    PMID: 27125995 DOI: 10.1186/s13071-016-1527-0
    BACKGROUND: Plasmodium knowlesi is a zoonotic pathogen, transmitted among macaques and to humans by anopheline mosquitoes. Information on P. knowlesi malaria is lacking in most regions so the first step to understand the geographical distribution of disease risk is to define the distributions of the reservoir and vector species.

    METHODS: We used macaque and mosquito species presence data, background data that captured sampling bias in the presence data, a boosted regression tree model and environmental datasets, including annual data for land classes, to predict the distributions of each vector and host species. We then compared the predicted distribution of each species with cover of each land class.

    RESULTS: Fine-scale distribution maps were generated for three macaque host species (Macaca fascicularis, M. nemestrina and M. leonina) and two mosquito vector complexes (the Dirus Complex and the Leucosphyrus Complex). The Leucosphyrus Complex was predicted to occur in areas with disturbed, but not intact, forest cover (> 60% tree cover) whereas the Dirus Complex was predicted to occur in areas with 10-100% tree cover as well as vegetation mosaics and cropland. Of the macaque species, M. nemestrina was mainly predicted to occur in forested areas whereas M. fascicularis was predicted to occur in vegetation mosaics, cropland, wetland and urban areas in addition to forested areas.

    CONCLUSIONS: The predicted M. fascicularis distribution encompassed a wide range of habitats where humans are found. This is of most significance in the northern part of its range where members of the Dirus Complex are the main P. knowlesi vectors because these mosquitoes were also predicted to occur in a wider range of habitats. Our results support the hypothesis that conversion of intact forest into disturbed forest (for example plantations or timber concessions), or the creation of vegetation mosaics, will increase the probability that members of the Leucosphyrus Complex occur at these locations, as well as bringing humans into these areas. An explicit analysis of disease risk itself using infection data is required to explore this further. The species distributions generated here can now be included in future analyses of P. knowlesi infection risk.

    Matched MeSH terms: Monkey Diseases/epidemiology; Monkey Diseases/parasitology*
  10. Mason B, Cervena B, Frias L, Goossens B, Hasegawa H, Keuk K, et al.
    Parasitology, 2024 Apr;151(5):514-522.
    PMID: 38629119 DOI: 10.1017/S0031182024000386
    With many non-human primates (NHPs) showing continued population decline, there is an ongoing need to better understand their ecology and conservation threats. One such threat is the risk of disease, with various bacterial, viral and parasitic infections previously reported to have damaging consequences for NHP hosts. Strongylid nematodes are one of the most commonly reported parasitic infections in NHPs. Current knowledge of NHP strongylid infections is restricted by their typical occurrence as mixed infections of multiple genera, which are indistinguishable through traditional microscopic approaches. Here, modern metagenomics approaches were applied for insight into the genetic diversity of strongylid infections in South-East and East Asian NHPs. We hypothesized that strongylid nematodes occur in mixed communities of multiple taxa, dominated by Oesophagostomum, matching previous findings using single-specimen genetics. Utilizing the Illumina MiSeq platform, ITS-2 strongylid metabarcoding was applied to 90 samples from various wild NHPs occurring in Malaysian Borneo and Japan. A clear dominance of Oesophagostomum aculeatum was found, with almost all sequences assigned to this species. This study suggests that strongylid communities of Asian NHPs may be less species-rich than those in African NHPs, where multi-genera communities are reported. Such knowledge contributes baseline data, assisting with ongoing monitoring of health threats to NHPs.
    Matched MeSH terms: Monkey Diseases/epidemiology; Monkey Diseases/parasitology
  11. Rain AN, Mak JW, Zamri R
    PMID: 8266247
    Matched MeSH terms: Monkey Diseases/epidemiology*; Monkey Diseases/parasitology
  12. Tay ST, Koh FX, Kho KL, Sitam FT
    Emerg Infect Dis, 2015 Mar;21(3):545-7.
    PMID: 25695615 DOI: 10.3201/eid2103.141457
    Matched MeSH terms: Monkey Diseases/microbiology*; Monkey Diseases/epidemiology*
  13. Li MI, Mailepessov D, Vythilingam I, Lee V, Lam P, Ng LC, et al.
    PLoS Negl Trop Dis, 2021 Jan;15(1):e0009110.
    PMID: 33493205 DOI: 10.1371/journal.pntd.0009110
    Plasmodium knowlesi is a simian malaria parasite currently recognized as the fifth causative agent of human malaria. Recently, naturally acquired P. cynomolgi infection in humans was also detected in Southeast Asia. The main reservoir of both parasites is the long-tailed and pig-tailed macaques, which are indigenous in this region. Due to increased urbanization and changes in land use, there has been greater proximity and interaction between the long-tailed macaques and the general population in Singapore. As such, this study aims to determine the prevalence of simian malaria parasites in local macaques to assess the risk of zoonosis to the general human population. Screening for the presence of malaria parasites was conducted on blood samples from 660 peridomestic macaques collected between Jan 2008 and Mar 2017, and 379 wild macaques collected between Mar 2009 and Mar 2017, using a Pan-Plasmodium-genus specific PCR. Positive samples were then screened using a simian Plasmodium species-specific nested PCR assay to identify the species of parasites (P. knowlesi, P. coatneyi, P. fieldi, P. cynomolgi, and P. inui) present. All the peridomestic macaques sampled were tested negative for malaria, while 80.5% of the 379 wild macaques were infected. All five simian Plasmodium species were detected; P. cynomolgi being the most prevalent (71.5%), followed by P. knowlesi (47.5%), P. inui (42.0%), P. fieldi (32.5%), and P. coatneyi (28.5%). Co-infection with multiple species of Plasmodium parasites was also observed. The study revealed that Singapore's wild long-tailed macaques are natural hosts of the five simian malaria parasite species, while no malaria was detected in all peridomestic macaques tested. Therefore, the risk of simian malaria transmission to the general human population is concluded to be low. However, this can be better demonstrated with the incrimination of the vectors of simian malaria parasites in Singapore.
    Matched MeSH terms: Monkey Diseases/epidemiology*; Monkey Diseases/parasitology*
  14. Coatney GR
    Am J Trop Med Hyg, 1971 Nov;20(6):795-803.
    PMID: 5002245
    Matched MeSH terms: Monkey Diseases/etiology*; Monkey Diseases/epidemiology
  15. Braima KA, Sum JS, Ghazali AR, Muslimin M, Jeffery J, Lee WC, et al.
    PLoS One, 2013;8(10):e77924.
    PMID: 24194901 DOI: 10.1371/journal.pone.0077924
    BACKGROUND: The suburban transmission of malaria in Selangor, Malaysia's most developed and populous state still remains a concern for public health in this region. Despite much successful control efforts directed at its reduction, sporadic cases, mostly brought in by foreigners have continued to occur. In addition, cases of simian malaria caused by Plasmodium knowlesi, some with fatal outcome have caused grave concern to health workers. The aim of this study was to investigate the possibility of local malaria transmission in suburban regions of Selangor, which are adjacent to secondary rainforests.

    FINDINGS: A malaria survey spanning 7 years (2006 - 2012) was conducted in Selangor. A total of 1623 laboratory confirmed malaria cases were reported from Selangor's nine districts. While 72.6% of these cases (1178/1623) were attributed to imported malaria (cases originating from other countries), 25.5% (414/1623) were local cases and 1.9% (31/1623) were considered as relapse and unclassified cases combined. In this study, the most prevalent infection was P. vivax (1239 cases, prevalence 76.3%) followed by P. falciparum (211, 13.0%), P. knowlesi (75, 4.6%), P. malariae (71, 4.4%) and P. ovale (1, 0.06%). Mixed infections comprising of P. vivax and P. falciparum were confirmed (26, 1.6%). Entomological surveys targeting the residences of malaria patients' showed that the most commonly trapped Anopheles species was An. maculatus. No oocysts or sporozoites were found in the An. maculatus collected. Nevertheless, the possibility of An. maculatus being the malaria vector in the investigated locations was high due to its persistent occurrence in these areas.

    CONCLUSIONS: Malaria cases reported in this study were mostly imported cases. However the co-existence of local cases and potential Plasmodium spp. vectors should be cause for concern. The results of this survey reflect the need of maintaining closely monitored malaria control programs and continuous extensive malaria surveillance in Peninsula Malaysia.

    Matched MeSH terms: Monkey Diseases/epidemiology*; Monkey Diseases/transmission*
  16. Zaw MT, Lin Z
    J Microbiol Immunol Infect, 2019 Oct;52(5):679-684.
    PMID: 31320238 DOI: 10.1016/j.jmii.2019.05.012
    Plasmodium knowlesi is now regarded as the fifth malaria parasite causing human malaria as it is widely distributed in South-East Asian countries especially east Malaysia where two Malaysian states namely Sabah and Sarawak are situated. In 2004, Polymerase Chain Reaction (PCR) was applied for diagnosing knowlesi malaria in the Kapit Division of Sarawak, Malaysia, so that human P. knowlesi infections could be detected correctly while blood film microscopy diagnosed incorrectly as Plasmodium malariae. This parasite is transmitted from simian hosts to humans via Anopheles vectors. Indonesia is the another country in South East Asia where knowlesi malaria is moderately prevalent. In the last decade, Sarawak and Sabah, the two states of east Malaysia became the target of P. knowlesi research due to prevalence of cases with occasional fatal infections. The host species of P. knowlesi are three macaque species namely Macaca fascicularis, Macaca nemestrina and Macaca leonina while the vector species are the Leucosphyrus Complex and the Dirus Complex of the Leucophyrus Group of Anopheles mosquitoes. Rapid diagnostic tests (RDT) are non-existent for knowlesi malaria although timely treatment is necessary for preventing complications, fatality and drug resistance. Development of RDT is essential in dealing with P. knowlesi infections in poor rural healthcare services. Genetic studies of the parasite on possibility of human-to-human transmission of P. knowlesi were recommended for further studies.
    Matched MeSH terms: Monkey Diseases/epidemiology; Monkey Diseases/parasitology
  17. Davidson G, Chua TH, Cook A, Speldewinde P, Weinstein P
    Ecohealth, 2019 12;16(4):594-610.
    PMID: 30675676 DOI: 10.1007/s10393-019-01395-6
    Defining the linkages between landscape change, disease ecology and human health is essential to explain and predict the emergence of Plasmodium knowlesi malaria, a zoonotic parasite residing in Southeast Asian macaques, and transmitted by species of Anopheles mosquitos. Changing patterns of land use throughout Southeast Asia, particularly deforestation, are suggested to be the primary drivers behind the recent spread of this zoonotic parasite in humans. Local ecological changes at the landscape scale appear to be increasing the risk of disease in humans by altering the dynamics of transmission between the parasite and its primary hosts. This paper will focus on the emergence of P. knowlesi in humans in Malaysian Borneo and the ecological linkage mechanisms suggested to be playing an important role.
    Matched MeSH terms: Monkey Diseases/epidemiology; Monkey Diseases/transmission*
  18. Fong MY, Lau YL, Jelip J, Ooi CH, Cheong FW
    J Genet, 2019 Sep;98.
    PMID: 31544794
    Plasmodium knowlesi contributes to the majority of human malaria incidences in Malaysia. Its uncontrollable passage among the natural monkey hosts can potentially lead to zoonotic outbreaks. The merozoite of this parasite invades host erythrocytes through interaction between its erythrocyte-binding proteins (EBPs) and their respective receptor on the erythrocytes. The regionII of P. knowlesi EBP, P. knowlesi beta (PkβII) protein is found to be mediating merozoite invasion into monkey erythrocytes by interacting with sialic acid receptors. Hence, the objective of this study was to investigate the genetic diversity, natural selection and haplotype grouping of PkβII of P. knowlesi isolates in Malaysia. Polymerase chain reaction amplifications of PkβII were performed on archived blood samples from Malaysia and 64 PkβII sequences were obtained. Sequence analysis revealed length polymorphism, and its amino acids at critical residues indicate the ability of PkβII to mediate P. knowlesi invasion into monkey erythrocytes. Low genetic diversity (π = 0.007) was observed in the PkβII of Malaysia Borneo compared to Peninsular Malaysia (π = 0.015). The PkβII was found to be under strong purifying selection to retain infectivity in monkeys and it plays a limited role in the zoonotic potential of P. knowlesi. Its haplotypes could be clustered into Peninsular Malaysia and Malaysia Borneo groups, indicating the existence of two distinct P. knowlesi parasites in Malaysia as reported in an earlier study.
    Matched MeSH terms: Monkey Diseases/parasitology*; Monkey Diseases/transmission
  19. Choong SS, Mimi Armiladiana M, Ruhil HH, Peng TL
    J Med Primatol, 2019 08;48(4):207-210.
    PMID: 31025372 DOI: 10.1111/jmp.12416
    BACKGROUND: Coconut is an important commodity in Kelantan, and pig-tailed macaques (Macaca nemestrina) have been traditionally used for coconut-plucking for over a century. Most of these animals were sourced from the wild population, and the parasitic status of these macaques is unknown, plus the impacts caused by these parasites are usually underestimated by the owners.

    METHODS: A total of 30 macaques were sampled for blood, faeces and hair plucks to detect parasite.

    RESULTS: Out of 21 faecal samples examined, 11 (52%) were determined positive for one or more gastrointestinal parasites, namely Trichostrongylus spp., Strongyloides spp., Anatrichosoma spp., Capillaria spp., Trichuris spp. and Paramphisotomum spp. Filaria was detected in one (3%) of the blood samples. For ectoparasites, only lice, Pedicinus sp., were found in 9 (30%) macaques.

    CONCLUSIONS: It is imperative that the parasitic status of these animals be determined so that necessary actions and preventive measures can be implemented to prevent zoonotic transmissions.

    Matched MeSH terms: Monkey Diseases/epidemiology*; Monkey Diseases/parasitology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links