Displaying publications 21 - 40 of 49 in total

Abstract:
Sort:
  1. Mohd Sahardi NFN, Makpol S
    Molecules, 2023 Aug 03;28(15).
    PMID: 37570837 DOI: 10.3390/molecules28155867
    Inflammation or inflamm-aging is a chronic low-grade inflammation that contributes to numerous types of degenerative diseases among the elderly and might be impeded by introducing an anti-inflammatory agent like Moringa oleifera Lam (moringa) and Zingiber officinale Roscoe (ginger). Therefore, this paper aims to review the role of moringa and ginger in suppressing inflamm-aging to prevent degenerative diseases. Various peer-reviewed publications were searched and downloaded using the reputed search engine "Pubmed" and "Google Scholar". These materials were reviewed and tabulated. A comparison between these previous findings was made based on the mechanism of action of moringa and ginger against degenerative diseases, focusing on their anti-inflammatory properties. Many studies have reported the efficacy of moringa and ginger in type 2 diabetes mellitus, neurodegenerative disease, cardiovascular disease, cancer, and kidney disease by reducing inflammatory cytokines activities, mainly of TNF-α and IL-6. They also enhanced the activity of antioxidant enzymes, including catalase, glutathione, and superoxide dismutase. The anti-inflammatory activities can be seen by inhibiting NF-κβ activity. Thus, the anti-inflammatory potential of moringa and ginger in various types of degenerative diseases due to inflamm-aging has been shown in many recent types of research.
    Matched MeSH terms: Moringa oleifera*
  2. Abd Wahid MA, Megat Mohd Noor MJ, Goto M, Sugiura N, Othman N, Zakaria Z, et al.
    Biosci Biotechnol Biochem, 2017 Aug;81(8):1642-1649.
    PMID: 28585494 DOI: 10.1080/09168451.2017.1329617
    The natural coagulant Moringa oleifera lectin (MoL) as cationic protein is a promising candidate in coagulation process of water treatment plant. Introducing the gene encoding MoL into a host, Pichia pastoris, to secrete soluble recombinant protein is assessed in this study. Initial screening using PCR confirmed the insertion of MoL gene, and SDS-PAGE analysis detected the MoL protein at 8 kDa. Cultured optimization showed the highest MoL protein at 520 mg/L was observed at 28 °C for 144 h of culturing by induction in 1% methanol. Approximately, 0.40 mg/mL of recombinant MoL protein showed 95 ± 2% turbidity removal of 1% kaolin suspension. In 0.1% kaolin suspension, the concentration of MoL at 10 μg/mL exhibits the highest turbidity reduction at 68 ± 1%. Thus, recombinant MoL protein from P. pastoris is an effective coagulant for water treatment.
    Matched MeSH terms: Moringa oleifera/metabolism; Moringa oleifera/chemistry*
  3. Abdul Hisam EE, Rofiee MS, Khalid AM, Jalaluddin AF, Mohamad Yusof MI, Idris MH, et al.
    Turk J Biol, 2018;42(1):33-44.
    PMID: 30814868 DOI: 10.3906/biy-1708-23
    Moringa oleifera Lam. and Centella asiatica (L.) Urb. leaves have been previously reported to exhibit antioxidant activity. The objective of the present study is to determine the in vitro antioxidant activity of the combined extracts of M. oleifera and C. asiatica (TGT-PRIMAAGE) and its effect on hydrogen peroxide (H 2O2)-induced oxidative stress in human dermal fibroblasts. TGTPRIMAAGE acted on the mechanism of hydrogen transfer as it showed scavenging activity in the DPPH assay. This is due to the presence of phenolics and flavonoids in TGT-PRIMAAGE. TGT-PRIMAAGE effectively reduced cellular generation of reactive oxygen species induced by H O2. The activities of superoxide dismutase and catalase were also increased in cells treated with TGT-PRIMAAGE. 2 Treatment with TGT-PRIMAAGE showed significant reduction (P < 0.05) in the number of senescent cells. Significant reduction (P < 0.05) of malondialdehyde was also seen in cells treated with TGT-PRIMAAGE. The p53 protein level was reduced in TGT-PRIMAAGEtreated cells, which indicates its potential in protecting the cells from oxidative stress induced by H2O2.
    Matched MeSH terms: Moringa oleifera
  4. Khor KZ, Lim V, Moses EJ, Abdul Samad N
    PMID: 30538753 DOI: 10.1155/2018/1071243
    Moringa oleifera, a fast-growing deciduous tree that is widely cultivated in tropical and subtropical regions of the world, is well known for its abundant uses. The tree is a source of food, shelter, and traditional medicine for many people, especially in developing countries. Many studies have been conducted to evaluate the various claims of traditional medicine practitioners that the moringa tree can improve health and treat various diseases. The tree has a high nutritional profile, especially the nutrient rich leaves. Some reports also support the use of parts of the tree to reduce blood sugar and cholesterol levels. These attractive properties have led researchers to look for other novel uses for the moringa tree, especially as a source of anticancer drugs. Researchers have tested extracts from various parts of the moringa tree both in vitro and in vivo on several types of cancers with varying success. This review explores the state of current research on the anticancer properties of M. oleifera.
    Matched MeSH terms: Moringa oleifera
  5. Pramanik BK, Kajol A, Suja F, Md Zain S
    Environ Technol, 2017 Mar;38(5):579-587.
    PMID: 27315513 DOI: 10.1080/09593330.2016.1202330
    Biological aerated filter (BAF), sand filtration (SF), alum and Moringa oleifera coagulation were investigated as a pre-treatment for reducing the organic and biofouling potential component of an ultrafiltration (UF) membrane in the treatment of lake water. The carbohydrate content was mainly responsible for reversible fouling of the UF membrane compared to protein or dissolved organic carbon (DOC) content. All pre-treatment could effectively reduce these contents and led to improve the UF filterability. Both BAF and SF markedly led to improvement in flux than coagulation processes, and alum gave greater flux than M. oleifera. This was attributed to the effective removal and/or breakdown of high molecular weight (MW) organics by biofilters. BAF led to greater improvement in flux than SF, due to greater breakdown of high MW organics, and this was also confirmed by the attenuated total reflection-Fourier transform infrared spectroscopy analysis. Coagulation processes were ineffective in removing biofouling potential components, whereas both biofilters were very effective as shown by the reduction of low MW organics, biodegradable dissolved organic carbon and assimilable organic carbon contents. This study demonstrated the potential of biological pre-treatments for reducing organic and biofouling potential component and thus improving flux for the UF of lake water treatment.
    Matched MeSH terms: Moringa oleifera/chemistry
  6. Abdull Razis AF, Ibrahim MD, Kntayya SB
    Asian Pac J Cancer Prev, 2014;15(20):8571-6.
    PMID: 25374169
    Phytomedicines are believed to have benefits over conventional drugs and are regaining interest in current research. Moringa oleifera is a multi-purpose herbal plant used as human food and an alternative for medicinal purposes worldwide. It has been identified by researchers as a plant with numerous health benefits including nutritional and medicinal advantages. Moringa oleifera contains essential amino acids, carotenoids in leaves, and components with nutraceutical properties, supporting the idea of using this plant as a nutritional supplement or constituent in food preparation. Some nutritional evaluation has been carried out in leaves and stem. An important factor that accounts for the medicinal uses of Moringa oleifera is its very wide range of vital antioxidants, antibiotics and nutrients including vitamins and minerals. Almost all parts from Moringa can be used as a source for nutrition with other useful values. This mini-review elaborate on details its health benefits.
    Matched MeSH terms: Moringa oleifera*
  7. Karthivashan G, Tangestani Fard M, Arulselvan P, Abas F, Fakurazi S
    J Food Sci, 2013 Sep;78(9):C1368-75.
    PMID: 24024688 DOI: 10.1111/1750-3841.12233
    Free radicals trigger chain reaction and inflict damage to the cells and its components, which in turn ultimately interrupts their biological activities. To prevent free radical damage, together with an endogenous antioxidant system, an exogenous supply of antioxidant components to the body in the form of functional food or nutritional diet helps undeniably. Research conducted by the Natl. Inst. of Health claimed that Moringa oleifera Lam possess the highest antioxidant content among various natural food sources based on an oxygen radical absorbent capacity assay. In this study, a 90% (ethanol:distilled water--90:10) gradient solvent was identified as one of the best gradient solvents for the effectual extraction of bioactive components from M. oleifera leaves. This finding was confirmed by various antioxidant assays, including radical scavenging activity (that is, 1, 1-diphenyl-2-picrylhydrazyl, H(2)O(2), and NO radical scavenging assay) and total antioxidant capacity (that is, ferric reducing antioxidant power and molybdenum assay). High-performance liquid chromatography (HPLC) fingerprints of the 90% gradient extract visually showed few specific peaks, which on further analysis, using HPLC-DAD-ESI-MS, were identified as flavonoids and their derivatives. Despite commonly reported flavonoids, that is, kaempferol and quercetin, we report here for the 1st time the presence of multiflorin-B and apigenin in M. oleifera leaves. These findings might help researchers to further scrutinize this high activity exhibiting gradient extract and its bio-active candidates for fruitful clinical/translational investigations.
    Matched MeSH terms: Moringa oleifera/chemistry*
  8. Katayon S, Noor MJ, Asma M, Ghani LA, Thamer AM, Azni I, et al.
    Bioresour Technol, 2006 Sep;97(13):1455-60.
    PMID: 16213137
    Moringa oleifera is a plant whose seeds have coagulation properties for treating water and wastewater. In this study the coagulation efficiency of Moringa oleifera kept in different storage conditions were studied. The Moringa oleifera seeds were stored at different conditions and durations; open container and closed container at room temperature (28 degrees C) and refrigerator (3 degrees C) for durations of 1, 3 and 5 months. Comparison between turbidity removal efficiency of Moringa oleifera kept in refrigerator and room temperature revealed that there was no significant difference between them. The Moringa oleifera kept in refrigerator and room temperature for one month showed higher turbidity removal efficiency, compared to those kept for 3 and 5 months, at both containers. The coagulation efficiency of Moringa oleifera was found to be dependent on initial turbidity of water samples. Highest turbidity removals were obtained for water with very high initial turbidity. In summary coagulation efficiency of Moringa oleifera was found independent of storage temperature and container, however coagulation efficiency of Moringa oleifera decreased as storage duration increased. In addition, Moringa oleifera can be used as a potential coagulant especially for very high turbidity water.
    Matched MeSH terms: Moringa oleifera/chemistry*
  9. Karthivashan G, Arulselvan P, Alimon AR, Safinar Ismail I, Fakurazi S
    Biomed Res Int, 2015;2015:970398.
    PMID: 25793214 DOI: 10.1155/2015/970398
    The influence of Moringa oleifera (MO) leaf extract as a dietary supplement on the growth performance and antioxidant parameters was evaluated on broiler meat and the compounds responsible for the corresponding antioxidant activity were identified. 0.5%, 1.0%, and 1.5% w/v of MO leaf aqueous extracts (MOLE) were prepared, and nutritional feed supplemented with 0%, 0.5%, 1.0%, and 1.5% w/w of MO leaf meal (MOLM) extracts were also prepared and analysed for their in vitro antioxidant potential. Furthermore, the treated broiler groups (control (T1) and treatment (T2, T3, and T4)) were evaluated for performance, meat quality, and antioxidant status. The results of this study revealed that, among the broilers fed MOLM, the broilers fed 0.5% w/w MOLM (T2) exhibited enhanced meat quality and antioxidant status (P < 0.05). However, the antioxidant activity of the MOLE is greater than that of the MOLM. The LC-MS/MS analysis of MOLM showed high expression of isoflavones and fatty acids from soy and corn source, which antagonistically inhibit the expression of the flavonoids/phenols in the MO leaves thereby masking its antioxidant effects. Thus, altering the soy and corn gradients in conventional nutrition feed with 0.5% w/w MO leaves supplement would provide an efficient and cost-effective feed supplement.
    Matched MeSH terms: Moringa oleifera/chemistry*
  10. Abd Rani NZ, Kumolosasi E, Jasamai M, Jamal JA, Lam KW, Husain K
    BMC Complement Altern Med, 2019 Dec 11;19(1):361.
    PMID: 31829185 DOI: 10.1186/s12906-019-2776-1
    BACKGROUND: Moringa oleifera Lam. is a commonly used plant in herbal medicine and has various reported bioactivities such as antioxidant, antimicrobial, anticancer and antidiabetes. It is rich in nutrients and polyphenols. The plant also has been traditionally used for alleviating allergic conditions. This study was aimed to examine the anti-allergic activity of M. oleifera extracts and its isolated compounds.

    METHOD: M. oleifera leaves, seeds and pods were extracted with 80% of ethanol. Individual compounds were isolated using a column chromatographic technique and elucidated based on the nuclear magnetic resonance (NMR) and electrospray ionisation mass spectrometry (ESIMS) spectral data. The anti-allergic activity of the extracts, isolated compounds and ketotifen fumarate as a positive control was evaluated using rat basophilic leukaemia (RBL-2H3) cells for early and late phases of allergic reactions. The early phase was determined based on the inhibition of beta-hexosaminidase and histamine release; while the late phase was based on the inhibition of interleukin (IL-4) and tumour necrosis factor (TNF-α) release.

    RESULTS: Two new compounds; ethyl-(E)-undec-6-enoate (1) and 3,5,6-trihydroxy-2-(2,3,4,5,6-pentahydroxyphenyl)-4H-chromen-4-one (2) together with six known compounds; quercetin (3), kaempferol (4), β-sitosterol-3-O-glucoside (5), oleic acid (6), glucomoringin (7), 2,3,4-trihydroxybenzaldehyde (8) and stigmasterol (9) were isolated from M. oleifera extracts. All extracts and the isolated compounds inhibited mast cell degranulation by inhibiting beta-hexosaminidase and histamine release, as well as the release of IL-4 and TNF-α at varying levels compared with ketotifen fumarate.

    CONCLUSION: The study suggested that M. oleifera and its isolated compounds potentially have an anti-allergic activity by inhibiting both early and late phases of allergic reactions.

    Matched MeSH terms: Moringa oleifera*
  11. Abu El Ezz NMT, Aboelsoued D, Hassan SE, Abdel Megeed KN, El-Metenawy TM
    Trop Biomed, 2020 Dec 01;37(4):1018-1028.
    PMID: 33612754 DOI: 10.47665/tb.37.4.1018
    The present study was conducted to detect the therapeutic effect of Moringa oleifera and Thymus vulgaris oils on hepatic coccidiosis in experimentally infected rabbits. Also, immunomodulatory effect of the two oils was detected. Twenty-four Newzealand rabbits were used in this study and divided into 4 groups; healthy rabbits, experimentally infected rabbits with Eimeria stiedae oocysts, and two infected treated groups (one with moringa (200 mg/kg) and the other with thyme (500 mg/kg) oils). The results showed highly significant reduction in oocysts shedding (P<0.001 and P<0.05) in the two infected and treated rabbits than the infected non-treated rabbits in almost all days post infection (PI). Thyme oil was more potent and stopped oocysts shedding earlier at the day 34 PI compared to moringa oil at the day 41 PI. Microscopically, there was a damage in the oocysts shed by treated rabbits. Macroscopically, the livers of thyme oil treated rabbits showed more enhancement with protection percentage 75% than those treated with moringa oil in which protection percentage was 55%. The highest titer of antibodies was detected in moringa oil treated rabbits. It was concluded that both moringa and thyme oils had an anti-coccidial effect with thyme oil superiority. So, thyme oil could be useful as an alternative product for the control of rabbit coccidiosis.
    Matched MeSH terms: Moringa oleifera/chemistry*
  12. Damayanti A, Ujang Z, Salim MR
    Bioresour Technol, 2011 Mar;102(6):4341-6.
    PMID: 21251818 DOI: 10.1016/j.biortech.2010.12.061
    The main objective of this work was to determine the effectiveness of various biofouling reducers (BFRs) to operational condition in hybrid membrane bioreactor (MBR) of palm oil mill effluent (POME). A series of tests involving three bench scale (100 L) hybrid MBR were operated at sludge retention times (SRTs) of 30 days with biofouling reducer (BFR). Three different biofouling reducers (BFRs) were powdered actived carbon (PAC), zeolite (Ze), and Moringa oleifera (Mo) with doses of 4, 8 and 12 g L(-1) respectively were used. Short-term filtration trials and critical flux tests were conducted. Results showed that, all BFRs successfully removed soluble microbial products (SMP), for PAC, Ze, and Mo at 58%, 42%, and 48%, respectively. At their optimum dosages, PAC provided above 70% reductions and 85% in fouling rates during the short-term filtration and critical flux tests.
    Matched MeSH terms: Moringa oleifera/chemistry*
  13. Muhammad AA, Pauzi NA, Arulselvan P, Abas F, Fakurazi S
    Biomed Res Int, 2013;2013:974580.
    PMID: 24490175 DOI: 10.1155/2013/974580
    Moringa oleifera Lam. (M. oleifera) from the monogeneric family Moringaceae is found in tropical and subtropical countries. The present study was aimed at exploring the in vitro wound healing potential of M. oleifera and identification of active compounds that may be responsible for its wound healing action. The study included cell viability, proliferation, and wound scratch test assays. Different solvent crude extracts were screened, and the most active crude extract was further subjected to differential bioguided fractionation. Fractions were also screened and most active aqueous fraction was finally obtained for further investigation. HPLC and LC-MS/MS analysis were used for identification and confirmation of bioactive compounds. The results of our study demonstrated that aqueous fraction of M. oleifera significantly enhanced proliferation and viability as well as migration of human dermal fibroblast (HDF) cells compared to the untreated control and other fractions. The HPLC and LC-MS/MS studies revealed kaempferol and quercetin compounds in the crude methanolic extract and a major bioactive compound Vicenin-2 was identified in the bioactive aqueous fraction which was confirmed with standard Vicenin-2 using HPLC and UV spectroscopic methods. These findings suggest that bioactive fraction of M. oleifera containing Vicenin-2 compound may enhance faster wound healing in vitro.
    Matched MeSH terms: Moringa oleifera/chemistry*
  14. Lim WF, Mohamad Yusof MI, Teh LK, Salleh MZ
    Nutrients, 2020 Sep 30;12(10).
    PMID: 33007803 DOI: 10.3390/nu12102993
    Moringa oleifera is a miracle plant with many nutritional and medicinal properties. Chemopreventive values of the combined mixture of moringa leaves and seed residue (MOLSr) at different ratios (M1S9, M1S1 and M9S1) were investigated. MOLSr extracts were subjected to phytochemical screening, antioxidant assays, metabolite profiling and cytotoxic activity on the primary mammary epithelial cells (PMECs), non-malignant Chang's liver cells and various human cancer cell lines (including breast, cervical, colon and liver cancer cell lines). The MOLSr ratio with the most potent cytotoxic activity was used in xenograft mice injected with MDA-MB-231 cells for in vivo tumorigenicity study as well as further protein and gene expression studies. M1S9, specifically composed of saponin and amino acid, retained the lowest antioxidant activity but the highest glucosinolate content as compared to other ratios. Cell viability decreased significantly in MCF-7 breast cancer cells and PMECs after treatment with M1S9. Solid tumor from MDA-MB-231 xenograft mice was inhibited by up to 64.5% at third week after treatment with high-dose M1S9. High-dose M1S9 significantly decreased the expression of calcineurin (CaN) and vascular endothelial cell growth factor (VEGF) proteins as well as the secreted frizzled-related protein 1 (SFRP1) and solute carrier family 39 member 6 (SLC39A6) genes. This study provides new scientific evidence for the chemoprevention potential of MOLSr extracts in a breast cancer model; however, the precise mechanism warrants further investigation.
    Matched MeSH terms: Moringa oleifera
  15. Hisyam Jamari, Mohd Salleh Rofiee, Richard James Johari, Mohd Zaki Salleh, Teh, Lay Kek
    MyJurnal
    The potential of Moringa oleifera Lam. (Moringaceae) and Centella asiatica (L.) Urban (Apiaceae) extracts (TGT-PRIMAAGE) in slowing the decline of memory and learning activity was investigated using D-galactose-induced ageing rat model. The extracts were profiled and standardised based on markers identified using LC/MS-QTOF. Toxicity study of the extract was done, and the rat did not show any sign of toxicity. The extract was orally administered to the rat and dose dependent (100, 500 and 1000 mg/kg) efficacy were investigated. The rats were subjected to Morris Water Maze whereby 3 parameters were studied (number of entry to platform, latency and novel object recognition). Plasma was collected for the determination of catalase (CAT) activity and levels of malondialdehyde (MDA) and advanced glycation end products (AGEs). The activity of acetylcholinesterase (AChE), level of acetylcholine (ACh) and lipid peroxidation (LPO) were measured using the brain lysates. Significant improvement (p < 0.05) was seen in the memory and learning abilities in the aged rats that received medium and high dose of TGT-PRIMAAGE, and tocotrienol. Rats treated with TGT-PRIMAAGE had also shown improved CAT activity and resulted in reduced LPO. The level of ACh was found increased in parallel with the reduced AChE activity. The capabilities of learning and memory of the TGT-PRIMAAGE treated rats were enhanced via inhibition of AChE activity and subsequently increased level of ACh.
    Matched MeSH terms: Moringa oleifera
  16. Ammar Akram Kamarudin, Norazalina Saad, Nor Hafiza Sayuti, Nor Asma Ab. Razak, Norhaizan Mohd. Esa
    MyJurnal
    Introduction: Moringa oleifera Lam. is a miracle tree that has been widely utilised in folklore medicine due to its immense amount of phenolic constituents that could treat various ailments. Different techniques have been imple- mented to extract the phenolic but the parameters may not be optimised to further enhance the amount of phenolic extracted. Thus, the work aimed to enhance phenolic content and antioxidant activity of M. oleifera through RSM methodology, which is rapid and convenience. Methods: At first, antioxidant activity of different parts of M. oleifera (leaves, stem, pod and seed) were investigated. The plant part with the highest antioxidant activity was selected for the optimisation of extraction condition using RSM. In RSM, temperature (XA), extraction time (XB) and solid-liquid ratio (XC) were employed to study the effects on yield, total phenolics, flavonoids and antioxidant activity. Then, the optimum extraction condition obtained via RSM was utilised in LC-MS and HPLC analysis to determine the poten- tial bioactive constituents. Results: The leaves of M. oleifera displayed the highest antioxidant activity as compared to other plant parts. The optimum extraction condition obtained for the leaves extract was: temperature (XA): 82°C, extraction time (XB): 48 min and solid-liquid ratio (XC): 1:30 g/mL (w/v). Meanwhile, LC-MS revealed the presence of gallic acid, chlorogenic acid, quercetin, kaempferol and 3-O-glucoside kaempferol. HPLC analysis detected six compounds; gallic acid, epicatechin gallate, chlorogenic acid, myricetin, quercetin and kaempferol. Conclusion: The optimisation are promising to improve yield and antioxidant activity in M. oleifera as compared to non-conven- tional extractions.

    Matched MeSH terms: Moringa oleifera
  17. Farasyahida A. Samad, Wan Salida Wan Mansor, idayatul Aini Zakaria
    MyJurnal
    Clean, safe and readily available water is very crucial in everyday life, especially for health, hygiene, and the productivity of the community. Unfortunately, increase in contaminants in water supplies from human activities and industrialization is very worrying. Conventional wastewater treatment includes the usage of alum that will affect health with prolonged consumption. This research was carried out to focus on the development of wastewater treatment system using adsorbent from Moringa oleifera seeds. Adsorbent was successfully synthesized from the seeds of Moringa oleifera. Characterization of the sample was made using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), while the effectiveness of water treatment was analyzed using Turbidity Meter. Then, all samples were tested against kaolin wastewater. XRD results showed that all the adsorbent samples were amorphous in nature. FTIR results indicated that there were hydroxyl group and carboxylic group in the sample representing numerous oxygen-riddled functional groups on the surface. From SEM results, it was clearly shown that the pore structure and size of Moringa oleifera affected the capability of adsorption where the smaller the size, the more effective the sample. Turbidity test showed that the sample that worked best for wastewater treatment was adsorbent from Moringa oleifera seeds in size of 125µm that was heated for 4 hours with 93.76% turbidity removal. Therefore, this study proved that the adsorbent from Moringa oleifera seeds is very suitable for high turbidity wastewater treatment. Further studies investigating the combination of conventional activated carbon with adsorbent from Moringa oleifera seeds should be conducted before these samples are made available for further use so that we can compare which sample works best for wastewater treatment.
    Matched MeSH terms: Moringa oleifera
  18. Karthivashan G, Kura AU, Arulselvan P, Md Isa N, Fakurazi S
    PeerJ, 2016;4:e2127.
    PMID: 27441110 DOI: 10.7717/peerj.2127
    N-Acetyl-p-Aminophenol (APAP), also known as acetaminophen, is the most commonly used over-the counter analgesic and antipyretic medication. However, its overdose leads to both liver and kidney damage. APAP-induced toxicity is considered as one of the primary causes of acute liver failure; numerous scientific reports have focused majorly on APAP hepatotoxicity. Alternatively, not many works approach APAP nephrotoxicity focusing on both its mechanisms of action and therapeutic exploration. Moringa oleifera (MO) is pervasive in nature, is reported to possess a surplus amount of nutrients, and is enriched with several bioactive candidates including trace elements that act as curatives for various clinical conditions. In this study, we evaluated the nephro-protective potential of MO leaf extract against APAP nephrotoxicity in male Balb/c mice. A single-dose acute oral toxicity design was implemented in this study. Group 2, 3, 4 and 5 received a toxic dose of APAP (400 mg/kg of bw, i.p) and after an hour, these groups were administered with saline (10 mL/kg), silymarin-positive control (100 mg/kg of bw, i.p), MO leaf extract (100 mg/kg of bw, i.p), and MO leaf extract (200 mg/kg bw, i.p) respectively. Group 1 was administered saline (10 mL/kg) during both the sessions. APAP-treated mice exhibited a significant elevation of serum creatinine, blood urea nitrogen, sodium, potassium and chloride levels. A remarkable depletion of antioxidant enzymes such as SOD, CAT and GSH-Px with elevated MDA levels has been observed in APAP treated kidney tissues. They also exhibited a significant rise in pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and decreased anti-inflammatory (IL-10) cytokine level in the kidney tissues. Disorganized glomerulus and dilated tubules with inflammatory cell infiltration were clearly observed in the histology of APAP treated mice kidneys. All these pathological changes were reversed in a dose-dependent manner after MO leaf extract treatment. Therefore, MO leaf extract has demonstrated some therapeutic effectiveness against APAP-induced nephrotoxicity through enhancement of the endogenous antioxidant system and a modulatory effect on specific inflammatory cytokines in kidney tissues.
    Matched MeSH terms: Moringa oleifera
  19. Nazir S, Sulistyo J, Hashmi MI, Ho AL, Khan MS
    J Food Sci Technol, 2018 Aug;55(8):3026-3034.
    PMID: 30065412 DOI: 10.1007/s13197-018-3223-x
    Present study was conducted to evaluate the ability of Trichoderma viride as a source of cyclodextrin glucanotransferase that has shown transglycosylation activity in the presence of polyphenolic constituents extracted from Moringa oleifera leaves as its acceptor and wheat flour as its substrate to catalyze synthesis of polyphenolic glycosides as transglycosylation (transfer) reaction products. The enzymatic synthesized polyphenolic glycosides were then purified using octa-dodecyl-functionalized silica gel column chromatography prior to analysis using thin layer chromatography and high performance liquid chromatography and identified using nuclear magnetic resonance (NMR) spectroscopy. The high performance liquid chromatogram performed that the isolated transglycosylation products had retention times and concentration at 1.446 min (0.0017 mg/ml), 1.431 min (0.14 mg/ml), and 1.474 min (0.012 mg/ml), respectively, compared to the retention time of arbutin (1.474 min) that was applied as authentic standard for polyphenol glycoside. Moreover, observation using 1H NMR as well as 13C NMR showed that structures of the transglycosylation products were identified as gallic acid-4-O-β-glucopyranoside, ellagicacid-4-O-β-glucopyranoside, and catechin-4'-O-glucopyranoside, respectively.
    Matched MeSH terms: Moringa oleifera
  20. Natarajan, Satheesh Babu, Das, SreemoyKanti, Chandran, Suriyakala Perumal, Aung, Myo Oo, Kanneppady, Sowmya Shar, Entezarian, Maryam, et al.
    MyJurnal
    Diabetic wounds (DW) are a chronic, non-healing wound on the feet of diabetic patients that pose a serious challenge to world health. Around 84% of diabetic patients undergo lower leg amputations. Though numerous topical and systemic drugs have been used to heal the DW, these drugs have led to the emergence and subsequent rapid overgrowth of resistant bacterial strains, side effects and toxicity. Many herbal plants have very important role in wound healing because they promote the natural repair mechanisms. Moringa oleifera (MO) is an important medicinal plant which has an impressive range of medicinal uses including antimicrobial, anti-inflammatory, antidiabetic, antioxidant and anticancer activities.Recently few researchers reported that MO extracts have effective wound healing property due to the presence of rich flavonoids and vicenin-2. The objective of the present study was to develop hydrogel formulations loaded with Moringa oleifera leaves extract. The prepared hydrogels were evaluated for physical appearance, rheological behavior, skin irritation and wound-healing power in streptozotocin-induced diabetic male wistar albino rats. Results showed that all hydrogel formulations exhibited good and acceptable physical properties. All the animals tolerated the applied gels and no signs of irritations were noticed during the skin irritation study. The in-vivo wound healing studies showed a time dependent increase in percentage of wound, a contraction which is higher than that produced by the control groups. These contractions were statistically significant (P
    Matched MeSH terms: Moringa oleifera
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links