METHODS: In the current project, we have described two extraction-free reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays for the detection of SARS-CoV-2 by using E gene and RdRp gene as the targets.
RESULTS: Here, results showed that reverse transcription loop-mediated isothermal amplification assays with 88.4% sensitive (95% CI: 74.9-96.1%) and 67.4% sensitive (95% CI: 51.5-80.9%) for E gene and RdRp gene, respectively.
CONCLUSION: Without the need of RNA purification, our developed RT-LAMP assays for direct detection of SARS-CoV-2 from nasopharyngeal swab samples could be turned into alternatives to qRT-PCR for rapid screening.
METHODS: Keratoconic (n = 74) and control subjects (n = 96) were recruited based on clinical diagnostic tests and selection criteria. DNA extracted from the blood samples was used to genotype VSX1 polymorphisms. In-house designed primers and optimization of PCR conditions were carried out to amplify exons 1 and 3 of the VSX1 gene. PCR conditions including percentage GC content, melting temperatures, and differences in melting temperatures of primers were evaluated to produce sensitive and specific DNA amplifications.
RESULTS: Genotyping was successfully carried out in 4 exons of the VSX1 gene. Primer annealing temperatures were observed to be crucial in enhancing PCR sensitivity and specificity. Annealing temperatures were carefully evaluated to produce increased specificity, yet not allowing sensitivity to be compromised. In addition, exon 1 of the VSX1 gene was amplified using 2 different sets of primers to produce 2 smaller amplified products with absence of non-specific bands. DNA amplification of exons 1 and 3 consistently showed single band products which were successfully sequenced to yield reproducible data.
CONCLUSIONS: The use of in-house designed primers and optimized PCR conditions allowed sensitive and specific DNA amplifications that produced distinct single bands. The in-house designed primers and DNA amplification protocols established in this study provide an addition to the current repertoire of primers for accurate molecular characterization of VSX1 gene polymorphisms in keratoconus research.
METHODOLOGY AND PRINCIPLE FINDINGS: A literature search was performed in Scopus, PubMed, MEDLINE and non-indexed citations (via Ovid) by using suitable keyword combinations. Studies evaluating the performance of nucleic acid assays targeting leptospire genes in human or animal clinical samples against a reference test were included. Of the 1645 articles identified, 42 eligible studies involving 7414 samples were included in the analysis. The diagnostic performance of nucleic acid assays targeting the rrs, lipL32, secY and flaB genes was pooled and analyzed. Among the genetic markers analyzed, the secY gene showed the highest diagnostic accuracy measures, with a pooled sensitivity of 0.56 (95% CI: 0.50-0.63), a specificity of 0.98 (95% CI: 0.97-0.98), a diagnostic odds ratio of 46.16 (95% CI: 6.20-343.49), and an area under the curve of summary receiver operating characteristics curves of 0.94. Nevertheless, a high degree of heterogeneity was observed in this meta-analysis. Therefore, the present findings here should be interpreted with caution.
CONCLUSION: The diagnostic accuracies of the studies examined for each genetic marker showed a significant heterogeneity. The secY gene exhibited higher diagnostic accuracy measures compared with other genetic markers, such as lipL32, flaB, and rrs, but the difference was not significant. Thus, these genetic markers had no significant difference in diagnostic accuracy for leptospirosis. Further research into these genetic markers is warranted.