Displaying publications 21 - 40 of 45 in total

Abstract:
Sort:
  1. Sanip Z, Ariffin FD, Al-Tahami BA, Sulaiman WA, Rasool AH
    Obes Res Clin Pract, 2013 Jul-Aug;7(4):e315-20.
    PMID: 24306161 DOI: 10.1016/j.orcp.2012.05.002
    Obese subjects had increased serum high sensitivity C-reactive protein (hs-CRP), decreased adiponectin levels, and impaired microvascular endothelial function compared to lean subjects. We investigated the relationships of serum hs-CRP, adiponectin and microvascular endothelial function with obesity indices and metabolic markers in overweight and obese female subjects. Anthropometric profile, body fat composition, biochemical analysis, serum hs-CRP and adiponectin levels, and microvascular endothelial function were measured in 91 female subjects. Microvascular endothelial function was determined using laser Doppler fluximetry and the process of iontophoresis. Mean age and body mass index (BMI) of subjects were 34.88 (7.87) years and 32.93 (4.82) kg/m(2). hs-CRP levels were positively correlated with weight, BMI, waist circumference, hip circumference, body fat and visceral fat. Adiponectin levels were positively correlated with insulin sensitivity index (HOMA-%S), and inversely correlated with waist hip ratio, triglyceride, fasting insulin and insulin resistance index (HOMA-IR). No relationship was seen between microvascular endothelial function and obesity indices, and metabolic markers. In overweight and obese female subjects, hs-CRP levels were correlated with obesity indices while adiponectin levels were inversely correlated with obesity indices and metabolic markers. No significant relationship was seen between microvascular endothelial function with obesity indices and metabolic markers including hs-CRP and adiponectin in female overweight and obese subjects.
    Matched MeSH terms: Obesity/blood*
  2. Gao H, Salim A, Lee J, Tai ES, van Dam RM
    Int J Obes (Lond), 2012 Aug;36(8):1086-93.
    PMID: 21946705 DOI: 10.1038/ijo.2011.185
    Diabetes in Asia constitutes approximately half of the global burden. Although insulin resistance and incidence of type 2 diabetes differ substantially between ethnic groups within Asia, the reasons for these differences are poorly understood. We evaluated to what extent body fatness, adiponectin levels and inflammation mediate the relationship between ethnicity and insulin resistance in an Asian setting.
    Matched MeSH terms: Obesity/blood
  3. Azman KF, Amom Z, Azlan A, Esa NM, Ali RM, Shah ZM, et al.
    J Nat Med, 2012 Apr;66(2):333-42.
    PMID: 21989999 DOI: 10.1007/s11418-011-0597-8
    Obesity and overweight are associated with atherosclerosis, fatty liver, hyperlipemia, diabetes mellitus, and various types of cancer. The global prevalence of overweight and obesity has reached epidemic proportions. Here, we investigated the effect of Tamarindus indica pulp aqueous extract (TIE) in diet-induced obese Sprague-Dawley rats. The animals were divided into five groups and labeled as follows: the normal control (NC) group received normal diet; the positive control (PC) group received high-fat diet; and the TIE 5, 25, and 50 groups, after the induction of obesity via a high-fat diet, received TIE at 5, 25, or 50 mg/kg orally for 10 weeks. It was observed that TIE decreased the levels of plasma total cholesterol, low-density lipoprotein (LDL), and triglyceride, and increased high-density lipoprotein (HDL), with the concomitant reduction of body weight. Moreover, TIE decreased plasma leptin and reduced fatty acid synthase (FAS) activity and enhanced the efficiency of the antioxidant defense system. TIE exhibits antiobesity effects, as indicated by a significant reduction in adipose tissue weights, as well as lowering the degree of hepatic steatosis in the obesity-induced rats. The extract possesses hepatoprotective activity, as it reversed the plasma liver enzymes level elevation prior to the high-fat diet. In conclusion, TIE improved obesity-related parameters in blood, liver, and adipose tissue in a rat model and suppressed obesity induced by a high-fat diet, possibly by regulating lipid metabolism and lowering plasma leptin and FAS levels. A dose-dependant effect of TIE is detected, where TIE at 50 mg/kg showed the most prominent effect, followed by TIE at 25 mg/kg and, subsequently, 5 mg/kg.
    Matched MeSH terms: Obesity/blood
  4. Jalil AM, Ismail A, Pei CP, Hamid M, Kamaruddin SH
    J Agric Food Chem, 2008 Sep 10;56(17):7877-84.
    PMID: 18702467 DOI: 10.1021/jf8015915
    In this present study, we investigated the effects of cocoa extract containing polyphenols and methylxanthines prepared from cocoa powder on the biochemical parameters of obese-diabetic (Ob-db) rats. Obese-diabetic (Ob-db) rats were developed using a high-fat diet (49% fat, 32% carbohydrate, and 19% protein from total energy, kcal) for 3 months, followed by a low dose (35 mg/kg body weight) streptozotocin (STZ) injection. Cocoa extract (600 mg/kg body weight/day) was given to the rats for 4 weeks. The results indicated that there were no significant differences in fasting plasma glucose and insulin level after 4 weeks of cocoa extract administration. Oral glucose tolerance test revealed that cocoa supplementation in Ob-db rats significantly (p < 0.05) reduced plasma glucose at 60 and 90 min compared to unsupplemented Ob-db rats. Plasma free fatty acid and oxidative stress biomarker (8-isoprostane) were significantly (p < 0.05) reduced after cocoa supplementation. Superoxide dismutase activity was enhanced in Ob-db compared to that in nonsupplemented rats. However, no change was observed in catalase activity. The results showed that cocoa supplementation had an effect on postprandial glucose control but not for long term (4 weeks). Moreover, cocoa supplementation could reduce circulating plasma free fatty acid and 8-isoprostane and may enhance the antioxidant defense system.
    Matched MeSH terms: Obesity/blood
  5. Yida Z, Imam MU, Ismail M, Ismail N, Ideris A, Abdullah MA
    J Biomed Sci, 2015;22:96.
    PMID: 26498218 DOI: 10.1186/s12929-015-0211-6
    Serum sialic acid levels are positively correlated with coronary artery disease and inflammation. Although sialic acid is a non-specific marker, it is considered sensitive likely due to its influence in sialylation of glycoprotein structures all over the body.
    Matched MeSH terms: Obesity/blood
  6. Hughes K, Aw TC, Kuperan P, Choo M
    J Epidemiol Community Health, 1997 Aug;51(4):394-9.
    PMID: 9328546
    STUDY OBJECTIVE: To examine the hypothesis that the higher rates of coronary heart disease (CHD) in Indians (South Asians) compared with Malays and Chinese is at least partly explained by central obesity, insulin resistance, and syndrome X (including possible components).
    DESIGN: Cross sectional study of the general population.
    SETTING: Singapore.
    PARTICIPANTS: Random sample of 961 men and women (Indians, Malays, and Chinese) aged 30 to 69 years.
    MAIN RESULTS: Fasting serum insulin concentration was correlated directly and strongly with body mass index (BMI), waist-hip ratio (WHR), and abdominal diameter. The fasting insulin concentration was correlated inversely with HDL cholesterol and directly with the fasting triglyceride concentration, blood pressures, plasminogen activator inhibitor 1 (PAI-1), and tissue plasminogen activator (tPA), but it was not correlated with LDL cholesterol, apolipoproteins B and A1, lipoprotein(a), (Lp(a)), fibrinogen, factor VIIc, or prothrombin fragment (F)1 + 2. This indicates that the former but not the latter are part of syndrome X. While Malays had the highest BMI, Indians had a higher WHR (men 0.93 and women 0.84) than Malays (men 0.91 and women 0.82) and Chinese (men 0.91 and women 0.82). In addition, Indians had higher fasting insulin values and more glucose intolerance than Malays and Chinese. Indians had lower HDL cholesterol, and higher PAI-1, tPA, and Lp(a), but not higher LDL cholesterol, fasting triglyceride, blood pressures, fibrinogen, factor VIIc, or prothrombin F1 + 2.
    CONCLUSIONS: Indians are more prone than Malays or Chinese to central obesity with insulin resistance and glucose intolerance and there are no apparent environmental reasons for this in Singapore. As a consequence, Indians develop some but not all of the features of syndrome X. They also have higher Lp(a) values. All this puts Indians at increased risk of atherosclerosis and thrombosis and must be at least part of the explanation for their higher rates of CHD.
    Matched MeSH terms: Obesity/blood
  7. Sundström-Poromaa I, Thu WPP, Kramer MS, Logan S, Cauley JA, Yong EL
    Maturitas, 2020 Jul;137:50-56.
    PMID: 32498937 DOI: 10.1016/j.maturitas.2020.04.003
    OBJECTIVES: To understand the extent to which risk factors for insulin resistance are mediated by body mass index (BMI), visceral adipose tissue (VAT), physical activity and performance, and the inflammatory markers interleukin (IL)-6, tumor necrosis factor (TNF)- α, and high-sensitivity C-reactive protein (hs-CRP).

    STUDY DESIGN: A wide range of socio-demographic characteristics of Chinese, Malay and Indian women attending routine gynecologic care in Singapore were prospectively collected. Physical performance was objectively measured by hand grip strength and the Short Physical Performance Battery. Percent VAT was determined by dual-energy X-ray absorptiometry. Fasting serum concentrations of glucose, insulin, IL-6, TNF- α, and hs-CRP were measured.

    MAIN OUTCOME MEASURE: was insulin resistance, expressed as the homeostatic model assessment of insulin resistance (HOMA-IR).

    RESULTS: 1159 women were analyzed, mean age 56.3 (range 45-69) years, comprising women of Chinese (84.0%), Indian (10.2%), and Malay (5.7%) ethnic origins. The adjusted mean differences for obesity (0.66, 95% CI 0.32-1.00), VAT area in the highest vs lowest tertile (1.03, 95% CI 0.73-1.34), low physical performance (0.63, 95% CI 0.05-1.24), and highest vs lowest tertile of TNF- α (0.35, 95% CI 0.13-0.57) were independently associated with HOMA-IR. Women of Malay and Indian ethnicity had higher crude HOMA-IR than Chinese women. However, after adjustment for obesity, VAT, physical performance, and TNF- α, no differences in mean HOMA-IR remained, when comparing Chinese women with those of Malay ethnicity (0.27, 95% CI -0.12 to 0.66) and with those of Indian ethnicity (0.30, 95% CI -0.01 to 0.66).

    CONCLUSIONS: Insulin resistance was independently associated with obesity, high VAT, low physical performance, and high levels of TNF- α in midlife Singaporean women. These variables entirely explained the significant differences in insulin resistance between women of Chinese, Malay and Indian ethnicity.

    Matched MeSH terms: Obesity/blood
  8. Lim SH, Fan SH, Say YH
    Malays J Nutr, 2012 Dec;18(3):345-54.
    PMID: 24568075 MyJurnal
    INTRODUCTION: There is a pressing need to better understand the complex biochemical pathways that lead to the pathogenesis of obesity. Increased oxidative stress and decreased antioxidant capacity have been identified to be associated with obesity. Therefore, the objectives of this study were to determine the plasma total antioxidant capacity (TAC) levels of Malaysian subjects and to evaluate its potential association with obesity and related anthropometric measurements.
    METHODS: Plasma TAC of 362 multi-ethnic Malaysian subjects from the Kampar Health Clinic (138 males, 224 females; 124 ethnic Malays, 152 Chinese, 86 Indians; 192 non-obese, 170 obese) was measured using Trolox equivalent antioxidant capacity (TEAC) 96-well plate assay.
    RESULTS: Plasma TAC was significantly lower in obese subjects (M +/- SE = 292 +/- 10.4 micromol/L) compared to non-obese subjects (397 +/- 8.58 micromol/L), whereas it was significantly higher in males and those in the 21-30 age group. Those with salty food preference and practising a strict vegetarian diet also had significantly higher plasma TAC. However, no association was found for other dietary habits (coffee intake) and lifestyle factors (physical activity, smoking). Plasma TAC was also significantly negatively correlated with diastolic blood pressure, waist and hip circumferences, weight, body mass index, total body fat, % subcutaneous fat, visceral fat level, resting metabolism and % skeletal muscle.
    CONCLUSION: Plasma TAC was found to be associated with obesity, strict vegetarian practice, salty food preference and all obesity anthropometric indicators, except systolic blood pressure and pulse rate. Obese people have decreased plasma TAC indicating a compromised systemic antioxidant defence and increased oxidative stress.
    Matched MeSH terms: Obesity/blood*
  9. Beh BK, Mohamad NE, Yeap SK, Ky H, Boo SY, Chua JYH, et al.
    Sci Rep, 2017 07 27;7(1):6664.
    PMID: 28751642 DOI: 10.1038/s41598-017-06235-7
    Recently, food-based bioactive ingredients, such as vinegar, have been proposed as a potential solution to overcome the global obesity epidemic. Although acetic acid has been identified as the main component in vinegar that contributes to its anti-obesity effect, reports have shown that vinegar produced from different starting materials possess different degrees of bioactivity. This study was performed to compare the anti-obesity and anti-inflammatory effects of synthetic acetic acid vinegar and Nipa vinegar in mice fed a high-fat diet. In this work, mice were fed a high-fat diet for 33 weeks. At the start of week 24, obese mice were orally fed synthetic acetic acid vinegar or Nipa vinegar (0.08 and 2 ml/kg BW) until the end of week 33. Mice fed a standard pellet diet served as a control. Although both synthetic acetic acid vinegar and Nipa vinegar effectively reduced food intake and body weight, a high dose of Nipa vinegar more effectively reduced lipid deposition, improved the serum lipid profile, increased adipokine expression and suppressed inflammation in the obese mice. Thus, a high dose of Nipa vinegar may potentially alleviate obesity by altering the lipid metabolism, inflammation and gut microbe composition in high-fat-diet-induced obese mice.
    Matched MeSH terms: Obesity/blood
  10. Asilah Za'don NH, Amirul Farhana MK, Farhanim I, Sharifah Izwan TO, Appukutty M, Salim N, et al.
    Med J Malaysia, 2019 12;74(6):461-467.
    PMID: 31929469
    INTRODUCTION: High-intensity interval training (HIIT) has been found to improve cardiometabolic health outcome as compared to moderate-intensity continuous exercise. However, there is still limited data on the benefits of HIIT on the expression of regulatory proteins that are linked to skeletal muscle metabolism and insulin sensitivity in obese adults. This study investigated the effects of HIIT intervention on expressions of peroxisome proliferatoractivated receptor-γ coactivator 1-∝ (PGC-1∝) and adiponectin receptor-1 (AdipoR1), insulin sensitivity (HOMAIR index), and body composition in overweight/obese individuals.

    METHODS: Fifty overweight/obese individuals aged 22-29 years were assigned to either no-exercise control (n=25) or HIIT (n=25) group. The HIIT group underwent a 12-week intervention, three days/week, with intensity of 65-80% of age-based maximum heart rate. Anthropometric measurements, homeostatic model of insulin resistance (HOMA-IR) and gene expression analysis were conducted at baseline and post intervention.

    RESULTS: Significant time-by-group interactions (p<0.001) were found for body weight, BMI, waist circumference and body fat percentage. The HIIT group had lower body weight (2.3%, p<0.001), BMI (2.7%, p<0.001), waist circumference (2.4%, p<0.001) and body fat percentage (4.3%, p<0.001) post intervention. Compared to baseline, expressions of PGC-1∝ and AdipoR1 were increased by approximately three-fold (p=0.019) and two-fold (p=0.003) respectively, along with improved insulin sensitivity (33%, p=0.019) in the HIIT group.

    CONCLUSION: Findings suggest that HIIT possibly improved insulin sensitivity through modulation of PGC-1∝ and AdipoR1. This study also showed that improved metabolic responses can occur despite modest reduction in body weight in overweight/obese individuals undergoing HIIT intervention.

    Matched MeSH terms: Obesity/blood
  11. Ahmed RH, Huri HZ, Muniandy S, Al-Hamodi Z, Al-Absi B, Alsalahi A, et al.
    Clin Biochem, 2017 Sep;50(13-14):746-749.
    PMID: 28288852 DOI: 10.1016/j.clinbiochem.2017.03.008
    OBJECTIVES: Soluble DPP4 (sDPP4) is a novel adipokine that degrades glucagon-like peptide (GLP-1). We evaluated the fasting serum levels of active GLP-1 and sDPP4 in obese, overweight and normal weight subjects to assess the association between sDPP4 levels, active GLP-1 levels and insulin resistance in obese subjects.

    METHODS: The study involved 235 Malaysian subjects who were randomly selected (66 normal weight subjects, 97 overweight, 59 obese subjects, and 13 subjects who were underweight). Serum sDPP4 and active GLP-1 levels were examined by enzyme-linked immunosorbent assay (ELISA). Also, body mass index kg/m(2) (BMI), lipid profiles, insulin and glucose levels were evaluated. Insulin resistance (IR) was estimated via the homeostasis model assessment for insulin resistance (HOMA-IR).

    RESULTS: Serum sDPP4 levels were significantly higher in obese subjects compared to normal weight subjects (p=0.034), whereas serum levels of active GLP-1 were lower (p=0.021). In obese subjects, sDPP4 levels correlated negatively with active GLP-1 levels (r(2)=-0.326, p=0.015). Furthermore, linear regression showed that sDPP4 levels were positively associated with insulin resistance (B=82.28, p=0.023) in obese subjects.

    CONCLUSION: Elevated serum sDPP4 levels and reduced GLP-1 levels were observed in obese subjects. In addition, sDPP4 levels correlated negatively with active GLP-1 levels but was positively associated with insulin resistance. This finding provides evidence that sDPP4 and GLP-1 may play an important role in the pathogenesis of obesity, suggesting that sDPP4 may be valuable as an early marker for the augmented risk of obesity and insulin resistance.

    Matched MeSH terms: Obesity/blood*
  12. Seyedan A, Alshawsh MA, Alshagga MA, Mohamed Z
    Planta Med, 2017 May;83(8):684-692.
    PMID: 27992939 DOI: 10.1055/s-0042-121754
    The present study investigated the antiobesity and lipid lowering effects of an ethanolic extract of leaves obtained from Orthosiphon stamineus (200 and 400 mg/kg) and its major compound (rosmarinic acid, 10 mg/kg) in obese mice (C57BL/6) induced by a high-fat diet. Continuous supplementation with O. stamineus extract (200 and 400 mg/kg) for 8 weeks significantly decreased body weight gain (p 
    Matched MeSH terms: Obesity/blood
  13. Hasan H, Attlee A, Jan Bin Jan Mohamed H, Aris N, Bin Wan Muda WAM
    J Obes, 2018;2018:1597840.
    PMID: 30631594 DOI: 10.1155/2018/1597840
    INTRODUCTION: Physical activity (PA) may improve cardiometabolic fitness and increase high-molecular-weight adiponectin (HMW-Adip). The pedometer is an effective, user-friendly device to monitor PA with the aim of improving health. This study examined how counting footsteps, using a pedometer, might affect HMW-Adip and MetS components among young females.

    METHODS: Fifty-two females (21.43 ± 4.8 years) were divided into "normal" (BMI = 18-24.9 kg/m2) and "high" (BMI ≥ 25 kg/m2) BMI groups. Participants wore pedometers throughout the day for nine weeks. Pre-post intervention tests performed on anthropometric, biochemical, and nutrient intake variables were tested at p ≤ 0.05.

    RESULTS: Participants walked 7056 ± 1570 footsteps/day without a significant difference between normal (7488.49 ± 1098) and high (6739.18 ± 1793) BMI groups. After week 9, the normal BMI group improved significantly in BMI, body fat mass (BFM), and waist-hip ratio (WHR). Additionally, percent body fat, waist circumference (WC), and visceral fat area also reduced significantly in the high BMI group. A significant decrease in triglycerides (TG) (71.62 ± 29.22 vs. 62.50 ± 29.16 mg/dl, p=0.003) and insulin (21.7 ± 8.33 µU/l vs. 18.64 ± 8.25 µU/l, p=0.046) and increase in HMW-Adip (3.77 ± 0.46 vs. 3.80 ± 0.44 μg/ml, p=0.034) were recorded in the high BMI group. All participants exhibited significant inverse correlations between daily footsteps and BMI (r=-0.33, p=0.017), BFM (r=-0.29, p=0.037), WHR (r=-0.401, p=0.003), and MetS score (r=-0.49, p < 0.001) and positive correlation with HMW-Adip (r=0.331, p=0.017). A positive correlation with systolic (r=0.46, p=0.011) and diastolic (r=0.39, p=0.031) blood pressures and inverse correlation with the MetS score (r=-0.5, p=0.005) were evident in the high BMI group.

    CONCLUSION: Counting footsteps using a pedometer is effective in improving MetS components (obesity, TG) and increasing HMW-Adip levels.

    Matched MeSH terms: Obesity/blood*
  14. Pok EH, Lee WJ
    World J Gastroenterol, 2014 Oct 21;20(39):14315-28.
    PMID: 25339819 DOI: 10.3748/wjg.v20.i39.14315
    Medical therapy for type 2 diabetes mellitus is ineffective in the long term due to the progressive nature of the disease, which requires increasing medication doses and polypharmacy. Conversely, bariatric surgery has emerged as a cost-effective strategy for obese diabetic individuals; it has low complication rates and results in durable weight loss, glycemic control and improvements in the quality of life, obesity-related co-morbidity and overall survival. The finding that glucose homeostasis can be achieved with a weight loss-independent mechanism immediately after bariatric surgery, especially gastric bypass, has led to the paradigm of metabolic surgery. However, the primary focus of metabolic surgery is the alteration of the physio-anatomy of the gastrointestinal tract to achieve glycemic control, metabolic control and cardio-metabolic risk reduction. To date, metabolic surgery is still not well defined, as it is used most frequently for less obese patients with poorly controlled diabetes. The mechanism of glycemic control is still incompletely understood. Published research findings on metabolic surgery are promising, but many aspects still need to be defined. This paper examines the proposed mechanism of diabetes remission, the efficacy of different types of metabolic procedures, the durability of glucose control, and the risks and complications associated with this procedure. We propose a tailored approach for the selection of the ideal metabolic procedure for different groups of patients, considering the indications and prognostic factors for diabetes remission.
    Matched MeSH terms: Obesity/blood
  15. Eu CH, Lim WY, Ton SH, bin Abdul Kadir K
    Lipids Health Dis, 2010;9:81.
    PMID: 20670429 DOI: 10.1186/1476-511X-9-81
    The metabolic syndrome, known also as the insulin resistance syndrome, refers to the clustering of several risk factors for atherosclerotic cardiovascular disease. Dyslipidaemia is a hallmark of the syndrome and is associated with a whole body reduction in the activity of lipoprotein lipase (LPL), an enzyme under the regulation of the class of nuclear receptors known as peroxisome proliferator-activated receptor (PPAR). Glycyrrhizic acid (GA), a triterpenoid saponin, is the primary bioactive constituent of the roots of the shrub Glycyrrhiza glabra. Studies have indicated that triterpenoids could act as PPAR agonists and GA is therefore postulated to restore LPL expression in the insulin resistant state.
    Matched MeSH terms: Obesity/blood
  16. Murphy N, Cross AJ, Abubakar M, Jenab M, Aleksandrova K, Boutron-Ruault MC, et al.
    PLoS Med, 2016 Apr;13(4):e1001988.
    PMID: 27046222 DOI: 10.1371/journal.pmed.1001988
    BACKGROUND: Obesity is positively associated with colorectal cancer. Recently, body size subtypes categorised by the prevalence of hyperinsulinaemia have been defined, and metabolically healthy overweight/obese individuals (without hyperinsulinaemia) have been suggested to be at lower risk of cardiovascular disease than their metabolically unhealthy (hyperinsulinaemic) overweight/obese counterparts. Whether similarly variable relationships exist for metabolically defined body size phenotypes and colorectal cancer risk is unknown.

    METHODS AND FINDINGS: The association of metabolically defined body size phenotypes with colorectal cancer was investigated in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Metabolic health/body size phenotypes were defined according to hyperinsulinaemia status using serum concentrations of C-peptide, a marker of insulin secretion. A total of 737 incident colorectal cancer cases and 737 matched controls were divided into tertiles based on the distribution of C-peptide concentration amongst the control population, and participants were classified as metabolically healthy if below the first tertile of C-peptide and metabolically unhealthy if above the first tertile. These metabolic health definitions were then combined with body mass index (BMI) measurements to create four metabolic health/body size phenotype categories: (1) metabolically healthy/normal weight (BMI < 25 kg/m2), (2) metabolically healthy/overweight (BMI ≥ 25 kg/m2), (3) metabolically unhealthy/normal weight (BMI < 25 kg/m2), and (4) metabolically unhealthy/overweight (BMI ≥ 25 kg/m2). Additionally, in separate models, waist circumference measurements (using the International Diabetes Federation cut-points [≥80 cm for women and ≥94 cm for men]) were used (instead of BMI) to create the four metabolic health/body size phenotype categories. Statistical tests used in the analysis were all two-sided, and a p-value of <0.05 was considered statistically significant. In multivariable-adjusted conditional logistic regression models with BMI used to define adiposity, compared with metabolically healthy/normal weight individuals, we observed a higher colorectal cancer risk among metabolically unhealthy/normal weight (odds ratio [OR] = 1.59, 95% CI 1.10-2.28) and metabolically unhealthy/overweight (OR = 1.40, 95% CI 1.01-1.94) participants, but not among metabolically healthy/overweight individuals (OR = 0.96, 95% CI 0.65-1.42). Among the overweight individuals, lower colorectal cancer risk was observed for metabolically healthy/overweight individuals compared with metabolically unhealthy/overweight individuals (OR = 0.69, 95% CI 0.49-0.96). These associations were generally consistent when waist circumference was used as the measure of adiposity. To our knowledge, there is no universally accepted clinical definition for using C-peptide level as an indication of hyperinsulinaemia. Therefore, a possible limitation of our analysis was that the classification of individuals as being hyperinsulinaemic-based on their C-peptide level-was arbitrary. However, when we used quartiles or the median of C-peptide, instead of tertiles, as the cut-point of hyperinsulinaemia, a similar pattern of associations was observed.

    CONCLUSIONS: These results support the idea that individuals with the metabolically healthy/overweight phenotype (with normal insulin levels) are at lower colorectal cancer risk than those with hyperinsulinaemia. The combination of anthropometric measures with metabolic parameters, such as C-peptide, may be useful for defining strata of the population at greater risk of colorectal cancer.

    Matched MeSH terms: Obesity/blood
  17. Ellulu MS, Rahmat A, Patimah I, Khaza'ai H, Abed Y
    Drug Des Devel Ther, 2015;9:3405-12.
    PMID: 26170625 DOI: 10.2147/DDDT.S83144
    Obesity is well associated as being an interfering factor in metabolic diseases such as hypertension and diabetes by increasing the secretion of proinflammatory markers from adipose tissue. Having healthy effects, vitamin C could work as an anti-inflammatory agent through its antioxidant capacity.
    Matched MeSH terms: Obesity/blood
  18. Robert SA, Rohana AG, Shah SA, Chinna K, Wan Mohamud WN, Kamaruddin NA
    Obes Res Clin Pract, 2015 May-Jun;9(3):301-4.
    PMID: 25870084 DOI: 10.1016/j.orcp.2015.03.005
    We examined the effects of liraglutide, a glucagon-like peptide-1 analogue on appetite and plasma ghrelin in non-diabetic obese participants with subclinical binge eating (BE). Forty-four obese BE participants (mean age: 34±9 years, BMI: 35.9±4.2kg/m(2)) were randomly assigned to intervention or control groups for 12 weeks. All participants received standard advice for diet and exercise. Binge eating score, ghrelin levels and other anthropometric variables were evaluated at baseline and at the end of the study. Participants who received liraglutide showed significant improvement in binge eating, accompanied by reduction in body weight, BMI, waist circumference, systolic blood pressure, fasting glucose and total cholesterol. Ghrelin levels were significantly increased which may potentially diminish the weight loss effects of liraglutide beyond the intervention.
    Matched MeSH terms: Obesity/blood
  19. Seyedan A, Mohamed Z, Alshagga MA, Koosha S, Alshawsh MA
    J Ethnopharmacol, 2019 May 23;236:173-182.
    PMID: 30851371 DOI: 10.1016/j.jep.2019.03.001
    ETHNOPHARMACOLOGICAL RELEVANCE: Cynometra cauliflora Linn. belongs to the Fabaceae family and is known locally in Malaysia as nam-nam. Traditionally, a decoction of the C. cauliflora leaves is used for treating hyperlipidemia and diabetes.

    AIM OF THE STUDY: This study aims to investigate the anti-obesity and lipid lowering effects of ethanolic extract of C. cauliflora leaves and its major compound (vitexin) in C57BL/6 obese mice induced by high-fat diet (HFD), as well as to further identify the molecular mechanism underlying this action.

    METHODS AND MATERIAL: Male C57BL/6 mice were fed with HFD (60% fat) for 16 weeks to become obese. The treatment started during the last 8 weeks of HFD feeding and the obese mice were treated with C. cauliflora leaf extract at 200 and 400 mg/kg/day, orlistat (10 mg/kg) and vitexin (10 mg/kg).

    RESULTS: The oral administration of C. cauliflora (400 and 200 mg/kg) and vitexin significantly reduced body weight, adipose tissue and liver weight and lipid accumulation in the liver compared to control HFD group. Both doses of C. cauliflora also significantly (P ≤ 0.05) decreased serum triglyceride, LDL, lipase, IL-6, peptide YY, resistin levels, hyperglycemia, hyperinsulinemia, and hyperleptinemia compared to the control HFD group. Moreover, C. cauliflora significantly up-regulated the expression of adiponectin, Glut4, Mtor, IRS-1 and InsR genes, and significantly decreased the expression of Lepr in white adipose tissue. Furthermore, C. cauliflora significantly up-regulated the expression of hypothalamus Glut4, Mtor and NF-kB genes. GC-MS analysis of C. cauliflora leaves detected the presence of phytol, vitamin E and β-sitosterol. Besides, the phytochemical evaluation of C. cauliflora leaves showed the presence of flavonoid, saponin and phenolic compounds.

    CONCLUSION: This study shows interesting outcomes of C. cauliflora against HFD-induced obesity and associated metabolic abnormalities. Therefore, the C. cauliflora extract could be a potentially effective agent for obesity management and its related metabolic disorders such as insulin resistance and hyperlipidemia.

    Matched MeSH terms: Obesity/blood
  20. Xia W, Tang N, Kord-Varkaneh H, Low TY, Tan SC, Wu X, et al.
    Pharmacol Res, 2020 11;161:105113.
    PMID: 32755613 DOI: 10.1016/j.phrs.2020.105113
    BACKGROUND AND AIM: Previous studies lack consistent conclusions as to whether astaxanthin is actually linked to various health benefits as claimed. Here, we attempt to unravel the association of astaxanthin consumption with selected health benefits by performing a systematic review and meta-analysis.

    METHODS: Online literature search databases including Scopus, Web of Science, PubMed/Medline, Embase and Google Scholar were searched to discover relevant articles available up to 17 March 2020. We used mean changes and SD of the outcomes to assess treatment response from baseline and mean difference, and 95 % CI were calculated to combined data and assessment effect sizes in astaxanthin and control groups.

    RESULTS: 14 eligible articles were included in the final quantitative analysis. Current study revealed that astaxanthin consumption was not associated with FBS, HbA1c, TC, LDL-C, TG, BMI, BW, DBP, and SBP. We did observe an overall increase in HDL-C (WMD: 1.473 mg/dl, 95 % CI: 0.319-2.627, p = 0.012). As for the levels of CRP, only when astaxanthin was administered (i) for relatively long periods (≥ 12 weeks) (WMD: -0.528 mg/l, 95 % CI: -0.990 to -0.066), and (ii) at high dose (> 12 mg/day) (WMD: -0.389 mg/dl, 95 % CI: -0.596 to -0.183), the levels of CRP would decrease.

    CONCLUSION: In summary, our systematic review and meta-analysis revealed that astaxanthin consumption was associated with increase in HDL-C and decrease in CRP. Significant associations were not observed for other outcomes.

    Matched MeSH terms: Obesity/blood
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links